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A B S T R A C T

Normal anxiety is considered an adaptive response to the possible presence of danger, but is suscep-

tible to dysregulation. Anxiety disorders are prevalent at high frequency in contemporary human

societies, yet impose substantial disability upon their sufferers. This raises a puzzle: why has evolution

left us vulnerable to anxiety disorders? We develop a signal detection model in which individuals must

learn how to calibrate their anxiety responses: they need to learn which cues indicate danger in the

environment. We derive the optimal strategy for doing so, and find that individuals face an inevitable

exploration–exploitation tradeoff between obtaining a better estimate of the level of risk on one hand,

and maximizing current payoffs on the other. Because of this tradeoff, a subset of the population can

become trapped in a state of self-perpetuating over-sensitivity to threatening stimuli, even when indi-

viduals learn optimally. This phenomenon arises because when individuals become too cautious, they

stop sampling the environment and fail to correct their misperceptions, whereas when individuals

become too careless they continue to sample the environment and soon discover their mistakes.

Thus, over-sensitivity to threats becomes common whereas under-sensitivity becomes rare. We suggest

that this process may be involved in the development of excessive anxiety in humans.

K E Y W O R D S : anxiety disorders; learning; signal detection theory; mood disorders; dynamic

programming

INTRODUCTION

Motile animals have evolved elaborate mechanisms

for detecting and avoiding danger. Many of these

mechanisms are deeply conserved evolutionarily

[1]. When an individual senses possible danger, this

triggers a cascade of physiological responses that

prepare it to deal with the threat. Behavioral ecolo-

gical models treat the capacity for anxiety as a mech-

anism of regulating how easily these defensive

responses are induced [2–7]. Greater anxiety causes
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an individual to be alert to more subtle signs of po-

tential danger, while lowered anxiety causes the in-

dividual to react only to more obvious signs [8]. As

unpleasant as the experience of anxiety may be, the

capacity for anxiety is helpful in tuning behavior to

environmental circumstance. This viewpoint is bol-

stered by epidemiological evidence suggesting that

long-term survival is worse for people with low anx-

iety-proneness than for those in the middle of the

distribution, due in part to increased rates of acci-

dents and accidental death in early adulthood [9, 10].

While the capacity for anxiety is adaptive,

dysregulated anxiety is also common, at least in

humans. Of all classes of mental disorders, anxiety

disorders affect the largest number of patients [11].

The global prevalence of individuals who suffer from

an anxiety disorder at some point in their life is com-

monly estimated at�15% [11, 12], with 5–10% of the

population experiencing pathological anxiety in any

given year [11–13]. The consequences can be drastic:

in a 12-month period in USA, 4% of individuals had

an anxiety disorder that was severe enough to cause

work disability, substantial limitation, or>30 days of

inability to maintain their role [14]. The prevalence

and magnitude of anxiety disorders is also reflected

in the aggregate losses they cause to economic prod-

uctivity: in the 1990s, the annual cost was estimated

at $42 billion in USA alone [15].

Episodes of clinically significant anxiety are

distributed broadly across the lifespan, and anxiety

disorders typically manifest before or during the

child-rearing years [16]. Because of the severity of

impairment that often results from anxiety dis-

orders, and the fact that onset occurs before or dur-

ing reproduction, these disorders will often have a

substantial effect on Darwinian fitness. Thus, the

prevalence of anxiety disorders poses an apparent

problem for the evolutionary viewpoint. If the cap-

acity for anxiety is an adaptation shaped by natural

selection, why is it so prone to malfunction?

One possible explanation invokes the so-called

smoke detector principle [3, 4]. The basic idea is to

think about how anxiety serves to help an organism

detect danger, and to note the asymmetry between

the low cost of a false alarm and the high cost of

failing to detect a true threat. This allows us to frame

anxiety in the context of signal detection theory.

Because of asymmetry in costs of false alarms ver-

sus false complacency, the theory predicts that

optimized warning systems will commonly generate

far more false positives than false negatives. This

provides an explanation for why even optimal

behavior can produce seemingly excessive sensitiv-

ity in the form of frequent false alarms [4, 17]. More

recently, the signal detection framework has been

expanded to describe how the sensitivity of a

warning system should track a changing environ-

ment and become more easily triggered in danger-

ous situations [7]. This approach, together with error

management theory [18], begins to provide an ac-

count of how anxiety and mood regulate behavior

over time, and why high levels of anxiety may be

adaptive even when true threats are scarce. Better

to be skittish and alive than calm but dead.

The smoke detector principle cannot be the whole

story, however. There are a number of aspects of

anxiety that it does not readily explain. First, the

smoke detector principle deals with evolutionarily

adaptive anxiety—but not with the issue of why evo-

lution has left us vulnerable to anxiety disorders. A

fully satisfactory model of anxiety and anxiety dis-

orders should explain within-population variation:

Why does a small subset of the population suffer

from an excess of anxiety, while the majority regulate

anxiety levels appropriately? Second, a critical com-

ponent of anxiety disorders is the way they emerge

from self-reinforcing negative behavior patterns.

Individuals with anxiety disorders often avoid situ-

ations or activities that are in fact harmless or even

beneficial. Effectively, these individuals are behaving

too pessimistically, treating harmless situations as if

they were dangerous. We would like to explain how

adaptive behavior might lead to self-reinforcing pes-

simism. Third, if the evolutionary function of anxiety

is to modulate the threat response according to

environmental circumstances [19], evolutionary

models of anxiety will need to explicitly treat that

modulation process—that is, such models should

incorporate the role of learning explicitly.

In this article, we show that optimal learning can

generate behavioral over-sensitivity to threat that is

truly harmful to the individual’s fitness, but ex-

pressed in only a subset of the population. Our

aim is not to account for the specific details of par-

ticular anxiety disorders—phobias, generalized anx-

iety disorder, post-traumatic stress disorder and so

forth—but rather to capture some of the general fea-

tures of how anxiety is regulated and how this pro-

cess can go awry.

In the next section, ‘Learning about an uncertain

world’, we illustrate the basic mechanism behind our

result using a very simple model borrowed from

foraging theory [20] in which an actor must learn

by iterative trial and error whether taking some
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action is unacceptably dangerous or sufficiently

safe. (Trimmer et al. [21] independently developed

a related model to study clinical depression. In add-

ition, see Frankenhuis and Panchanathan [22] as

well as [23] for closely related models of develop-

mental plasticity in general.) In the subsequent

section, ‘Modeling anxiety by including cues’, we ex-

tend the model into the domain of signal detection

theory and consider how an actor learns to set the

right threshold for responding to an indication of

danger. In most signal detection models, the agent

making the decision is assumed to know the distri-

bution of cues generated by safe and by dangerous

situations. But where does this knowledge come

from? Unless the environment is homogeneous in

time and space over evolutionary timescales, the

distributions of cues must be learned. In our model,

therefore, the agent must actively learn how the cues

it observes relate to the presence of danger. We show

that under these circumstances, some members of a

population of optimal learners will become overly

pessimistic in their interpretations of cues, but fewer

will become overly optimistic.

LEARNING ABOUT AN
UNCERTAIN WORLD

If we want to explain excess anxiety from an evolu-

tionary perspective, we must account for why only a

subset of the population is affected. Although gen-

etic differences may be partly responsible, random

variation in individual experience can also lead to

behavioral differences among individuals. In par-

ticular, if an individual has been unfortunate during

its early experience, it may become trapped in a cycle

of self-reinforcing pessimism. To demonstrate this,

we begin with a simple model that shows how re-

sponses to uncertain conditions are shaped by indi-

vidual learning. The model of this section does not

include the possibility of the individual observing

cues of the potential danger. Thus, it does not cap-

ture anxiety’s essential characteristic of threat detec-

tion. But this model does serve to illustrate the

underlying mechanism that can lead a subset of

the population to be overly pessimistic.

Model

Because our aim is to reveal general principles

around learned pessimism, rather than to model

specific human pathologies, we frame our model

as a simple fable. Our protagonist is a fox. In the

course of its foraging, it occasionally comes across

a burrow in the ground. Sometimes the burrow will

contain a rabbit that the fox can catch and eat, but

sometimes the burrow will contain a fierce badger

that may injure the fox. Perhaps our fox lives in an

environment where badgers are common, or per-

haps it lives in an environment where badgers are

rare, but the fox has no way of knowing beforehand

which is the case. Where badgers are rare, it is worth

taking the minor risk involved in digging up a burrow

to hunt rabbits. Where badgers are common, it is not

worth the risk and the fox should eschew burrows in

favor of safer foraging options: mice, birds, fruits

and berries. The fox encounters burrows one at a

time, and at each one faces the decision of whether

to dig at the burrow or whether to slink away. The only

information available to the fox at each decision point

is the prior probability that badgers are common, and

its own experiences with previous burrows.

To formalize this decision problem, we imagine

that the fox encounters a sequence of burrows, one

after the other. The fox makes a single decision of

whether to explore each burrow before encountering

the next burrow, and each burrow contains either a

rabbit or a badger. We let R be the payoff to the fox

for digging up a burrow that contains a rabbit and C

be the cost of digging up a burrow that contains a

badger. If the fox decides to leave a burrow undis-

turbed, its payoff is zero. When the fox decides to

dig up a burrow, the probability of finding a badger is

pg if badgers are rare, and pb if badgers are common,

where pg<pb. If badgers are rare it is worthwhile for

the fox to dig up burrows, in the sense that the ex-

pected payoff for digging is >0. That is, we assume

that

ð1� pgÞR� pgC > 0:

If badgers are common, burrows are best avoided,

because the expected payoff for digging is <0:

ð1� pbÞR� pbC < 0:

We let q0 be the prior probability that badgers are

common and we assume that the correct prior prob-

ability is known to the fox. We assume a constant

extrinsic death rate d for the fox (and we assume that

badger encounters are costly but not lethal), so that

the present value of future rewards is discounted by

� ¼ 1� d per time step.

If the fox always encountered only a single burrow

in its lifetime, calculating the optimal behavior
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would be straightforward. If the expected value of

digging exceeds the expected value of not doing

so, the fox should dig. That is, the fox should dig

when

ð1�q0Þðð1�pgÞR�pgCÞÞþq0ðð1�pbÞR�pbCÞ>0:

However, the fox will very likely encounter a series of

burrows, and so as we evaluate the fox’s decision at

each stage we must also consider the value of the

information that the fox gets from digging. Each

time the fox digs up a burrow, it gets new informa-

tion: did the burrow contain a rabbit or a badger?

Based on this information, the fox can update its

estimate of the probability that the environment is

favorable. If the fox chooses not to dig, it learns noth-

ing and its beliefs remain unchanged. Thus, even if

the immediate expected value of digging at the first

burrow is <0, the fox may still benefit from digging

because it may learn that the environment is good

and thereby benefit substantially from digging at

subsequent burrows. In other words, the fox faces

an exploration–exploitation tradeoff [24] in its deci-

sion about whether to dig or not. Because of this

tradeoff, the model has the form of a one-armed

bandit problem [25], where the bandit arm returns

a payoff of either R or – C, and the other arm always

returns a payoff of zero.

Optimal behavior

As an example, suppose good and bad environments

are equally likely a priori (q0 ¼ 0:5) and foxes die at a

rate of d = 0.05 per time step. For simplicity, we set the

costs and rewards to be symmetric: C = 1, R = 1,

pg ¼ 1=4; pb ¼ 3=4. In a good environment where

badgers are less common, the expected value of

digging up a burrow is positive (�0:25þ

ð1� 0:25Þ ¼ 0:5) whereas in a bad environment

where badgers are common, the expected value

of digging up a burrow is negative (�0:75þ

ð1� 0:75Þ ¼ �0:5). (Recall that the fox also has other

foraging options available, and therefore will not ne-

cessarily starve if it avoids the burrows.)

Applying dynamic programming to this scenario

(see Appendix 2), we find that the fox’s optimal be-

havior is characterized by a threshold value of belief

that the environment is bad, above which the fox

does not dig at the burrows. (This threshold is the

same at all time steps.) Figure 1 illustrates two dif-

ferent outcomes that a fox might experience when

Figure 1. Two examples of optimal behavior by the fox. The vertical axis indicates the fox’s posterior subjective probability that it

is in a bad environment. In the tan region, the fox should dig. In the blue region, the fox should avoid the burrow. The grey path and

black path trace two possible outcomes of a fox’s foraging experience. The colored bars above and below the graph indicate the

fox’s experience along the upper and lower paths, respectively: brown indicates that the fox found a rabbit and blue indicates that

the fox found a badger. Along the grey path, the fox has a few bad experiences early. This shifts the fox’s subjective probability that

the environment is bad upward, into the blue region. The fox stops sampling, its probability estimate stays fixed, and learning

halts. Along the black path, the fox finds two or more rabbits between each encounter with a badger. Its subjective probability

remains in the tan zone throughout, and the fox continues to sample—and learn—throughout the experiment
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using this optimal strategy. Along the upper path,

shown in gray, a fox initially encounters a badger.

This is almost enough to cause the fox to conclude

he is in a bad environment and stop sampling. But

not quite—the fox samples again, and this time finds

a rabbit. In his third and fourth attempts, however,

the fox encounters two more badgers, and that is

enough for him—at this point he does give up.

Since he does not sample again, he gains no further

information and his probability estimate remains

unchanged going forward. Along the lower path,

shown in black, the fox initially encounters a series

of rabbits, and his probability estimate that he is in a

bad environment becomes quite low. Even the occa-

sional encounter with a badger does not alter this

probability estimate enough that the fox ought to

stop sampling, so he continues to dig at every hole

he encounters and each time adjusts his probability

estimate accordingly.

Population outcomes

After solving for the optimal decision rule, we can

examine statistically what happens to an entire popu-

lation of optimally foraging foxes. To see what the

foxes have learned, we can calculate the population-

wide distribution of individual subjective posterior

probabilities that the environment is bad. We find that

almost all of the foxes who are in unfavorable envir-

onments correctly infer that things are bad, but a sub-

stantial minority of foxes in favorable circumstances

fails to realize that things are good. In Appendix 1, we

show that the general pattern illustrated here is gen-

erally robust to variation in model parameters.

Figure 2 shows the distribution of posterior subject-

ive probabilities that the environment is good among

a population of optimally learning foxes for the above

parameter choices. We can see that a nonnegligible

number of individuals in the favorable environment

come to the false belief that the environment is prob-

ably bad. This occurs because even in a favorable en-

vironment, some individuals will uncover enough

badgers early on that it seems to them probable that

the environment is unfavorable. When this happens

those individuals will stop digging up burrows. They

will therefore fail to gain any more information, and so

their pessimism is self-perpetuating.

Comments

This self-perpetuating pessimism is not a conse-

quence of a poor heuristic for learning about the

environment; we have shown that this phenomenon

occurs when individuals are using the optimal

learning strategy. Because of the asymmetry of infor-

mation gain between being cautious and being ex-

ploratory, there results an asymmetry in the

numbers of individuals who are overly pessimistic

versus overly optimistic. Even when individuals fol-

low the optimal learning rule, a substantial subset of

the population becomes too pessimistic but very few

individuals become too optimistic.

One might think, knowing that the current

learning rule leads to excessive pessimism on an

average, that we could do better on an average by

altering the learning rule to be a bit more optimistic.

Figure 2. Population distribution of individual posterior

probabilities that the environment is bad when the environ-

ment is indeed bad (upper panel), and when the environment

is actually good (lower panel). The horizontal axis is the indi-

vidual’s posterior probability estimate that environment is bad

after 20 opportunities to dig at a burrow. (This is among foxes

who have lived that long. Conditioning in this way introduces

no sampling bias because survival is independent of environ-

ment and behavior in the model.) Frequency is plotted on the

vertical axis. Color indicates the number of times an individual

has sampled the environment. All individuals began with a

prior probability of 0.5 that the environment is bad. When

the environment is indeed bad, only 0.2% of the population

erroneously believe the environment is likely to be good. When

the environment is good, 11.1% of the population erroneously

believes that it is likely to be bad. The majority of these indi-

viduals have sampled only a few times and then given up after

a bit of bad luck
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This is not the case. Any learning rule that is more

optimistic will result in lower expected payoffs to the

learners, and thus would be replaced under natural

selection by our optimal learning rule.

This scenario may reflect an important compo-

nent of pathological human pessimism or anxiety.

For example, many people think that they ‘cannot

sing’ or ‘are no good at math’ because early failures,

perhaps during childhood, led to beliefs that have

never been challenged. When someone believes he

cannot sing, he may avoid singing and will therefore

never have the chance to learn that his voice is per-

fectly good. Thus, attitudes that stem from earlier

negative experiences become self-perpetuating.

MODELING ANXIETY BY
INCLUDING CUES

In the model we have just explored, the fox knows

nothing about a new burrow beyond the posterior

probability it has inferred from its past experience. In

many situations, however, an individual will be able

to use additional cues to determine the appropriate

course of action. For example, a cue of possible dan-

ger, such as a sudden noise or looming object, can

trigger a panic or flight response, and anxiety can be

seen as conferring a heightened sensitivity to such

signs of threat. In this view, the anxiety level of an

individual determines its sensitivity to indications of

potential danger. The higher the level of anxiety, the

smaller the cue needed to trigger a flight response [3,

4, 6, 7]. To model anxiety in this sense, we extend our

model of fox and burrow to explore how individuals

respond to signs of potential threat. We will find that

even with the presence of cues, a substantial fraction

of individuals will fall into a self-perpetuating pattern

where their anxiety levels are set too high.

The key consideration in our model is that individ-

uals must learn how cues correspond to potential

threats. In other words, individuals need to calibrate

their responses to environmental cues, setting anx-

iety levels optimally to avoid predators without

wasting too much effort on unnecessary flight.

Admittedly, if the environment is homogeneous in

space and extremely stable over many generations,

then natural selection may be able to encode the

correspondence between cues and danger into the

genome. But when the environment is less predict-

able, the individual faces the problem of learning to

properly tune its responses to cues of possible

threat.

Model

We return to our story of the fox, who we now sup-

pose can listen at the entrance to the burrow before

deciding whether to dig it up. Rabbits typically make

less noise than badgers, so listening can give the fox

a clue as to the contents of the burrow. When the

burrow is relatively silent it is more likely to contain a

rabbit, and when the fox hears distinct snuffling and

shuffling noises it is likely that the burrow contains a

badger. But the sounds are not fully reliable.

Sometimes rabbits can be noisy, and sometimes

badgers are quiet. So although the amount of noise

coming from the burrow gives the fox some informa-

tion about how likely the burrow is to contain a

badger, the information is probabilistic and the fox

can never be certain.

In contrast to the model of the previous section,

the difference between environments is now a mat-

ter of how easy it is for the fox to distinguish between

dangerous and safe situations, rather than how com-

mon danger is. If the environment is good, the fox

only needs to be cautious if a burrow is quite noisy.

But if the environment is bad, then the fox should be

cautious even if faint noises emanate from a burrow.

This is because when the environment is bad, it is

too risky to dig up a burrow unless the burrow is

nearly silent. The fox does not know beforehand

whether the environment is good or bad, and there-

fore, it does not know how the probability of finding a

badger in the burrow depends on the amount of

noise it hears. The only way for it to gain information

is to learn by experience.

To formalize the problem, we extend the previous

model by supposing that the fox observes a cue be-

fore each decision. The cue is a continuous random

variable drawn from Gaussian distributions that de-

pend on the environment and what is in the burrow.

We first consider the good environment. As before,

we let pg be the probability that any given burrow

contains a badger. When the burrow contains a

badger, the cue strength is drawn from a Gaussian

distribution with mean mg;c and SD sg;c. When the

burrow contains a rabbit, the cue strength is drawn

from a Gaussian distribution with mean mg;r and SD

sg;r . Similarly, for the bad environment, we let pb be

the probability that any given burrow contains a

badger, with a cue strength drawn from a Gaussian

distribution with mean mb;c and SD sb;c when the

burrow contains a badger, and mean mb;r and SD

sb;r when the burrow contains a rabbit.
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After observing the cue, the fox decides whether to

dig or leave. If the fox decides to leave, its payoff is

zero. As before, the cost of encountering a badger is

C and the reward for finding a rabbit is R. The prior

probability that the environment is bad is q0 and

future decisions are discounted at a rate of l per

time step. Although not as simple as before, we

can again use dynamic programming to calculate

the optimal behavior (see Appendix 2).

Optimal behavior

In this extended model, the good and bad environ-

ments can differ not only in the frequency of badgers,

but also in how readily badgers can be distinguished

from rabbits by sound alone. Here, we will investi-

gate what happens when in good environments,

badgers are much louder than rabbits, but in bad

environments they are only a little bit louder. We

are particularly interested in this case because we

want to know what happens when the fox must learn

how cues correspond to potential threats.

To model this situation, we set the mean loudness

of rabbits to 0 in both good and bad environments

(mg;r ¼ mb;r ¼ 0). (The scale is arbitrary; we have

chosen the value 0 for convenience.) In the good

environment, badgers are much louder than rabbits

(mg;c ¼ 2), and are therefore usually easy to detect. In

the bad environment, they are only a bit louder than

rabbits (mb;c ¼ 1) which can make them more diffi-

cult to detect. Everything else about the signal de-

tection problem in the two environments is the

same: sg;r ¼ sg;c ¼ sb;r ¼ sb;c ¼ 0:5, and pg ¼

pb ¼ 0:2. Figure 3A shows the distributions of cue

intensities for the two environments. The punish-

ment for encountering a badger is greater than the

reward for finding a rabbit (R = 1, C = 19) and as in

the previous model, future rewards are discounted

at a rate of � ¼ 0:95 per time step and good and bad

environments are equally common (q0 ¼ 0:5).

The optimal decision rule for the fox, as found by

dynamic programming, is illustrated in Fig. 3B. The

fox now takes into account both its subjective prob-

ability that the environment is bad and the intensity

of the cue it observes. A curve separates the (cue,

probability) pairs at which the fox should dig from

the (cue, probability) pairs at which the fox should

not. For cues <0.11, the fox should dig irrespective

of the state of the environment; for cues >0.81,

the fox should not dig under any circumstance. In

between, the fox must balance the strength of the

cue against its subjective probability that the

environment is bad. Here, we can see the explor-

ation–exploitation tradeoff in action. Given the large

payoff to be gained from exploiting a good environ-

ment over many time steps, the possibility of dis-

covering that the environment is good may

compensate for the risk of punishment—even when

it is more likely than not that the environment is bad.

Population outcomes

In this signal detection model, the fox has two ways

to learn about its environment. As before, the fox

gains information from exploring a burrow and dis-

covering either a rabbit or badger. But even when

the fox chooses not to dig, the fox still gains a small

amount of information from observing the cue it-

self, because the probability of observing a given

cue is generally different between the two environ-

ments. As a result, individuals will not become

stuck forever with an incorrect belief that the envir-

onment is bad the way they could in the previous

model. However, an asymmetry remains between

the two kinds of mistakes: it is easier for a fox to

learn that it has mistakenly inferred that the

environment is good than it is for the fox to learn

that it has mistakenly inferred that the environ-

ment is bad.

In this model, we observe a qualitatively similar

pattern to what we found in the simpler model with-

out cues. Figure 4 shows the outcome for the whole

population when individuals follow the optimal strat-

egy depicted in Fig. 3B. When the environment is bad,

the majority of foxes correctly learn this. The popula-

tion distribution of beliefs forms a curve that in-

creases roughly monotonically from left to right,

with very few individuals believing that the environ-

ment is good, and the great majority correctly

believing that the environment is bad. When the en-

vironment is good, the majority of foxes learn this as

well. But a substantially minority reach the incorrect

conclusion that the environment is bad. We see this

in the fatter tail of the population distribution of be-

liefs, and in the existence of a small peak correspond-

ing to the false conclusion that the environment is

bad. In this example, roughly twice as many individ-

uals become overly sensitive to loud sounds because

they think the environment is bad as become insuffi-

ciently sensitive to loud sounds because they think

the environment is good (8.8% vs 4.5%).

One might have thought that having informative

cues would always enable the individual to learn to

respond appropriately. The reason that it does not is
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that if a fox is in a good environment but is initially

unlucky, and receives punishments after observing

intermediate cues, then the individual will no longer

dig when faced with cues of similar or greater

strength. It thus becomes difficult for the fox to cor-

rect its mistake and learn that these cues indicate a

lower risk of danger than it believes. Therefore, this

particular fox becomes stuck with an over-sensitivity

to the cues of potential danger. Its anxiety level is set

too high. The same thing does not happen when a

fox in a bad environment is initially lucky. In that

situation, the fox continues to dig at burrows and

is soon dealt a harsh punishment by the law of large

numbers.

DISCUSSION

Researchers are discovering many ways in which

adaptive behavior can result in seemingly perverse

consequences, such as apparent biases or

A

B

Figure 3. The two environments differ in how loud badgers are. (A). In the good environment, badgers are easier to detect than

they are in the bad environment. The optimal decision rule is computed using dynamic programming and illustrated in the lower

panel (B). The decision about whether to dig depends on the value x of the cue and the subjective probability that the environment

is bad. A curve separates the region in which one should dig (tan) from the region in which one should not (blue)
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‘irrational’ behavior [18, 26]. Examples include con-

trast effects [27], state-dependent cognitive biases

[7, 28], optimism and pessimism [29], and supersti-

tion [30].

The results of these studies generally explain that

the apparently irrational behavior is actually adap-

tive when understood in its appropriate evolutionary

context. In this article, we take a different approach

by separating the question of optimal learning rules

from the question of whether each individual follow-

ing such rules ends up behaving optimally. (See

Trimmer et al. [21] for a similar approach applied

to clinical depression.) We show how behavior that

is truly dysfunctional (in the sense that it reduces

fitness) can arise in a subset of a population whose

members follow the optimal behavioral rule, i.e., the

rule that generates the highest expected payoff and

would thus be favored by natural selection. This ap-

proach is well suited to providing insight into behav-

ioral disorders, since they afflict only a subset of

the population and are likely detrimental to fitness.

We find that because an exploration–exploitation

tradeoff deters further exploration under unfavor-

able circumstances, optimal learning strategies are

vulnerable to erroneously concluding that an envir-

onment is bad. A major strength of the model is that

Figure 4. Population distribution of subjective probabilities that the environment is bad after 20 time steps, among foxes who

have lived that long. When the environment is actually bad (upper panel), all but 4.5% of the population accurately come to

believe that the environment is more likely to be bad than good. But when the environment is actually good (lower panel), 8.8% of

the population erroneously come to believe that it is more likely that the environment is bad. All individuals began with a prior

probability of 0.5 on the environment being bad
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it predicts excessive anxiety in a subset of the popu-

lation, rather than in the entire population as we

would expect from ‘adaptive defense mechanism’

or ‘environmental mismatch’ arguments [31].

An interesting aspect of our model is that it pre-

dicts the effectiveness of exposure therapy for anx-

iety disorders [32]. In the model, the individuals that

are overly anxious become stuck because they no

longer observe what happens if they are undeterred

by intermediate-valued cues. If these individuals

were forced to take risks in response to the cues that

they believe are dangerous but are actually safe, then

they would learn that their beliefs were mistaken and

would correct their over-sensitivity. This exactly cor-

responds with the approach employed in exposure

therapy.

Of course such a simple model cannot explain the

myriad specific characteristics of real anxiety dis-

orders. One example is that our model fails to cap-

ture the self-fulfilling prophecy, or vicious circle

aspect, common to excessive anxiety. Being afraid

of badgers does not make a fox more likely to en-

counter badgers in the future. But if a person is ner-

vous because of past failures, that nervousness may

be a causal component of future failure. Test anxiety

is an example: a student performs poorly on one or

more tests, becomes anxious about subsequent

tests, and that anxiety contributes to poor perform-

ance in the future. Though it is challenging to see

how such self-fulfilling anxiety fits into a framework

of evolutionary adaptation, modeling the runaway

positive feedback aspect of anxiety is an intriguing

area for future work.

Another interesting direction for future work

would be to investigate the case when the environ-

ment varies over time. Our current model is well

suited to address a situation in which offspring dis-

perse to different patches in the environment that

remain constant over time (that is, when there is

spacial variation but not temporal variation). But

some environments will also vary over the duration

of an individual’s lifetime.

Before concluding, we want to point out a conse-

quence in the second model of foxes being able to

learn about their environment even when they only

observe the cue itself. This means that there are ac-

tually two ways that a fox can end up being overly

afraid despite living in a good environment. The first

parallels our example in the first model: the fox could

have had an unlucky early experience with a badger

despite detecting only a modest signal, and from

this could have mistakenly concluded that it lives

in a bad environment. But there is another way that

has no analog in the first model: It could be that or

fox has never actually encountered a badger

firsthand, but rather has received a series of cues

more consistent with a bad environment then with

a good one, and from these cues alone concluded

that he lives in a bad environment even though he is

never actually met a badger.

We speculate that these two different scenarios

may correspond at least somewhat to different types

of anxiety disorders. In the former scenario, present

anxiety is the result of past trauma. Post-traumatic

stress disorder would appear to be a very straight-

forward example of such a situation. In the latter,

present anxiety would be the result of the mistaken

belief that one lives in an unpredictable world, spe-

cifically one in which future trauma is difficult to de-

tect and avoid. In both cases, the excessive anxiety

on the part of the fox is a consequence of bad luck.

But the bad luck can take different forms. In the for-

mer case, the bad luck comes in the form of a badger

observed despite a low signal. In the latter, the bad

luck comes in the form of the unsampled signals

taking a lower distribution than would be expected

given the state of the world.

In general, signal detection models of threat such

as these can have a number of moving parts. The

degree to which the distribution of cues resulting

from good events in bad worlds, and bad events in

good worlds happens to overlap is one important

factor, and the one we focused on here. Another fac-

tor that we have mentioned is when the frequency of

good and bad events vary. A further possibility is that

the benefits and costs of good and bad events could

vary as well. One might even consider mismatch

models in which foxes have evolved to distinguish

between good and bad worlds but in fact badgers are

entirely extinct. Here, the fox might conclude that he

lives in a bad world with low discriminability because

he has not seen any of the high magnitude signals

that he would see in a good world with high

discriminability. Considering this range of model

possibilities, one might be able to demarcate a num-

ber of different types of anxiety with different etiology

and different predicted forms of treatment. We are

currently developing models to explore these

possibilities.

In this article, we have illustrated a fundamental

design compromise: If an anxiety system is able to

learn from experience, even the most carefully

optimized system is vulnerable to becoming stuck

in a state of self-perpetuating over-sensitivity. This
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effect is driven by the tradeoff an individual faces

between gaining information by experience and

avoiding the risk of failure when circumstances are

likely unfavorable. Our results provide a new context

for thinking about anxiety disorders: rather than ne-

cessarily viewing excessive anxiety as a result of

dysregulated or imperfectly adapted neurological

systems, we show that many of the features of anx-

iety disorders can arise from individual differences

in experience, even when individuals are perfectly

adapted to their environments. We suggest that this

phenomenon may be an important causal compo-

nent of anxiety disorders.
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Appendix

1. SENSITIVITY ANALYSIS FOR MODEL 1

A central point of this article is that there is an asym-

metry between the fraction of individuals who are

wrong about the environment when it is in fact good,

and the fraction who are wrong about it when it is bad.

In the example we chose in ‘Learning about an uncer-

tain world’ section, only 0.2% of the population were

optimistic in a bad environment, but 11.1% of the

population were pessimistic in a good environment.

In this appendix, we investigate the extent to which

changes in the model parameters affect this result.

There are 4 important independent values that par-

ametrize the model. They are: the probability pg of

encountering a badger when the environment is

good, the probability pb of encountering a badger

when the environment is bad, the discount factor l,

and the magnitude of the cost of encountering a

badger relative to the reward for finding a rabbit, C=R.

We first investigate the effect of varying pg and pb.

In order for the state of the environment to matter—

for there to be any use of gaining information—we

must have the expected payoff be positive when

the environment is good, ð1� pgÞR� pgC > 0, and

be negative when the environment is bad,

ð1� pbÞR� pbC < 0. Rearranging these inequalities

gives us the constraints

pb >
R

Rþ C
> pg: ð1Þ

When R= C, as in ‘Modeling anxiety by including

cues’ section, these constraints, along with the con-

straint that pg and pb are probabilities that must lie

between 0 and 1, restrict us to the square

0:5 < pb � 1; 0 � pg < 0:5. Figure A1 displays the

results of analysing the model over a grid of values

for pg and pb within this square. Plotted is the fraction

of the population that is wrong about the environ-

ment, as measured after 20 time steps among foxes

who have survived that long.

In the upper left panel of Fig. A1 (bad environ-

ment) the fraction of the population that is wrong

is negligible everywhere except for the lower left cor-

ner of the plot, where the probabilities of encounter-

ing a badger in the good environment and in the bad

environment are so similar that 20 trials simply does

not provide enough information for accurate dis-

crimination. But when the environment is actually

good (upper right of Fig. A1), it is almost the entire

parameter space in which a substantial fraction of

the population is wrong about the environment.

Instead of being smooth, the plots are textured by

many discontinuities. Optimal behavioral rules

cease to explore after small numbers of failures.

But these small numbers depend on the parameter

values and so discontinuities result around curves in

parameter space that are thresholds for different op-

timal behavioral rules. However, in spite of the rug-

ged shape of the plot, the basic trend in the upper

right-hand panel of Fig. A1 is that the fraction of the

population that believes the environment is bad

when it is actually good increases with pg. In the

lower panel of Fig. A1, we see that for over 93% of

the points in the parameter grid more of the popu-

lation is wrong in the good environment than in the

bad environment. And, the small fraction of param-

eter combinations where this is not the case all occur

towards the edge of the parameter space (on the left

side in the plot).

We next investigate the effect of varying the discount

factor l and the cost to reward ratio C/R, while keeping

pg and pb constant. Again, for it to matter whether the

environment is good or bad, our parameters must

satisfy inequalities (1). Rearranging these gives us

the following constraint on the cost/reward ratio:

1� pb

pb
<

C

R
<

1� pg

pg
: ð2Þ

When pg ¼ 0:25 and pb ¼ 0:75 this gives us
1
3 <

C
R < 3. Figure A2 shows results for the model

with values of C
R sampled within this interval and

values of l ranging from 0.75 to 0.99. The beliefs

are measured at the time step that is closest to
1

1��, the average lifespan given a discount factor of l.

Figure A2 shows that, similar to the pattern in Fig.

A1, the fraction of the population that is wrong when
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the environment is bad is negligible except when

there are not enough time steps in which to make

accurate discriminations (in the lower part of the

upper left panel of Fig. A2). By contrast, the fraction

of the population that is wrong when the environ-

ment is good is nonnegligible throughout most of

the parameter space (upper right panel).

Discontinuities due to optimal behavior being

characterized by small integer values are especially

striking here, especially in the upper right panel of

Fig. A2. What is happening is that the number of

failures it takes before it is optimal to cease to ex-

plore is the main outcome distinguishing different

parameter choices. With pg and pb fixed, that number

also determines the fraction of the population that

will hit that number of failures. And so, the plot is

characterized by a small number of curved bands in

which the fraction of the population that is wrong about

the environment is nearly constant. Although the value

isnearlyconstantwithineachband,wecanstilldescribe

the trend across these bands. We see that the fraction

of the population that believes that the environment is

bad when it is actually good increases with increasing

relative cost or decreasing discount factor.

2. FINDING OPTIMAL BEHAVIOR

The signal detection model of ‘Modeling anxiety by

including cues’ section, in which the fox uses envir-

onmental cues, is defined by the discount factor l,

Figure A1. Varying the probability of encountering badgers in each environment. With � ¼ 0:95, C = 1 and R = 1, the upper

panels show how the fraction of the population that is wrong about the environment varies as a function of the parameters pg and

pb. The upper left shows the fraction that thinks the environment is good when it is actually bad. The upper right panel shows the

fraction that thinks the environment is bad when it is actually good. This fraction is measured conditional on survival to the 20th

time step, which is the average lifespan when � ¼ 0:95. The lower panel illustrates the log (base 10) of the ratio of incorrect

inference rates in good and bad environments. For a small set of parameter values (shown in orange), incorrect inferences are

more common in the bad environment. The gray area in each plot is a region in which it is not worthwhile to start exploring at all
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the cost of encountering a badger C, the reward from

catching a rabbit R, the initial subjective probability of

being in a bad environment q0, the probabilities of

badgers in the good environment (pg) and in the bad

environment (pb), and the Gaussian distribution par-

ameters mg;c;sg;c;mg;r ;sg;r; mb;c;sb;c; mb;r and sb;r .

The simpler model of ‘Learning about an uncertain

world’ section can be seen as a special case of the more

complex model in which the cues carry no information

(because the means are all the same). Thus, analysing

the model with cues will also provide an analysis of

the simpler model. The problem can be framed as a

Markov decision process, and can be analysed with a

dynamic programming approach [33].

The fox knows the initial prior probability that the

environment is bad, and at time step t will also know

the outcome of any attempts made before t. For each

time step t and all possible previous experience, a

behavioral rule specifies the threshold cue level ut

such that the fox will not dig at the burrow if the

observed cue intensity, xt, is greater than ut. The only

relevant aspect of previous experience is how this

experience changes the current conditional prob-

ability qt that the environment is bad. Therefore, an

optimally behaving agent will calculate qt using

Bayes’ rule, and use this value to determine the

threshold level ut. Thus, we can express a behavioral

rule as the set of functions utðqtÞ.

Figure A2. Varying the discount factor and cost/reward ratio. With pg ¼ 0:25 and pb ¼ 0:75, the upper panels show how the

fraction of the population that is wrong about the environment varies as a function of l and C/R. The upper left plot displays the

fraction that thinks the environment is good when it is actually bad; the upper right plot displays the fraction that thinks the

environment is bad when it is actually good. This fraction is measured at the time step that is closest to 1
1��, the average lifespan

given l. (The faint horizontal bands towards the lower part of the plots are due to the fact that 1
1��must be rounded to the nearest

integer-valued time step.) The lower plot illustrates the log (base 10) of the ratio of incorrect inference rates in good and bad

environments. Here, incorrect inferences are more common in good environments for all parameter values. The gray area in each

plot is a region in which it is not worthwhile to start exploring at all
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Let

fg;cðxÞ ¼
1

sg;c

ffiffiffiffiffiffi
2p
p e

�
ðx�mg;c Þ

2

2s2
g;c

be the Gaussian distribution function with mean mg;c

and SD sg;r and similarly let fg;rðxÞ; fb;cðxÞ and fb;rðxÞ

be the other three corresponding Gaussian

distributions.

Expected immediate payoff

Let �t be the indicator random variable that equals 1

if the burrow contains a badger and equals 0 if the

burrow contains a rabbit at time t. (Note that the

random variables �t and xt covary.) We now define

yðqt; ut; xt; �tÞ to be the payoff the fox receives at time

t as a function of its threshold (ut), the probability qt

that the environment is bad, and the random vari-

ables xt and �t. So

yðqt; ut; xt; �tÞ ¼

0 if xt > ut

R if xt � ut and �t ¼ 0

�C if xt � ut and �t ¼ 1

8>><
>>:

In the bad environment, the probability density

of badgers and a cue strength of xt is fb;cðxtÞpb.

Likewise, fg;cðxtÞpg gives the probability density of

badgers and a cue strength of xt in the good envir-

onment. Similarly, fb;rðxtÞð1� pbÞ and fg;rðxtÞð1� pgÞ

give the same probability densities for rabbits. This

allows us to calculate the expected immediate payoff

for the strategy of threshold ut as

Efyðqt; ut; xt; �tÞg ¼

Z ut

�1

½ðfb;cðxtÞpbqt

þ fg;cðxtÞpgð1� qtÞÞð�CÞ

þðfb;rðxtÞð1� pbÞqt þ fg;rðxtÞð1� pgÞð1� qtÞÞR�dxt:

Bayesian updating

We now describe how the Bayesian probability that

the environment is bad, qt, changes with time t. That

is, we show how qtþ1 stochastically depends on qt

and the threshold ut.

The probability that the cue intensity is less than

or equal to the threshold (xt � ut) is given by

Z ut

�1

½ðfb;cðxtÞpb þ fb;rðxtÞð1� pbÞÞqt

þ ðfg;cðxtÞpg þ fg;rðxtÞð1� pgÞÞð1� qtÞ�dxt:

The probability that the cue intensity is greater

than the threshold (xt>ut) is the complement (the

above quantity subtracted from 1).

If xt>ut, then the fox does not explore the burrow,

but gains information about the environment from

the cue itself, xt. In the bad environment, the prob-

ability density on cues x is given by

pbfb;cðxÞ þ ð1� pbÞfb;rðxÞ:

Similarly, in the good environment it is given by

pgfg;cðxÞ þ ð1� pgÞfg;rðxÞ:

So according to Bayes’ rule, the posterior distri-

bution on qtþ1 given an xt>ut is

qtþ1 ¼
qtðpbfb;cðxtÞ þ ð1� pbÞfb;rðxtÞÞ"
qtðpbfb;cðxtÞ þ ð1� pbÞfb;rðxtÞÞ

þ ð1� qtÞðpgfg;cðxtÞ þ ð1� pgÞfg;rðxtÞÞ

:#

On the other hand if xt � ut, the fox decides to dig.

The fox will then observe both the cue and whether

the burrow contains a badger or a rabbit. The condi-

tional probability that the burrow contains a badger

given the cue xt and a bad environment is

Pðbadgerjxt; bad env:Þ

¼
Pðxtjbadger; bad env:ÞPðbadgerjbad env:Þ

Pðxtjbad env:Þ

¼
fb;cðxtÞpb

fb;cðxtÞpb þ fb;rðxtÞð1� pbÞ
:

(Note that technically some of these quantities are

probability densities rather than probabilities.)

Similarly, if the environment is good, then

Pðbadgerjxt; good env:Þ

¼
Pðxt j badger; good env:ÞPðbadger j good env:Þ

Pðxt j good env:Þ

¼
fg;cðxtÞpg

fg;cðxtÞpg þ fg;rðxtÞð1� pgÞ
:

Thus, the total probability of encountering a badger

(�t ¼ 1) given an xt � ut is
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qt
fb;cðxtÞpb

fb;cðxtÞpb þ fb;rðxtÞð1� pbÞ

þ ð1� qtÞ
fg;cðxtÞpg

fg;cðxtÞpg þ fg;rðxtÞð1� pgÞ
:

If the burrow does contain a badger, then by

Bayes’ rule we can express the posterior probability

that the environment is bad as follows.

Pðbad env:jxt; badgerÞ

¼
Pðxt; badger j bad env:ÞPðbad env:Þ

Pðxt; badgerÞ

Pðbadenv:jxt;badgerÞ

¼
Pðxtjbadger;badenv:ÞPðbadgerjbadenv:ÞPðbadenv:Þ

Pðxt;badgerÞ

Substituting, we have

qtþ1¼
fb;cðxtÞpbqt

fb;cðxtÞpbqtþfg;cðxtÞpgð1�qtÞ
:

Perfectly analogous calculations hold for the case

when the burrow contains a rabbit (�t ¼ 0).

Below, we will express qtþ1 as a function,

qtþ1 ¼ wðqt; ut; xt; �tÞ;

that depends on the threshold ut, the probability qt,

and the random variables xt and �t, as described

above.

Dynamic programming

The dynamic programming algorithm now consists

of recursively calculating the maximum payoff at-

tainable over all time steps subsequent to t, as a

function of the current probability that the environ-

ment is bad. This maximum payoff is denoted VtðqtÞ,

and the recursive formula is

VtðqtÞ¼max
ut

Efyðqt;ut;xt;�tÞþ�Vtþ1ðwðqt;ut;xt;�tÞÞg:

And, the optimal decision rule functions, u�t , are

given by

u�t ðqtÞ ¼ argmax
ut

Efyðqt; ut; xt; �tÞ

þ �Vtþ1ðwðqt; ut; xt; �tÞÞg:

Because qt is a continuous variable, a discrete ap-

proximation must be used for the actual computa-

tion. Then the table of values for Vtþ1 is used to

compute the values for Vt, indexed by qt. For qt, we

used 1001 discrete values (0; 0:001; 0:002; . . .; 1).

As mentioned in ‘Modeling anxiety by including

cues’ section, we set mg;c ¼ 2; mb;c ¼ 1; mg;r ¼

mb;r ¼ 0, andsg;r ¼ sg;c ¼sb;r ¼ sb;c ¼ 0:5. To dis-

cretize xt, we must pick minimum and maximum

values, which we set at �2 and 4, respectively.

Within this interval, we discretized xt to 200 values.

Because there is a tiny area lost at the ends of the

distributions, we renormalized the total

probabilities to 1.

The algorithm then gives us two tables: one

containing the expected values and the other con-

taining the optimal decision rule functions, or

thresholds, u�t ðqtÞ, which are indexed by our grid

of values for qt. To find the optimal behavior in

the limit as the possible lifetime extends towards

infinity, the recursion is repeated until the optimal

decision rules converge [33]. The algorithm was im-

plemented in python.

Once we have found the optimal decision rule, for

each time step we can calculate the expected propor-

tion of the population that has each value of qt as its

estimate. Since the behavioral rule specifies the

threshold for each value of qt, we can use the distri-

bution derived above for qtþ1 ¼ wðqt; ut; xt; �tÞ to

calculate the proportions for time t + 1 given the pro-

portions for time t. Because we discretized the qt

values, we round the calculation of qtþ1 to the

nearest one thousandth.
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