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Abstract: The reliable and accurate indoor pedestrian positioning is one of the biggest challenges
for location-based systems and applications. Most pedestrian positioning systems have drift error
and large bias due to low-cost inertial sensors and random motions of human being, as well
as unpredictable and time-varying radio-frequency (RF) signals used for position determination.
To solve this problem, many indoor positioning approaches that integrate the user’s motion estimated
by dead reckoning (DR) method and the location data obtained by RSS fingerprinting through
Bayesian filter, such as the Kalman filter (KF), unscented Kalman filter (UKF), and particle filter
(PF), have recently been proposed to achieve higher positioning accuracy in indoor environments.
Among Bayesian filtering methods, PF is the most popular integrating approach and can provide
the best localization performance. However, since PF uses a large number of particles for the high
performance, it can lead to considerable computational cost. This paper presents an indoor positioning
system implemented on a smartphone, which uses simple dead reckoning (DR), RSS fingerprinting
using iBeacon and machine learning scheme, and improved KF. The core of the system is the enhanced
KF called a sigma-point Kalman particle filter (SKPF), which localize the user leveraging both the
unscented transform of UKF and the weighting method of PF. The SKPF algorithm proposed in this
study is used to provide the enhanced positioning accuracy by fusing positional data obtained from
both DR and fingerprinting with uncertainty. The SKPF algorithm can achieve better positioning
accuracy than KF and UKF and comparable performance compared to PF, and it can provide
higher computational efficiency compared with PF. iBeacon in our positioning system is used for
energy-efficient localization and RSS fingerprinting. We aim to design the localization scheme that
can realize the high positioning accuracy, computational efficiency, and energy efficiency through
the SKPF and iBeacon indoors. Empirical experiments in real environments show that the use of
the SKPF algorithm and iBeacon in our indoor localization scheme can achieve very satisfactory
performance in terms of localization accuracy, computational cost, and energy efficiency.

Keywords: sensor fusion; Kalman filtering; particle filtering; indoor positioning; dead reckoning;
received signal strength (RSS) fingerprinting; Bluetooth beacon; Bluetooth Low Energy

1. Introduction

The Global Positioning System (GPS) is commonly used for navigation in outdoor environments.
However, it is not available for indoor positioning due to the obstruction of signals. As a result,
various indoor navigation approaches have been extensively studied to achieve reliable and high
accuracy positioning for a person or a device indoors. Researchers have proposed many solutions
using radio beacons, inertial sensors, ultrasound, vision, etc. Most indoor positioning systems
are classified into two types: non-infrastructure-based (e.g., DR scheme) and infrastructure-based
(e.g., RSS fingerprinting).
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DR-based method, also known as an inertial navigation system (INS), is a self-contained
localization system that relies on inertial sensors such as accelerometer, gyroscope, and magnetometer
without the assistance of the GPS and infrastructure [1,2]. Pedestrian navigation system (PNS)
as an instance of DR technique estimates the location of the user by measuring the traveled distance
and direction from a known location using the motion sensors. However, low cost sensors may have
drift error and large bias. In addition, positioning errors in DR can be caused by an oscillation of user
body during the walking.

RSS fingerprinting is a kind of the localization method using the received signal strength (RSS)
from the radio beacons such as WiFi access points (APs) [3,4], Bluetooth devices [5], and cellular
telephone towers [6]. This approach consists of two phases: offline and online. During the offline phase,
RSS fingerprints are recorded at known locations in order to build a fingerprint map (database).
Next, in the online step, the measured RSS values are compared to the map for locating the
user. Although creating the fingerprint map through site survey requires considerable cost and
time, since RSS fingerprints reflect the spatial radio characteristics about a given location well,
the fingerprinting-based approaches have been widely used to estimate the location of the user.
However, since the radio-frequency (RF) signals can vary over time and space because of obstacles
and multipath fading, it may degrade the performance of the positioning using RSS fingerprints.

To achieve better indoor localization results, many smartphone-based localization approaches that
integrate both DR and fingerprinting method through Bayesian filter, such as the Kalman filter (KF),
unscented Kalman filter (UKF), and particle filter (PF), have recently been proposed [7–9]. Among
Bayesian filters, PF is the most popular integrating scheme and can provide the best localization
performance. For the localization scheme based on PF, the location of the user is predicted by user
motion measured from inertial sensors and is corrected by positional information obtained from
WiFi fingerprints [10–12]. He et al. [4] is a method that combines step counter and WiFi fingerprints
to optimize location estimation problem, in which user’s mobility and wireless signals are jointly
employed through a specialized particle filter. It learns parameters during step mode of each user
(the relationship between stride length and step frequency), calibrates RSS readings of heterogeneous
devices, and simultaneously infers positions of walking users by solving a convex optimization
problem. Shu et al. [13] used the gradient of WiFi RSS readings to deal with the time-varying wireless
signal strength and biased RSS values across devices along with the changing transmission power
of WiFi routers. It first builds a RSS gradient-based fingerprint map (Gmap) by comparing absolute
RSSI measurements at nearby locations, and then carries out an online extended particle filter (EPF) to
estimate the user’s location. In EPF algorithm, the user’s location is predicted by detected mobility and
is updated by comparing results between RSS readings and Gmap. However, the existing positioning
schemes cannot be suitable for LBS applications that require real-time positional information, because
of high computational cost of PF. The excessive sample (particle) sizes of PF required for the high
positioning performance can lead to a considerable amount of computational time compared with KF
and UKF.

Recently, iBeacon introduced as a new kind of Bluetooth transmitter is Apple’s implementation of
Bluetooth low-energy (BLE) wireless technology to provide location-based information and services
to smartphones and other mobile devices [7]. Since iBeacon can help smartphones determine their
physical position or context as a new class of low-powered and low-cost transmitters, it can offer
a good chance to enhance the existing localization approaches [14,15].

In this paper, we present a localization system that leverages simple DR, RSS fingerprinting using
iBeacon and machine learning scheme, and enhanced KF. Using the DR method, the position of the
user is predicted by the sensory data (acceleration and heading) of the smartphone. Instead of GPS,
the positional measurement of the user can be obtained from the RSS fingerprinting approach using
energy-efficient iBeacon and machine learning approaches, such as ANN (artificial neural network),
KNN (k-nearest neighbors algorithm), NBC (naive Bayes classifier), and SVM (support vector machine)
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as in [16]. However, there can be still errors (uncertainties) in positional information obtained by both
the DR method and RSS fingerprinting.

The core of our localization system is the enhanced KF called a sigma-point Kalman particle filter
(SKPF), which estimates the position of the user using both the unscented transformation of UKF
and the weighting method of PF. The SKPF algorithm proposed in this study is used to provide the
enhanced positioning accuracy by integrating noisy positional information estimated by DR method
and the location data obtained by RSS fingerprinting with uncertainty. The SKPF algorithm can achieve
better positioning accuracy than KF and UKF and comparable performance compared to PF, and it can
provide higher computational efficiency compared with PF. We aim to design the localization scheme
that can realize the high positioning accuracy, computational efficiency, and energy efficiency through
the SKPF and iBeacon indoors. Empirical results in a building show that the use of the SKPF in our
indoor localization system can achieve very satisfactory performance in aspect of positioning accuracy
and computational cost compared with KF, UKF, and PF. It is also shown in the test results that the
positioning system using iBeacon receiver for the RSS fingerprinting can provide more energy-efficient
localization than using WiFi module.

The rest of this paper is organized as follows. Section 2 describes a summary of related work.
Next, Section 3 describes the overall system architecture. Each component of our positioning system
is addressed in Section 4. Sections 5 and 6 show the experimental testbed and results, respectively.
Finally, Section 7 provides conclusions of this paper.

2. Related Work

Most non-infrastructure-based localization techniques adopt dead reckoning (DR) as the basic
scheme for positioning. DR-based methods depend on an inertial measurement unit (IMU) that contains
accelerometer, gyroscope, and magnetometer to calculate the position, orientation, and velocity of the
object without the help of the infrastructure [17]. Pedestrian navigation system (PNS) is an instance of
the DR approach. In PNS, a pedestrian model that contains the step detection, stride length calculation,
and heading inference is a key component. The step of the user is detected by counting the number of
the peak value for acceleration measured by accelerometer [18]. The step length of the user is estimated
by analyzing human walking patterns using walking speed and frequency [19]. The gyroscope and
magnetometer (digital compass) are exploited to determine the heading angle of the pedestrian.

However, low-cost MEMS IMUs may be prone to drift error and large bias. Furthermore,
the irrelevant motion of the pedestrian can degrade the performance of the positioning system.
Consequently, to rectify the pedestrian location, many sophisticated and complex DR approaches have
been studied [20,21]. Compared to these works, our DR method can locate the pedestrian using only
the heading information and the peak value of the acceleration without complex process.

The fingerprinting-based techniques require no prior knowledge about infrastructure locations
and no propagation model. The main idea is to create a fingerprint map (database) by fingerprinting
the surrounding features at every position in the area of interest and then to estimate the associated
position by mapping the measured feature against the fingerprint map. RADAR [22] is an early
fingerprinting method. Varshavsky et al. [23] and LANDMARC [24] utilizes GSM signals from cellular
radio towers and active RFID for indoor positioning, respectively. PlaceLab [6] demonstrates the use of
radio beacons, such as WiFi APs, cellular radio towers, and Bluetooth devices, for device positioning in
the wild. Likewise, most fingerprinting approaches use a variety of ambient features and need dense
infrastructure for higher positioning accuracy [25,26]. Recently, some fingerprinting methods focus
on employing the received signal strength (RSS) of iBeacon modules as a surrounding feature [5,27].
Due to the usage of iBeacon based on BLE, they are more energy-efficient compared with the existing
Bluetooth and WiFi modules. However, since the radio-frequency (RF) signals from radio beacons can
vary over time and space due to obstructions and multipath fading, it can degrade the performance of
the positioning using RSS fingerprints.
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In the positioning and tracking system, the Bayesian filter is employed to fuse sensory data from
all different sources to gain better positioning accuracy. Among Bayesian filtering methods, the Kalman
filter (KF) and its variants, such as unscented Kalman filter (UKF), have been widely used for the
navigation systems, since they are efficient in terms of the computational cost while providing a high
accuracy in localization [9,28]. Recently, many indoor positioning approaches that fuse the user’s motion
estimated by DR method and the location data obtained by RSS fingerprinting through PF have been
proposed to achieve higher positioning accuracy than KF and its variants in indoor environments [12,29].
However, since PF requires a large number of particles (samples) for high positioning performance, it
can result in substantial computational cost compared with KF and its variants.

In this paper, we propose an enhanced KF called a sigma-point Kalman particle filter (SKPF).
By leveraging the unscented transformation of UKF and the weighting method of PF, the SKPF
algorithm can achieve better positioning performance than KF and UKF and competitive performance
compared to PF, and it can provide higher computational efficiency compared with PF. The SKPF
algorithm in this study is used to achieve the enhanced positioning performance by integrating noisy
positional information estimated by DR method and the location data obtained by RSS fingerprinting
with uncertainty.

3. System Architecture

Figure 1 represents the overall architecture of our indoor positioning system implemented on
a smartphone (iPhone5S) and web server. The smartphone client is used to measure sensing data from
its built-in sensors and localize the user. The web server is employed to execute the machine learning
used for positioning and receive location queries from the smartphone client. Our positioning system
can be classified into a sensor part and a positioning algorithm part.
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Figure 1. Overall architecture of our positioning system.

The sensor part consists of RF receivers and a group of inertial sensors on the smartphone. The RF
receivers include WiFi and iBeacon modules, which provide the positioning algorithm with RSS
readings measured from WiFi access points and iBeacons, respectively. The inertial sensors include the
accelerometer and gyroscope on the smartphone, which measure three-axis acceleration and rotation
rate of the phone. The sensory data are used for the machine learning and location estimation in the
positioning algorithm.

The positioning algorithm can be broken down into two main component parts: offline training
and online localization. In the offline phase, the RSS fingerprints obtained from WiFi APs and iBeacons
using the smartphone and the heading information of the user gained by the accelerometer and the
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gyroscope on the phone are collected at selected locations in the area of interest and are sent to the
server. Then, a machine learning method, such as ANN, KNN, NBC, and SVM, on the server side
converts the collected fingerprints (RSS readings and user’s heading) into vectors (fingerprint database).

The online localization contains three phases: step length determination, positional measurement
estimation, and sigma-point Kalman particle filtering (SKPF). The SKPF algorithm is composed of
a prediction (dead reckoning) phase and an update phase, and it estimates the current position of the
user with the smartphone from the two-phase process using the pedestrian model in Section 4.3.

For every step of the user, the prediction phase predicts the user’s location using both the step
length (displacement) calculated according to the magnitude of the acceleration measured by the
accelerometer and the heading angle obtained by the accelerometer and the gyroscope. The inference
of the adaptive step length and heading is discussed further in Section 4.1.

Due to the unavailability of GPS in indoor environments, the positional measurement used to
correct the predicted position in the update phase of SKPF is obtained by the fingerprint database
constructed using the machine learning approach implemented on the server using during the offline
phase. When the smartphone client sends a location query with the information about the observed
RSS value and user direction to the server, the machine learning method on the server infers the
user’s location that best matches the observed information via fingerprint database and sends back
the estimated position of the user to the smartphone immediately. The estimate of the positional
measurement using the machine learning is addressed in Section 4.2. During the update phase, the
position of the user is estimated by integrating both the positional information obtained from prediction
phase and the positional measurement determined by the machine learning. The integrating approach
based on SKPF is addressed in more detail in Section 4.4.

4. Positioning Algorithm

The following sections describe the components of the positioning algorithm used in this paper.

4.1. Displacement Estimation and Heading Determination

In this section, we derive a relationship between the step length and acceleration magnitude for
adaptive displacement estimation (Section 4.1.1) and deal with the determination of user heading
(Section 4.1.2). The relationship and heading information are used in the prediction (dead reckoning)
step of SKPF.

4.1.1. Displacement Estimation

The measurements obtained from the three-axis accelerometer represent periodic patterns for each
of its axes in human walking. Figure 2 (top) indicates the magnitude of roll-axis acceleration data when
the user is stopping and then starts walking. Compared to the static state of the user, the variation in
acceleration values during the walking has a regular pattern. For this reason, the accelerometer has
been widely used to detect the user movement and to estimate the traveled distance by analyzing the
pattern of the movement [30].

As can be seen in Figure 2 (top), there are high frequency noise and spikes in the raw readings
from the accelerometer. To smooth the raw measurements, 10th-order Butterworth low pass filter with
a cut-off frequency is applied to them. The cut-off frequency is set to 3 Hz based on our experimental
results obtained from 50 subjects between the ages of 25 and 35 with various walking speeds, and it can
provide the step detection with high accuracy. The smoothed data after the filtering are represented in
Figure 2 (bottom).

Afterwards, to identify the user step, the peak detection algorithm is applied to the smoothed
acceleration data and then the peak values are found. The peaks represent the user steps. The result of
the peak detection is illustrated by Figure 2 (bottom). The peak values are plotted as the red circles.
Please refer to [18] for details of the peak detection algorithm.
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By analyzing the peak magnitudes of over 20,000 acceleration values that 50 users record every
10 cm, we could derive the relationship between the actual step length and the maximum peak value
of the three-axis acceleration measurements, as shown in Figure 3. All the ground truth data points of
the user steps in this figure are compared with the equation

l = c1 p2 + c2 p + c3 (1)

which is obtained by fitting them to the second order polynomial using polynomial regression, where l
is the estimated step length, p is the maximum peak magnitude of the three-axis accelerations, and c1,
c2, and c3 are the polynomial coefficients. Our experiments show that c1 = −412.93, c2 = 416.24,
and c3 = −5.71 result in a high correlation between the actual step length and its estimated value l by
the smartphone in the test environments described in this paper.
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Figure 2. Example of the step detection using accelerometer readings. (Top) Raw acceleration
values measured during the walking. (Bottom) Smoothed acceleration magnitudes using 10th-order
Butterworth low pass filter. Peaks represented by red circles correspond to the user steps.
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Figure 3. Relationship between the step length and acceleration magnitude obtained from the ground
truth step data. The relationship is model by the polynomial regression or linear regression.
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4.1.2. Heading Determination

Heading information is available for improving the positioning accuracy in indoor environments.
The heading data obtained from the accelerometer, gyroscope, and magnetometer can be easily affected
by environment dynamics. Particularly, the magnetometer due to the magnetic interference may result
in a noisy estimate of the user heading indoors. Therefore, we use the heading value provided by
the CMDeviceMotion class of the iOS developer library [31] to obtain a reliable value of the user’s
orientation. This value obtained by the accelerometer and gyroscope provides the most available and
calibrated orientation information for the development of the iPhone application. Our method can also
be conducted on an Android system using the Android developer library [32] that can offer a reliable
value of user’s heading. We aim to estimate the location of the user using the sensory data (acceleration,
heading angle, and RSS data) with uncertainty from the smartphone and the SKPF algorithm, but not
to develop a novel approach to the heading inference.

4.2. Estimation of the Positional Measurement

The GPS operates poorly due to weak and blocked satellite signals in indoor environments.
Therefore, it is difficult to obtain the measurement for the user’s location indoors. To determine the
user location in such environments, there are many approaches based on alternative signals, such as
acoustic, infrared, and RF. Since RF signals can easily be measured at receivers, such as WiFi and
Bluetooth devices, many of the existing localization approaches leverage RSS fingerprints. Figure 4
represents the RSS values measured at adjacent locations (three orange circle points) in the test site
described in Section 5. As can be seen in Figure 4, although the fluctuation in the RSS value exists,
the value of the fingerprint can be used to distinguish the different locations, since the fingerprint of
the same RF transmitter can change remarkably at each location in the area of interest. Because of this
property, the fingerprints can also be used to estimate the position of the user located within the area
of interest.
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Figure 4. RSS comparison among adjacent locations.

In our localization system, the machine learning algorithm is employed to determine the location
of the user using the RSS fingerprints. We do not design a new machine learning algorithm but
leverage only the conventional algorithms to provide the information about the user location, such as
ANN (artificial neural network), KNN (k-nearest neighbors algorithm), NBC (naive Bayes classifier),
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and SVM (support vector machine). Hence, the machine learning algorithms used in this study are
implemented with the machine learning library of the Open Source Computer Vision (OpenCV) written
in optimized C/C++ [33].

The process to locate the user using the machine learning approach is divided into two phases:
offline and online. In the offline phase, the RSS fingerprints from the WiFi APs and iBeacons are
collected using the smartphone at selected locations in the area of interest (e.g., green squares and
orange circles marked in Figure 7) and are sent to the server. Then, the machine learning algorithm
on the server converts the recorded fingerprints (training data) into vectors (fingerprint database),
i.e., the machine learning method builds the fingerprint map. During the site survey, we observed that
RSS information is greatly affected by the heading direction of the user. Since the user’s body can be
considered to be an obstruction similar to the wall between the RF transmitter and receiver, it may
result in the fluctuation in the radio signal. Therefore, in addition to the corresponding RSS fingerprint
for each location, the user’s direction is also recorded. The heading information is obtained from the
built-in sensors on the smartphone, as described in Section 4.1.2. The influence of the user’s direction
will be discussed in Section 6.1. The resultant recorded information at the ith location can be expressed
as a tuple of form (RSSwi

m, RSSbi
n, hi), where RSSwm is the RSS value of the mth WiFi AP, RSSbn is the

RSS value of the nth iBeacon, and h is the user heading. During the online phase, when the smartphone
client sends a location query with the information about the currently observed RSS and direction to
the server, the machine learning approach on the server estimates the user’s location that best matches
the observed information via fingerprint database and sends back the estimated position of the user
to the smartphone. The estimated value is used as a positional measurement of the user in the SKPF
algorithm. Thus, the positional measurement is estimated using the machine learning instead of GPS.

4.3. Pedestrian Model

The pedestrian model used to account for the motion of user in our positioning system is shown

in Figure 5. The state of the pedestrian at time k can be represented as the vector xk =
[

xk yk

]T
,

where (xk, yk) is x-axis and y-axis position in the navigation frame. The navigation frame is the
local geodetic frame where the x-axis, y-axis, and z-axis indicate east, true north, and up direction,
respectively. Note that z-axis point is not considered for land-pedestrian navigation. Therefore,
the state xk has only the x-axis and y-axis positional information. In this model, the angles α and γ

indicate the heading angle of the user at times k− 1 and k, respectively, and the angle β is defined as
the counterclockwise angle between state vectors xk−1 and xk. The value of d represents the traveled
distance of the pedestrian between time steps k− 1 and k.

In the pedestrian model used to represent the pedestrian motion with INS sensors, such as
accelerometer and gyroscope, the position of the pedestrian can be denoted by

xk = xk−1 + d sin(α) cos(β)− d cos(α) sin(β) (2)

yk = yk−1 + d sin(α) sin(β) + d cos(α) cos(β) (3)

where d is calculated by the maximum peak value of the three-axis accelerations between time steps
k − 1 and k, and both α and β are determined by accelerometer and gyroscope, as described in
Section 4.1.

Applying the sine and cosine rule to Equations (2) and (3) and substituting α − β with γ,
both Equations (2) and (3) can be expressed as

xk = xk−1 + d sin(γ) (4)

yk = yk−1 + d cos(γ). (5)



Sensors 2018, 18, 1722 9 of 27

By assuming that process noise wk−1 and measurement noise vk are all zero-mean white noise
with covariance Qk−1 and Rk, respectively, the system and measurement model of the pedestrian
motion can be determined by

xk = Fk−1xk−1 + Gk−1d + wk−1 (6)

zk = Hkxk + vk (7)

where Gk−1 =
[
sin(γ) cos(γ)

]T
, and Fk−1 is 2 × 2 identity matrix. In Equation (7), the value

of zk represents the positional measurement
[

xk yk

]T
obtained by the machine learning and RSS

information from the RF receivers, as described in Section 4.2, where (xk, yk) is x-axis and y-axis
position in the navigation frame. Since the measurement zk is the same space as the model state xk,
Hk is 2× 2 identity matrix. Moreover, the measurement noise vk denotes position estimation error
generated by the machine learning algorithm.

N

a ß

 
d

North

East

Up

Navigation frame

γ

Figure 5. Pedestrian model. This model just considers x-axis and y-axis position of the positioning
system user in the navigation frame.

4.4. Sigma-Point Kalman Particle Filter (SKPF)

4.4.1. Basic Idea

In the positioning system, the Bayesian filters have been used to integrate sensory data from all
different sources to obtain better positioning accuracy. Among Bayesian filters, the Kalman filter (KF)
and its variants, including the unscented Kalman filter (UKF), have been widely used for the navigation
systems, since they are efficient in terms of the computational cost while providing a high accuracy
in localization [9,28]. Recently, various indoor positioning approaches using PF have been proposed
to achieve higher positioning accuracy than KF and its variants in indoor environments [12,29].
However, since PF requires many particles (samples) for the high positioning performance, it can lead
to considerable computational cost compared to KF and its variants.

In this paper, we propose the enhanced KF called a sigma-point Kalman particle filter (SKPF),
which can achieve better positioning performance compared with KF, UKF, and PF by leveraging both
the unscented transformation (UT) of UKF and the weighting method of PF. The SKPF algorithm can
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provide a balance between the low computational effort of UKF and the high estimation performance of
PF when estimating the state (the location of the user) of the positioning and tracking system as follows:

• The SKPF algorithm exploits the unscented transformation (UT) used in UKF. This enables
the SKPF approach to estimate the state of the system using a small number of samples,
while the PF relies on many samples to achieve accurate results. Hence, the SKPF can
provide higher computational efficiency compared with PF. This is addressed further in
Sections 4.4.1.1, 4.4.1.2 and 6.3.

• Unlike UKF that employs samples with the uniform weight for all system dynamics, the
SKPF algorithm uses samples that have the different weight through the weighting method
of PF, which evaluates the samples’ weights using the likelihood function proportional to the
Gaussian/non-Gaussian posterior density. Consequently, the SKPF approach can offer higher
estimation accuracy than KF and UKF and competitive estimation performance compared to PF.
This is addressed in more detail in Sections 4.4.1.3 and 6.2.

The SKPF algorithm can be summarized as follows. First, to describe the canonical form of the
SKPF algorithm that can be applied to the nonlinear systems without the linearization for the nonlinear
functions using the unscented transform (UT), suppose we have a nonlinear discrete-time system with
n-dimensional state vector xk given as follows:

xk = f (xk−1, uk−1) + wk−1 (8)

zk = h(xk) + vk (9)

where xk and uk indicate the n-dimensional state vector and the control vector at time k, respectively.
The process equation f (·) means the state transition model which is applied to the previous state xk−1,
and the measurement equation h(·) denotes the observation operator that maps the true state space
into the observed space. They define the nonlinear system. The process noise wk and measurement
noise vk are white, zero-mean, and uncorrelated, and have covariance matrices Qk and Rk, respectively.
Our goal is to estimate the state xk based on our knowledge of the system dynamics and the availability
of the noisy measurement zk.

In the SKPF algorithm, the estimates of the state xk are represented by the following a posteriori
and a priori values.

The a posteriori state estimate x̂k|k denotes the expected value of xk conditioned on all of the
measurements up to and including time k:

x̂k|k = E[xk|z1, z2, . . . , zk]. (10)

On the contrary, the a priori state estimate x̂k|k−1 denotes the expected value of xk conditioned on
all of the measurements before time k:

x̂k|k−1 = E[xk|z1, z2, . . . , zk−1]. (11)

We employ the term Pk to indicate the covariance of the state estimate. Pk|k−1 and Pk|k indicate the
covariance of x̂k|k−1 and x̂k|k, respectively.

The state estimate and its covariance of SKPF is initialized before any measurements are
available. Thus,

x̂0|0 = E[x0] (12)

P0|0 = E[(x0 − x̂0|0)(x0 − x̂0|0)
T ]. (13)

A set of 2n weighted sigma points (samples) used to estimate the state and covariance in SKPF
can be written as {xi

k, wi
k}

2n
i=1, where {xi

k, i = 1, . . . , 2n} is a set of samples, and {wi
k, i = 1, . . . , 2n}

represents weights for each of the samples. The sum of weights is 1 such that ∑i wi
k = 1.
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The principle of the SKPF algorithm is shown in Figure 6. The unscented transformation (UT)
is designed on the intuition that it is easier to approximate a probability distribution than it is
to approximate an arbitrary nonlinear function using the linearization [34,35]. To overcome the
deficiencies of linearization for the nonlinear function, the UT propagates the state estimate and its
covariance through nonlinear transformations. The SKPF algorithm works in a two-phase process:
a prediction (Section 4.4.1.1) and an update (Section 4.4.1.2).

Unscented Transfomation Weighting

Figure 6. The principle of the SKPF algorithm.

(1) Prediction

In the prediction phase, the state xk of the system at time k is predicted through the UT for sigma
points (samples) drawn from the a posteriori estimated state x̂k−1|k−1 at time k− 1. The predicted
state at time k means the a priori estimated state x̂k|k−1. The following equations are employed to
propagate the state estimate x̂k−1|k−1 and its covariance Pk−1|k−1 from time k− 1 to k using the UT.
First, 2n samples xi

k−1|k−1 with associated weights wi
k−1 around the estimate x̂k−1|k−1 are selected:

xi
k−1|k−1 = x̂k−1|k−1 +

(√
nPk−1|k−1

)
i
, i=1,...,n

xi
k−1|k−1 = x̂k−1|k−1 −

(√
nPk−1|k−1

)
i−n

, i=n+1,...,2n (14)

wi
k−1 = wi

k =
1

2n , i=1,...,2n (15)

where
√

nPk−1|k−1 is the matrix square root of nPk−1|k−1 such that(√
nPk−1|k−1

)(√
nPk−1|k−1

)T
= nPk−1|k−1, and

(√
nPk−1|k−1

)
i

is the ith column (or row) of√
nPk−1|k−1. The Cholesky factorization can be used to calculate the matrix square root.

The nonlinear system equation f (·) is used to transform the samples xi
k−1|k−1 into xi

k|k−1 vectors
as follows:

xi
k|k−1 = f (xi

k−1|k−1, ui
k−1), i = 1, . . . , 2n. (16)

The a priori state estimate x̂k|k−1 at time k is determined by the weighted sum of the
transformed samples:

x̂k|k−1 =
2n

∑
i=1

wi
kxi

k|k−1. (17)
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The covariance of the estimation error of x̂k|k−1 is the weighted outer product of the transformed
samples. Note that the covariance Qk−1 is added to the end of the equation to take the process noise
into consideration:

Pk|k−1=∑2n
i=1 wi

k(x
i
k|k−1−x̂k|k−1)(x

i
k|k−1−x̂k|k−1)

T
+Qk−1. (18)

(2) Update

In the update phase, when the measurement zk of the state xk at time k is observed, the predicted
state can be corrected using the measurement. The following equations are used to update the predicted
state estimate x̂k|k−1 and its covariance Pk|k−1 at time k using the UT and measurement zk. First, a set of
samples xi

k|k−1 is derived from x̂k|k−1 and Pk|k−1, since the a priori statistics are the current best guess
for the mean and covariance of xk. Thus,

xi
k|k−1 = x̂k|k−1 +

(√
nPk|k−1

)
i
, i=1,...,n

xi
k|k−1 = x̂k|k−1 −

(√
nPk|k−1

)
i−n

, i=n+1,...,2n. (19)

The nonlinear measurement equation h(·) is employed to transform the samples xi
k|k−1 into zi

k
vectors (predicted measurements) as follows:

zi
k = h(xi

k|k−1), i = 1, . . . , 2n. (20)

The estimate of the measurement ẑk at time k can be determined by the weighted sum of the
transformed samples. Therefore,

ẑk =
2n

∑
i=1

wi
kzi

k. (21)

The covariance of the measurement residual (innovation) Sk is obtained from the weighted outer
product of the transformed samples. Note that the covariance Rk is added at the end of the equation to
take account of the measurement noise. Thus,

Sk =
2n

∑
i=1

wi
k(z

i
k − ẑk)(z

i
k − ẑk)

T
+ Rk. (22)

Then, the cross covariance between x̂k|k−1 and ẑk is given by

Pxz =
2n

∑
i=1

wi
k(x

i
k|k−1 − x̂k|k−1)(z

i
k − ẑk)

T
. (23)

The optimal Kalman gain Kk for the state estimate is determined by the normal KF equations
as follows:

Kk = PxzS−1
k . (24)

The a posteriori state estimate x̂k|k at time k is obtained from the reweighted set of the samples
given by Equation (19) through the weighting approach of PF. This step is addressed in more details in
the next section.

Assuming that the a posteriori state estimate x̂k|k = x̂k|k−1 + Kk(zk − ẑk) computed by the KF
approximates x̂k|k obtained by PF, the a posteriori error covariance Pk|k is also calculated using the
normal KF equation. Thus,

Pk|k = Pk|k−1 − KkSkKT
k . (25)
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(3) A posteriori State Estimate

In the SKPF approach, the estimate of the a posteriori state is obtained using PF. The PF is
a sequential Monte Carlo method that recursively estimate the sequence of system states from
measurement. This approximates the posterior density p(xk|z1:k) of Bayesian filter using a set of
2n weighted samples (i.e., particles) determined by{

xi
k, wi

k

}2n

i
∼ p(xk|z1:k) (26)

where {xi
k, i = 1, . . . , 2n} is a set of samples at time k, {wi

k, i = 1, . . . , 2n} is the importance weights for
each of the samples. The sum of weights is 1 such that ∑i wi

k = 1. Then, the posterior pdf approximated
with weights is given by

p(xk|z1:k) ≈
2n

∑
i=1

wi
kδ(xk − xi

k) (27)

where δ(·) indicates the Dirac delta measure.
The weights for each sample are given by the principle of importance [36]. Thus

wi
k ∝ wi

k−1
p(zk|xi

k)p(xi
k|x

i
k−1)

q(xi
k|x

i
0:k−1, z1:k)

(28)

where p(zk|xi
k) is the relative likelihood of each particle xi

k conditioned on the measurement
zk, q(xi

k|x
i
0:k−1, z1:k) is the proposal distribution (importance density), and p(xi

k|x
i
k−1) denotes the

prior density.
Since it is intuitive and simple to implement, the most PF algorithms choose the importance

distribution to be the prior density as follows [37]:

q(xi
k|x

i
0:k−1, z1:k) = p(xi

k|x
i
k−1). (29)

Substituting Equation (29) into Equation (28) gives

wi
k ∝ wi

k−1 p(zk|xi
k). (30)

In the SKPF algorithm, however, noting that the unscented transformation is applied at every
time step, we have wi

k−1 = 1/2n ∀i as given by Equation (15) in the prediction phase. Therefore,
the weights of samples by the weighting method of PF can be recalculated as

wi
k ∝ p(zk|xi

k|k−1) (31)

where xi
k|k−1 is the sample obtained from (19).

After the measurement zk is observed at time k, the conditional relative likelihood p(zk|xi
k|k−1) of

each sample xi
k|k−1 can be calculated. This can be performed if we know the nonlinear measurement

equation and the pdf of the measurement noise. For example, if the m-dimensional measurement
equation is given as Equation (9) and the measurement noise vk ∼ N(0, Rk), then the relative likelihood
of each particle xi

k|k−1 can be determined by

p(zk|xi
k|k−1) = P[vk = zk − h(xi

k|k−1)]. (32)
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Using Equation (20) and the pdf of the measurement noise vk, the relative likelihood can be
expressed as

p(zk|xi
k|k−1) = P[vk = zk − zi

k]

∝ 1
(2π)m/2 |Rk |

1/2 exp

−(zk−zi
k)

T
R−1

k (zk−zi
k)

2

. (33)

The resultant weight of each sample can be determined by Equation (33), and it is normalized to
ensure that the sum of all the weights is equal to one as follows:

wi
k =

wi
k

∑2n
i=1 wi

k

. (34)

Using the samples xi
k|k−1 in Equation (19) and their normalized weights wi

k obtained by
Equation (34), the a posteriori state estimate is given by the weighted sum. Thus,

x̂k|k =
2n

∑
i=1

wi
kxi

k|k−1. (35)

4.4.2. SKPF-Based Localization Algorithm

A pseudo-code description of the pedestrian positioning approach based on the SKPF algorithm
is given by Algorithm 1. The user movement for indoor environments in the position method can be

described by two-dimensional state space that consists of positional information xk =
[

xk yk

]T
at

time k through the pedestrian model introduced in Section 4.3. Therefore, during the prediction (dead
reckoning) step of this algorithm, the state of the user is predicted using both the samples transformed
by the system matrix F and the step length and heading of the user obtained from inertial sensors
(Section 4.1). The update phase corrects the predicted state of the user through both the samples
propagated by the measurement matrix H and the positional measurement zk obtained from the
fingerprinting method (Section 4.2).
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Algorithm 1 SKPF-based Localization Algorithm[
{xi

k, wi
k}

2n
i=1

]
= SKPF

[
{xi

k−1, wi
k−1}

2n
i=1, zk

]
• Initialize SKPF

x̂0|0 = E[x0]

P0|0 = E[(x0 − x̂0|0)(x0 − x̂0|0)
T ]

• Estimate the state and error covariance at every time step
− Prediction (dead reckoning)
· Determine xi

k−1|k−1 and wi
k−1 using (14) and (15)

· Propagate the samples xi
k−1|k−1 using (6)

for i = 1 : 2n do
xi

k|k−1 = Fk−1xi
k−1|k−1 + Gk−1d

end for
· Calculate x̂k|k−1 and Pk|k−1 from (17) and (18)

− Update
· Select the samples xi

k|k−1 using (19)

· Propagate xi
k|k−1 using (7)

for i = 1 : 2n do
zi

k = Hkxi
k|k−1

end for
· Compute ẑk and Sk according to (21) and (22)
· Determine Pxz between x̂k|k−1 and ẑk from (23)
· Calculate the optimal Kalman gain Kk using (24)
· Evaluate wi

k using zk according to (33)
· Normalize weights wi

k using (34)
· Calculate x̂k|k and Pk|k from (35) and (25)

5. Experimental Testbed

This section describes the testbed configuration that is used to build the RSS fingerprint database
and to evaluate the performance of our positioning algorithm. Our experimental site was located on the
first floor of the International Center for Converging Technology in the Korea University. The layout of
the floor is shown in Figure 7. The area of the test site is about 37.3 m by 26.5 m.

In our experiments, the wireless network was comprised of three WiFi APs (ipTime N104T) and
three iBeacons (Estimote) that work in 2.4 GHz ISM band. The position of the RF transmitters deployed
in the lecture room is represented by pink triangles and blue pentagons marked with a sequence
number in Figure 7. The iBeacons operate via the Bluetooth Low Energy (BLE) technology, which
requires a low transmit power of 10 mW and has a maximum bit rate of 1 Mbps and a transmission
range of 100 m. The mobile host used to collect RSS information from both WiFi APs and iBeacons
and to estimate the user’s position was a smartphone (iPhone 5S) equipped with inertial sensors,
such as a three-axis gyroscope and accelerometer, and wireless adapters for WiFi 802.11n and Bluetooth
4.0. The update rate of the accelerometer and gyroscope on the smartphone is 100 Hz, and the update
interval of WiFi and iBeacon receiver on the phone is 1 s.

50 users between the ages of 25 and 35 with a variety of walking speeds took part in our experiments.
Both green square and orange circle symbols in Figure 7 represent the physical locations where the location
sample that consists of RSS fingerprints from both WiFi APs and iBeacons as well as heading information
are collected by the user with the mobile phone during the offline phase of the fingerprinting method
described in Section 4.2. They are deployed at intervals of one meter with the label (sequence number)
of the physical location in the hallways and inside the lecture room. To construct the fingerprint map
(database), we collected more than 100 location samples at each physical position.
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Up

Figure 7. Floor plan of the test site where the experiments were carried out. RSS information is recorded
in the hallways and inside the lecture room.

Since the RSS data from the same RF transmitter can vary significantly at the different locations
due to obstructions between the RF transmitter and receiver, to investigate the impact of the obstacles
(due to the building structure) on RSS information at a given location, all the WiFi APs and iBeacons
in our experiments were intentionally located in the same space. Based on these RF transmitters,
our experiments can be classified into two testbeds depending on the test site: Scenarios S1 and S2.

In Scenario S1, the pedestrian with mobile device walks along the locations of green square
symbols shown in Figure 7 in a clockwise direction inside the lecture room where WiFi APs and
iBeacons are located. The testbed represents the wireless environment with good signal condition
for WiFi APs and iBeacons, as there are no walls. In Scenario S2, the user walks along the hallways
where orange circle symbols represented in Figure 7 are located in a clockwise direction. The testbed
reflects the poor wireless environment in which the signals between the transmitter (WiFi APs and
iBeacons) and the receiver (mobile host) are frequently or completely blocked due to many obstructions,
such as walls.

Figure 8 represents the average value of packet success rate (PSR) obtained by RSS values
received from all WiFi APs and iBeacons at each physical location in Scenario S2 with poor wireless
environments (the orange circle represented in Figure 7). As can be seen in Figure 8, the average value
of PSR for the remote location from WiFi AP and iBeacon is less than that for the location close to WiFi
AP and iBeacon. The iBeacons in the experiments actually have a transmission range of about 25 m,
since their RSS signals can be blocked by obstacles. In Scenario S2, the average value of PSR from all
the WiFi APs and iBeacons for every position is about 89.76% and 44.32%, respectively. In contrast,
for every physical location of Scenario S1 with good signal condition (the green square in Figure 7),
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our experimental results (not reported here) show that the average value of PSR from all the WiFi APs
and iBeacons is 100% together.
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Figure 8. Average value of packet success rate measured by the mobile phone of 50 users at each
physical location on the floor plan in the hallway Scenario S2.

6. Experimental Results

The following sections describe the experimental results for our localization approach in
a real environment.

6.1. Evaluation of Positional Measurement Estimation

In this section, we analyze the performance of machine learning algorithms employed to build the
fingerprint map (database) using the heading information of user and RSS values obtained from WiFi
APs and iBeacons, and accordingly to estimate the positional measurement of the user based on the
map. The machine learning algorithms include ANN, KNN, NBC, and SVM introduced in Section 4.2.
In the ANN algorithm, the input layer has a node (or neuron) per input feature of the dataset, and the
output layer has a node per class label [38]. Since the location sample used in our experiments has
seven input features (three WiFi RSS values, three iBeacon RSS values, and one heading information),
the input layer of the ANN algorithm in our experiments also has seven neurons. Since the number
of the physical locations in Scenarios S1 and S2 is 26 and 102, respectively, the output layer of the
ANN method also has 26 and 102 neurons in Scenarios S1 and S2, respectively. We estimated the
best parameters for the SVM algorithm through iterative cross validations using the SVM training
function train_auto of OpenCV [33]. We used the NBC algorithm with its default parameters provided
by OpenCV and the KNN algorithm with k=3 nearest neighbors, which yield the best results of the
KNN approach in Scenarios S1 and S2.

We assume that the fingerprint map has already been built through the offline phase before the
online step of the fingerprinting approach. Given the ith physical location zi

p and estimated physical
location (positional measurement) zi from the fingerprint map when the location samples (mentioned
in Section 5) that consist of RSS values and heading information are measured at the physical location
zi

p during the online phase, we define the location mapping as a function

m(zi) =

{
1 zi = zi

p i = 1, . . . , Nzp

0 otherwise
(36)

where zi
p and zi are one of the physical locations (green square symbols used in Scenario S1 or orange

circle symbols used in Scenario S2) shown in Figure 7, and Nzp is the number of the physical locations in
Scenario S1 or S2. Using Equation (36), the location mapping rate MR can be expressed as a percentage of
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the number of the estimated physical location zi that match the ith physical location zi
p for Nzp physical

locations. Therefore

MR =
1

Nzp

Nzp

∑
i=1

m(zi)× 100%. (37)

We used the average value of mapping rate determined by the mobile phone of 50 users in
our experiments.

Figures 9 and 10 show the average value of mapping rate calculated in Scenarios S1 and S2,
respectively. Scenario S1 with good signal condition (high PSR) has a higher mapping rate than
Scenario S2 with poor wireless environments (low PSR). The mapping rate are not greatly affected
by kinds of the RSS features (i.e., iBeacon RSS, WiFi RSS, and both iBeacon RSS and WiFi RSS) in
both scenarios. However, when the heading of the user is applied for the machine learning algorithm,
the mapping rate is significantly improved compared with when not using the heading information.
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Figure 9. Mapping rate of: (a) NBC; (b) KNN; (c) ANN; and (d) SVM in Scenario S1 with good wireless
signal condition.
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Figure 10. Mapping rate of: (a) NBC; (b) KNN; (c) ANN; and (d) SVM in Scenario S2 with poor wireless
signal condition.

In Scenario S1, as the number of location samples measured in the online phase increases,
the mapping rate can reach a higher value. However, since much time is spent collecting the samples,
the real-time process of the position estimate is not feasible. On the contrary, in Scenario S2, the ratio of
the mapping is not affected by the number of the samples during the online step. Therefore, only one
location sample was used for the real-time positioning of the user in our experiments.

Figure 11 represents the average time in seconds required to construct the fingerprint map with
1536 location samples in the offline phase and the one spent to estimate the positional measurement of
the user in the online phase for each of the machine learning algorithms. As can be noticed, even though
NBC requires a little more execution time than KNN in the offline phase, it spends less execution time
than different machine learning algorithms during the offline and online phases. Figures 9 and 10 also
indicate that NBC achieves better performance than other machine learning algorithms in terms of the
mapping rate. Hence, the position estimated by NBC instead of GPS is used as a measurement zk for
SKPF at time k in our positioning system.
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Figure 11. Average execution time of offline and online phase in machine learning algorithms.

6.2. Positioning Accuracy

The SKPF algorithm proposed in this paper is evaluated through empirical tests to verify the
validity of it as an indoor position estimator. During our experiments carried out for the evaluation,
the users moved along physical locations marked with a sequence number in Scenarios S1 and S2,
and then their position was estimated by the SKPF algorithm.

Table 1 summarizes the main features and notations for the positioning methods used in our
experiments. In the method P as a dead reckoning (DR), the position of the user is predicted using
the sensory data (acceleration and heading) of the smartphone. Instead of GPS, the positional
measurement of the user can be obtained from the NBC-based fingerprinting method mentioned
in Section 6.1. However, there are errors in positional information obtained from both the DR and
fingerprinting approach. The SKPF algorithm is used to update the position of the user by integrating
the positional data obtained from both fingerprinting and DR with uncertainty. According to the kinds
of training data used in the NBC-based fingerprinting method, the SKPF algorithm is classified into
three operational modes: PU1 (iBeacon RSS and heading), PU2 (WiFi RSS and heading), and PU3
(iBeacon RSS, WiFi RSS, and heading). To analyze the positioning performance of the SKPF algorithm
in methods P, PU1, PU2, and PU3, the SKPF algorithm is replaced with the conventional Bayes filters,
such as KF, UKF, and PF.

Figure 12 indicates the mean and standard deviation of the localization error for each positioning
algorithm executed by 50 users in Scenarios S1 and S2, respectively. As can be seen in these figures,
the accuracy and reliability of the position estimate can be improved when both the prediction
(dead reckoning) and update phase are used together in the Bayesian filtering compared with when
only the prediction phase is exploited. Especially, in Scenario S2 with the poor wireless signal condition,
the positioning accuracy is increased significantly. The localization results of PU1, PU2, and PU3
show that the positioning accuracy is not greatly affected by kinds of the RSS features for the
measurement estimation.
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Table 1. Positioning Methods for the Experimental Tests.

Notation Description

P Prediction using acceleration and heading
PU1 P and update using measurement from “WiFi RSS+Heading”
PU2 P and update using measurement from “iBeacon RSS+Heading”
PU3 P and update using measurement from “WiFi/iBeacon RSS+Heading”
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Figure 12. Performance of the localization algorithms for Scenarios (a) S1 and (b) S2 in terms of average
and standard deviation of the positioning error.

The SKPF can provide higher accuracy of the position estimate than KF and UKF, as shown
in Figure 12a,b. In Scenarios S1 and S2, the positioning algorithms (PU1, PU2, and PU3) based on
SKPF has the average localization error of about 10.37 cm and 71.63 cm, respectively. In this case,
the use of SKPF can achieve about 20.1% and 20.2% higher accuracy than KF and UKF in Scenario S1,
respectively, and it can reach about 151% and 152% higher accuracy compared with KF and UKF in
Scenario S2, respectively. Furthermore, as illustrated in Figure 12a,b, since the SKPF algorithm has the
lower value of the positioning error standard deviation than other Bayes filters, it can execute a more
reliable position estimate. This is because, unlike UKF that uses samples (sigma points) with the
uniform weight for all system dynamics, SKPF employs samples that have the different weight
through the weighting method of PF that evaluates the weight of the sample using the likelihood
function proportional to the posterior density. Hence, the SKPF algorithm can offer better positioning
performance than KF and UKF and competitive performance compared to PF.

We can analyze in more detail these errors by observing Figure 13, which represents the user
trajectory estimated by the positioning algorithm where PU3 is applied for the Bayesian filter.
In Scenario S1, the localization accuracy difference between SKPF and both KF and UKF is large.
The improvements in the accuracy are much clearer in Scenario S2 with the poor signal environments,
becoming particularly remarkable at the locations with the lowest PSR for all the WiFi APs and iBeacons
(i.e., positions marked with 40 to 49 in Figure 8). According to these results, the positioning approach
when SKPF is used is shown to be able to provide accurate and reliable positional information even in
the complicated building structure and bad signal condition.
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Figure 13. User trajectory estimated using localization algorithms when the user walks along physical
locations marked with a sequence number in: (a) Scenario S1; and (b) Scenario S2.

6.3. Computational Complexity and Time

For the computational complexity and memory requirement, KF and UKF scale in general O(m)

and O(n3), respectively, where m denotes the dimension of the measurement zk and n is the dimension
of the state xk [39,40]. In our test environments, since the value of m is equal to the value of n, we can
observe that KF has a less complex method and requires less memory than UKF. PF, which uses
many particles (samples), requires substantial computational cost and memory usage to estimate the
location of the user. Indeed, both these quantities scale as O(Ns), where Ns denotes the number of the
particles [41]. By contrast, since SKPF can estimate the position of the user with the same samples as
UKF that uses a minimal set of samples, the computational complexity and memory requirement of
SKPF scales as O(n3).

Figure 14 represents the average computational time required for the positioning process in
each of localization algorithms. As illustrated in this figure, even though the PF has the highest
positioning accuracy among the Bayesian filters, the computational time of PF may not be appropriate
for the real-time process of the localization. In our experiments, the PF employed 103 particles for
the positioning. For Scenarios S1 and S2, we decided the optimal number of particles for PF used in
the positioning algorithms PU1, PU2, and PU3 by calculating the value of the root mean square error
(RMSE) between the estimated location by PF and its corresponding actual position versus the number
of particles, as shown in Figure 15. The RMSE value in the figure decrease abruptly until the number
of particles reaches 103 and then can converge to the value of about 10 cm for the Scenario S1 and
about 40 cm for the Scenario S2, respectively. This means that the location of the pedestrian can be
estimated most efficiently at the value of about 103 particles, i.e., the optimal number of particles.

In contrast, although SKPF has slightly smaller positioning accuracy than PF, it can carry out
faster localization. This is because the SKPF algorithm uses the unscented transformation (UT) of UKF.
This enables the SKPF approach to estimate the position of the user with a small number of samples,
while the PF depends on a large number of samples to achieve accurate results. Therefore, the SKPF
algorithm can provide the higher computational efficiency compared with PF.
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Figure 14. Average of computational time for each positioning method.
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Figure 15. RMSE value between the estimated location by PF and its corresponding actual position
versus the number of particles for PF in Scenarios S1 and S2.

6.4. Energy Consumption Evaluation

In this section, we aim to validate whether the schemes that use the iBeacon receiver with
low leakage power capability can provide more energy-efficient localization compared with the
different methods using the WiFi module. To observe the energy consumption of our localization
system, the power monitor of Monsoon Solution [42] was connected to the smartphone that
runs at 3.96 V. For the analysis of the energy consumption according to the use of IMU sensors
(accelerometer and gyroscope) and radio modules (WiFi and Bluetooth device) in our positioning
system, our experiments were carried out using several operational modes: IMU sensors (IMU),
IMU sensors and WiFi (IMU+WiFi); IMU sensors and Bluetooth (IMU+BT); and IMU sensors,
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Bluetooth, and WiFi (IMU+BT+WiFi), which correspond to the positioning methods P, PU1, PU2,
and PU3, respectively.

Figure 16 represents the boxplots of the measured current and power from the different operational
modes. In this figure, we can observe that modes using RF modules consume more energy compared
to that using only IMU sensors, becoming particularly remarkable in the experiments using WiFi
module, such as IMU+WiFi and IMU+BT+WiFi. By comparing between IMU+BT and IMU+WiFi, it is
also observed that the average current and power for the WiFi module are noticeably higher than
those for the Bluetooth device. This is because the Bluetooth device on the smartphone employed
in our experiments is based on the low energy technology called BLE (also known as Bluetooth 4.0).
Thus, using IMU+BT (i.e., PU2), we can achieve positioning performance with high accuracy and
energy efficiency.

System idle IMU IMU+BT IMU+WiFi IMU+BT+WiFi
150

200

250

300

350

400

C
u

rr
e

n
t 
(m

A
)

Operantional mode

 

 

Median

Mean

25%~75%

9%~91%

Outliers

(a)

System idle IMU IMU+BT IMU+WiFi IMU+BT+WiFi
600

700

800

900

1000

1100

1200

1300

1400

P
o

w
e

r 
(m

W
)

Operantional mode

 

 

Median

Mean

25%~75%

9%~91%

Outliers

(b)

Figure 16. Statistics of the measured (a) current and (b) power in various experiment settings.

7. Conclusions

As a solution to the problem of indoor pedestrian positioning that suffers from substantial errors
and large bias, we have presented an indoor localization system using simple dead reckoning (DR)
method, fingerprinting approach using machine learning and energy-efficient iBeacon, and SKPF
algorithm, the enhanced KF proposed in this paper. Using the DR method, the position of the user
is predicted by the sensory data (acceleration and heading) of the mobile phone. Instead of GPS,
the positional measurement of the user can be obtained from the fingerprinting approach in our
positioning method. However, there are still errors in positional information obtained from both the
DR and fingerprinting method.

The core of our localization system is the SKPF algorithm that improves KF by leveraging the
unscented transformation of UKF and the weighting method of PF. The SKPF algorithm can achieve
better positioning performance than KF and UKF and competitive performance compared to PF,
and it can provide higher computational efficiency compared with PF. The SKPF algorithm in our
localization system is used to provide enhanced positioning accuracy by integrating noisy positional
information estimated by DR method and the location data obtained by the fingerprinting approach
with uncertainty. We aim to design the localization scheme that can realize the high positioning accuracy,
computational efficiency, and energy efficiency through the SKPF and iBeacon indoors. Empirical results
in a building show that the SKPF algorithm in our indoor localization system can provide very
satisfactory performance in aspect of positioning accuracy and computational cost compared with KF,
UKF, and PF. It is also shown in the test results that the positioning system using iBeacon signal as
a location feature for the fingerprinting method can achieve more energy-efficient localization than
using WiFi signal. Our future research is to apply our localization system to very different scenarios
such as 3D indoor environments, along with more tests for the validation for the system.



Sensors 2018, 18, 1722 25 of 27

Author Contributions: K.S. and H.K. conceived and designed the filtering algorithm and applicable scenarios
and wrote the paper. K.S. and D.K.R.L. performed the experiments, analyzed algorithm performance, contributed
analysis tools, and made charts.

Acknowledgments: This research was supported by Unmanned Vehicles Advanced Core Technology Research
and Development Program through the Unmanned Vehicle Advanced Research Center (UVARC) funded by the
Ministry of Science, ICT and Future Planning, the Republic of Korea (NRF-2016M1B3A1A01937599).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, Z.; Wu, C.; Zhou, Z.; Zhang, X.; Wang, X.; Liu, Y. Mobility Increases Localizability: A Survey on
Wireless Indoor Localization Using Inertial Sensors. ACM Comput. Surv. 2015, 47, 54. [CrossRef]

2. Han, H.; Yi, S.; Li, Q.; Shen, G.; Liu, Y.; Novak, E. AMIL: Localizing neighboring mobile devices through
a simple gesture. In Proceedings of the INFOCOM 2016—The 35th Annual IEEE International Conference
on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; pp. 1–9. [CrossRef]

3. He, S.; Chan, S.H.G. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons.
IEEE Commun. Surv. Tutor. 2016, 18, 466–490. [CrossRef]

4. He, S.; Chan, S.H.G.; Yu, L.; Liu, N. SLAC: Calibration-Free Pedometer-Fingerprint Fusion for Indoor
Localization. IEEE Trans. Mob. Comput. 2018, 17, 1176–1189. [CrossRef]

5. Ho, Y.H.; Chan, H.C.B. BluePrint: BLE Positioning Algorithm Based on NUFO Detection. In Proceedings
of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017;
pp. 1–6. [CrossRef]

6. Smith, I.; Tabert, J.; Wild, T.; Lamarca, A.; Lamarca, A.; Chawathe, Y.; Chawathe, Y.; Consolvo, S.; Consolvo, S.;
Hightower, J.; et al. Place lab: Device positioning using radio beacons in the wild. In Pervasive Computing;
Springer: Berlin, Germany, 2005; pp. 116–133.

7. Chen, Z.; Zhu, Q.; Soh, Y.C. Smartphone Inertial Sensor-Based Indoor Localization and Tracking with iBeacon
Corrections. IEEE Trans. Ind. Inform. 2016, 12, 1540–1549, doi:10.1109/TII.2016.2579265. [CrossRef]

8. Vargas, A.N.; Menegaz, H.M.T.; Ishihara, J.Y.; Acho, L. Unscented Kalman Filters for Estimating the Position
of an Automotive Electronic Throttle Valve. IEEE Trans. Veh. Technol. 2016, 65, 4627–4632. [CrossRef]

9. Jayasiri, A.; Nandan, A.; Imtiaz, S.; Spencer, D.; Islam, S.; Ahmed, S. Dynamic Positioning of Vessels Using
a UKF-Based Observer and an NMPC-Based Controller. IEEE Trans. Autom. Sci. Eng. 2007, 14, 1778–1785,
doi:10.1109/TASE.2017.2698923. [CrossRef]

10. Evennou, F.; Marx, F. Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile
Positioning. EURASIP J. Appl. Signal Process. 2006, 2006, 164–174. [CrossRef]

11. Nurminen, H.; Ristimäki, A.; Ali-Löytty, S.; Piché, R. Particle filter and smoother for indoor localization.
In Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN),
Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–10. [CrossRef]

12. Xie, H.; Gu, T.; Tao, X.; Ye, H.; Lu, J. A Reliability-Augmented Particle Filter for Magnetic Fingerprinting
Based Indoor Localization on Smartphone. IEEE Trans. Mob. Comput. 2016, 15, 1877–1892,
doi:10.1109/TMC.2015.2480064. [CrossRef]

13. Shu, Y.; Huang, Y.; Zhang, J.; Coué, P.; Cheng, P.; Chen, J.; Shin, K.G. Gradient-Based Fingerprinting for Indoor
Localization and Tracking. IEEE Trans. Ind. Electron. 2016, 63, 2424–2433, doi:10.1109/TIE.2015.2509917.
[CrossRef]

14. Gu, Y.; Ren, F. Energy-Efficient Indoor Localization of Smart Hand-Held Devices Using Bluetooth.
IEEE Access 2015, 3, 1450–1461, doi:10.1109/ACCESS.2015.2441694. [CrossRef]

15. Varela, P.M.; Ohtsuki, T.O. Discovering Co-Located Walking Groups of People Using iBeacon Technology.
IEEE Access 2016, 4, 6591–6601, doi:10.1109/ACCESS.2016.2615863. [CrossRef]

16. Mahfouz, S.; Mourad-Chehade, F.; Honeine, P.; Farah, J.; Snoussi, H. Kernel-based machine learning
using radio-fingerprints for localization in wsns. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1324–1336,
doi:10.1109/TAES.2015.140061. [CrossRef]

17. Barrios, C.; Motai, Y.; Huston, D. Intelligent Forecasting Using Dead Reckoning With Dynamic Errors.
IEEE Trans. Ind. Inform. 2016, 12, 2217–2227, doi:10.1109/TII.2015.2514086. [CrossRef]

http://dx.doi.org/10.1145/2676430
http://dx.doi.org/10.1109/INFOCOM.2016.7524392
http://dx.doi.org/10.1109/COMST.2015.2464084
http://dx.doi.org/10.1109/TMC.2017.2757023
http://dx.doi.org/10.1109/GLOCOM.2017.8254483
https://doi.org/10.1109/TII.2016.2579265
http://dx.doi.org/10.1109/TII.2016.2579265
http://dx.doi.org/10.1109/TVT.2016.2518018
https://doi.org/10.1109/TASE.2017.2698923
http://dx.doi.org/10.1109/TASE.2017.2698923
http://dx.doi.org/10.1155/ASP/2006/86706
http://dx.doi.org/10.1109/IPIN.2013.6817903
https://doi.org/10.1109/TMC.2015.2480064
http://dx.doi.org/10.1109/TMC.2015.2480064
https://doi.org/10.1109/TIE.2015.2509917
http://dx.doi.org/10.1109/TIE.2015.2509917
https://doi.org/10.1109/ACCESS.2015.2441694
http://dx.doi.org/10.1109/ACCESS.2015.2441694
https://doi.org/10.1109/ACCESS.2016.2615863
http://dx.doi.org/10.1109/ACCESS.2016.2615863
https://doi.org/10.1109/TAES.2015.140061
http://dx.doi.org/10.1109/TAES.2015.140061
https://doi.org/10.1109/TII.2015.2514086
http://dx.doi.org/10.1109/TII.2015.2514086


Sensors 2018, 18, 1722 26 of 27

18. Billauer, E. Peakdet: Peak Detection Using MATLAB. Available online: http://www.billauer.co.il/peakdet.
html (accessed on 1 April 2018).

19. Jimenez, A.; Seco, F.; Prieto, C.; Guevara, J. A comparison of Pedestrian Dead-Reckoning algorithms using
a low-cost MEMS IMU. In Proceedings of the WISP 2009, IEEE International Symposium on Intelligent
Signal Processing, Budapest, Hungary, 26–28 August 2009; pp. 37–42. [CrossRef]

20. Zhang, Z.Q.; Meng, X. Use of an Inertial/Magnetic Sensor Module for Pedestrian Tracking During Normal
Walking. IEEE Trans. Instrum. Meas. 2015, 64, 776–783, doi:10.1109/TIM.2014.2349211. [CrossRef]

21. Pasku, V.; Angelis, A.D.; Moschitta, A.; Carbone, P.; Nilsson, J.O.; Dwivedi, S.; Händel, P. A Magnetic
Ranging-Aided Dead-Reckoning Positioning System for Pedestrian Applications. IEEE Trans. Instrum. Meas.
2017, 66, 953–963, doi:10.1109/TIM.2017.2649918. [CrossRef]

22. Bahl, P.; Padmanabhan, V. RADAR: An in-building RF-based user location and tracking system. In Proceedings
of the INFOCOM 2000, Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies, Tel Aviv, Israel, 6–30 March 2000; Volume 2, pp. 775–784. [CrossRef]

23. Varshavsky, A.; de Lara, E.; Hightower, J.; LaMarca, A.; Otsason, V. GSM indoor localization.
Pervasive Mob. Comput. 2007, 3, 698–720, doi:10.1016/j.pmcj.2007.07.004. [CrossRef]

24. Ni, L.; Liu, Y.; Lau, Y.C.; Patil, A. LANDMARC: Indoor location sensing using active RFID. In Proceedings
of the First IEEE International Conference on Pervasive Computing and Communications (PerCom 2003),
Fort Worth, TX, USA, 26–26 March 2003; pp. 407–415. [CrossRef]

25. Lin, K.; Chen, M.; Deng, J.; Hassan, M.M.; Fortino, G. Enhanced Fingerprinting and Trajectory
Prediction for IoT Localization in Smart Buildings. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1294–1307,
doi:10.1109/TASE.2016.2543242. [CrossRef]

26. Jaffe, A.; Wax, M. Single-Site Localization via Maximum Discrimination Multipath Fingerprinting. IEEE Trans.
Signal Process. 2014, 62, 1718–1728, doi:10.1109/TSP.2014.2304923. [CrossRef]

27. Powar, J.; Gao, C.; Harle, R. Assessing the impact of multi-channel BLE beacons on fingerprint-based
positioning. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor
Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; pp. 1–8. [CrossRef]

28. He, H.; Li, Y.; Guan, Y.; Tan, J. Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments.
IEEE Trans. Autom. Sci. Eng. 2015, 12, 1181–1190, doi:10.1109/TASE.2015.2471175. [CrossRef]

29. Wang, X.; Zhang, C.; Liu, F.; Dong, Y.; Xu, X. Exponentially Weighted Particle Filter for Simultaneous
Localization and Mapping Based on Magnetic Field Measurements. IEEE Trans. Instrum. Meas. 2017,
66, 1658–1667, doi:10.1109/TIM.2017.2664538. [CrossRef]

30. Li, F.; Zhao, C.; Ding, G.; Gong, J.; Liu, C.; Zhao, F. A reliable and accurate indoor localization method using
phone inertial sensors. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh,
PA, USA, 5–8 September 2012; pp. 421–430.

31. Apple Developer. iOS Developer Library. Available online: https://developer.apple.com/documentation/
corelocation/ (accessed on 1 April 2018).

32. Google Developers. Android Developer Library. Available online: https://developer.android.com/
reference/android/hardware/SensorManager.html (accessed on 1 April 2018).

33. OpenCV. Machine Learning Library. Available online: https://docs.opencv.org/2.4.13/modules/ml/doc/
ml.html (accessed on 1 April 2018).

34. Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422,
doi:10.1109/JPROC.2003.823141. [CrossRef]

35. Wang, G.; Yang, K. A New Approach to Sensor Node Localization Using RSS Measurements in Wireless
Sensor Networks. IEEE Trans. Wirel. Commun. 2011, 10, 1389–1395, doi:10.1109/TWC.2011.031611.101585.
[CrossRef]

36. Arulampalam, M.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188, doi:10.1109/78.978374.
[CrossRef]

37. Gordon, N.; Salmond, D.; Smith, A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation.
IEE Proc. F Radar Signal Process. 1993, 140, 107–113. [CrossRef]

38. Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44.
[CrossRef]

http://www.billauer.co.il/peakdet.html
http://www.billauer.co.il/peakdet.html
http://dx.doi.org/10.1109/WISP.2009.5286542
https://doi.org/10.1109/TIM.2014.2349211
http://dx.doi.org/10.1109/TIM.2014.2349211
https://doi.org/10.1109/TIM.2017.2649918
http://dx.doi.org/10.1109/TIM.2017.2649918
http://dx.doi.org/10.1109/INFCOM.2000.832252
https://doi.org/10.1016/j.pmcj.2007.07.004
http://dx.doi.org/10.1016/j.pmcj.2007.07.004
http://dx.doi.org/10.1109/PERCOM.2003.1192765
https://doi.org/10.1109/TASE.2016.2543242
http://dx.doi.org/10.1109/TASE.2016.2543242
https://doi.org/10.1109/TSP.2014.2304923
http://dx.doi.org/10.1109/TSP.2014.2304923
http://dx.doi.org/10.1109/IPIN.2015.7346767
https://doi.org/10.1109/TASE.2015.2471175
http://dx.doi.org/10.1109/TASE.2015.2471175
https://doi.org/10.1109/TIM.2017.2664538
http://dx.doi.org/10.1109/TIM.2017.2664538
https://developer.apple.com/documentation/corelocation/
https://developer.apple.com/documentation/corelocation/
https://developer.android.com/reference/android/hardware/SensorManager.html
https://developer.android.com/reference/android/hardware/SensorManager.html
https://docs.opencv.org/2.4.13/modules/ml/doc/ml.html
https://docs.opencv.org/2.4.13/modules/ml/doc/ml.html
https://doi.org/10.1109/JPROC.2003.823141
http://dx.doi.org/10.1109/JPROC.2003.823141
https://doi.org/10.1109/TWC.2011.031611.101585
http://dx.doi.org/10.1109/TWC.2011.031611.101585
https://doi.org/10.1109/78.978374
http://dx.doi.org/10.1109/78.978374
http://dx.doi.org/10.1049/ip-f-2.1993.0015
http://dx.doi.org/10.1109/2.485891


Sensors 2018, 18, 1722 27 of 27

39. Hartikainen, J.; Särkkä, S. Kalman filtering and smoothing solutions to temporal Gaussian process regression
models. In Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing
(MLSP), Kittila, Finland, 29 August–1 September 2010; pp. 379–384.

40. Merwe, R.V.D.; Wan, E.A. The square-root unscented Kalman filter for state and parameter-estimation.
In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’01), Salt Lake City, UT, USA, 7–11 May 2001; pp. 3461–3464.

41. Kantas, N.; Doucet, A.; Singh, S.S.; Maciejowski, J.; Chopin, N. On particle methods for parameter estimation
in state-space models. Stat. Sci. 2015, 30, 328–351. [CrossRef]

42. Monsoon Solutions. Power Monitor User Manual. Available online: https://www.msoon.com/
LabEquipment/PowerMonitor/ (accessed on 1 April 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1214/14-STS511
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Architecture
	Positioning Algorithm
	Displacement Estimation and Heading Determination
	Displacement Estimation
	Heading Determination

	Estimation of the Positional Measurement
	Pedestrian Model
	Sigma-Point Kalman Particle Filter (SKPF)
	Basic Idea
	SKPF-Based Localization Algorithm


	Experimental Testbed
	Experimental Results
	Evaluation of Positional Measurement Estimation
	Positioning Accuracy
	Computational Complexity and Time
	Energy Consumption Evaluation

	Conclusions
	References

