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The Gait Deviation Index (GDI) is a dimensionless multivariate measure of overall gait
pathology represented as a single score that indicates the gait deviation from a normal gait
average. It is calculated using kinematic data recorded during a three-dimensional gait
analysis and an orthonormal vectorial basis with 15 gait features that was originally
obtained using singular value decomposition and feature analysis on a dataset of
children with cerebral palsy. Ever since, it has been used as an outcome measure to
study gait in several conditions, including spinal cord injury (SCI). Nevertheless, the validity
of implementing the GDI in a population with SCI has not been studied yet. We investigate
the application of these mathematical methods to derive a similar metric but with a dataset
of adults with SCI (SCI-GDI). The new SCI-GDI is compared with the original GDI to
evaluate their differences and assess the need for a specific GDI for SCI and with theWISCI
II to evaluate its sensibility. Our findings show that a 21-feature basis is necessary to
account for most of the variance in gait patterns in the SCI population and to provide high-
quality reconstructions of the gait curves included in the dataset and in foreign data.
Furthermore, using only the first 15 features of our SCI basis, the fidelity of the
reconstructions obtained in our population is higher than that when using the basis of
the original GDI. The results showed that the SCI-GDI discriminates most levels of the
WISCI II scale, except for levels 12 and 18. Statistically significant differences were found
between both indexes within each WISCI II level except for 12, 20, and the control group
(p < 0.05). In all levels, the average GDI value was greater than the average SCI-GDI value,
but the difference between both indexes is larger in data with greater impairment and it
reduces progressively toward a normal gait pattern. In conclusion, the implementation of
the original GDI in SCI may lead to overestimation of gait function, and our new SCI-GDI is
more sensitive to larger gait impairment than the GDI. Further validation of the SCI-GDI with
other scales validated in SCI is needed.
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1 INTRODUCTION

Walking is an extraordinarily complex task requiring integration
of the entire nervous system, making gait susceptible to a variety
of underlying neurologic abnormalities, such as spinal cord
injuries (SCIs). Incidence rates of SCI vary across countries
between 10.4 and 83 new cases per million inhabitants per
year (Wyndaele and Wyndaele, 2006), with a global prevalence
between 236 and 1,009 per million (Cripps et al., 2011). From
these, more than 95% experience mobility impairments resulting
from the injury (Aspaym, Federación Nacional, 2012), which
affects their quality of life. The average age when subjects
experience an SCI is 33 years, and men are more affected than
women with a 3.8:1 ratio (Wyndaele and Wyndaele, 2006).
Therefore, although the incidence is considered low, the
personal but also the social and economic consequences of
spinal cord damage can be severe.

The overall objectives of rehabilitation in SCI are to increase
personal independence and quality of life minimizing the socio-
economic burden. Still, regardless of the severity of the SCI, the
time after lesion or age at the time of injury, the restoration of
walking is given high priority (Ditunno et al., 2008).Gait
improvement in SCI following rehabilitation is assessed using
different procedures, metrics, and tools: on the one hand,
validated clinical tests on overall gait function, such as
categorical and spatiotemporal-related walking and balance
assessment measures such as the Walking Index for Spinal
Cord Injury (WISCI) (Dittuno et al., 2001), the 10-meter walk
test (10MWT) (Van Hedel et al., 2008), the timed up and go test
(TUGT) (Podsiadlo and Richardson, 1991), the 6 min walking
test (6MWT) (Brooks et al., 2003), and the Berg balance scale
(BBS) (Berg, 1989) (Wyndaele andWyndaele, 2006); on the other
hand, tests of motor function and spasticity assessment, such as
the lower extremity motor score (LEMS) and the modified
Ashworth scale (MAS), respectively; and finally, instrumental
techniques including dynamometry and three-dimensional gait
analysis (3DGA). The latter is the most comprehensive and
precise technology to analyze gait that allows to objectively
assess lower limb kinematics and kinetics, thus providing a
powerful tool for quantifying gait impairment and, therefore,
to assist decision-making for clinicians (Patrick, 2003; Baker,
2006; Baker et al., 2016; Murphy et al., 2019; Sinovas-Alonso et al.,
2021).

The main feature of 3DGA is that it provides a large amount of
data describing the spatiotemporal gait parameters, together with
three-dimensional (3D) pelvis, thigh, leg, and foot kinematics, as
well as hip, knee, and ankle joint kinematics and kinetics during a
gait cycle, along with specific values for each one of the gait phases
and events (Gage, 1991). This extensive information, usually
presented with many graphs and tables, is often both difficult
and impractical to be understood by clinicians (Whittle, 1996;
Patrick, 2003). Therefore, it is recognized that clinical
interpretation of the 3DGA results needs to be facilitated to
increase its usefulness in clinical settings. One way to achieve this
goal is to develop and implement straightforward, easy to
interpret metrics that merge data from 3DGA and yield a
metric —or set of metrics— that describe overall gait deficits.

One such metric is the Gait Deviation Index (GDI), which is a
dimensionless multivariate measure of overall gait pathology
represented as a single score that indicates the gait deviation
from a normal gait pattern average (Schwartz and Rozumalski,
2008). It is calculated upon the kinematics of pelvis and hip in the
three planes in space, knee, and ankle in the sagittal plane and
foot progression angle.

Originally, a dataset with more than 6,000 strides of children
with cerebral palsy (CP) was built to develop the GDI (Schwartz
and Rozumalski, 2008). Based on these data, the authors derived a
set of independent joint rotation patterns, referred to as gait
features, so that, when combined linearly, high-quality
reconstructions of gait curves can be obtained. In order to
select the least amount of features needed to represent the
whole CP gait profile dataset, they considered two criteria: 1)
the set of features selected must account for at least 95% of the
overall variance of the whole dataset, and 2) they must provide
high-fidelity reconstructions of any gait curve with respect to the
original curve. Applying these criteria, the authors found that 15
features out of 459 were enough to account for 98% of the total
variance of the whole dataset and allowed to reconstruct the gait
curves with 98% fidelity on average. These 15 features were
organized into a matrix used as an orthonormal basis to
calculate the representation of any gait curve. Afterward, to
obtain the GDI, the Euclidean distance between this
representation and the average of a set of control strides that
may be introduced by the user, is calculated, representing the
deviation of a gait pattern from a control group of typically
developing (TD) children. Last, this value is scaled to improve the
interpretability of the index, so that every 10 points of GDI below
100 correspond to one standard deviation away from the control
pattern, whereas a score ≥100 represents a gait without any
pathology (Schwartz and Rozumalski, 2008).

Ever since, that 15-feature basis originally developed from data
of children with CP has been widely used to calculate the GDI
across different conditions, including post-stroke hemiparetic
gait (Correa et al., 2017; Guzik and Drużbicki, 2020),
Duchenne muscular dystrophy (Sienko Thomas et al., 2010),
Parkinson’s disease (Galli et al., 2012; Speciali et al., 2013),
arthritis (Broström et al., 2013; Esbjörnsson et al., 2014;
Kobsar et al., 2019; Bazarnik-Mucha et al., 2020), lower limb
amputations (Eshraghi et al., 2014; Kark et al., 2016),
degenerative spinal pathologies (Mar et al., 2019; Trivedi et al.,
2021; Zhou et al., 2021), genetic disorders (Ito et al., 2020;
Mindler et al., 2020), congenital disorders (Eriksson et al.,
2015; Garman et al., 2019), the effect of the Covid-19 on
physical function (Ito et al., 2021), and mostly in CP
(Schwartz and Rozumalski, 2008; Molloy et al., 2010; Cimolin
et al., 2011; Sagawa et al., 2013; Massaad et al., 2014; Wilson et al.,
2015; Malt et al., 2016; Ito et al., 2019; Rasmussen et al., 2019).

The GDI has therefore become a clinically relevant score partly
because it is easy to interpret and compute. Nevertheless, the basis
provided in Schwartz and Rozumalski (2008) has proven to
account for the variance in gait patterns and to reconstruct
gait vectors with high fidelity, only in pediatric CP population.
Significant differences in gait patterns among pediatric and adult
population have been described (Cupp et al., 1999; Ganley and
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Powers, 2005; Bleyenheuft et al., 2012), as well as both clinical and
biomechanical differences among the different neurological
disorders. Furthermore, when applied only to CP, differences
in GDI were found between adult and pediatric population
(Maanum et al., 2012). Actually, the authors in the original
work of the development of the index suggested that the
methodology could be used in other sets of data (Schwartz
and Rozumalski, 2008) but instead of developing a new basis
for each condition, the articles found in the literature implement
the GDI using the original basis regardless of the population.
Therefore, straightforward application of the GDI derived in
Schwartz and Rozumalski (2008) in other populations than
pediatric CP can lead to a misleading interpretation of the
gait data.

To date, no studies have attempted to validate the GDI in SCI.
To our knowledge, only two articles have investigated its
application under this condition (Hwang et al., 2021; Sinovas-
Alonso et al., 2022). One of them uses the index to quantify and
characterize gait patterns in ambulatory children and adolescents
with transverse myelitis with respect to a normal gait pattern
(Hwang et al., 2021). In this work, the difference in gait between
patients and TD children was assessed with the GDI, without
addressing the discriminative validity of the scale within different
levels of impairment. The work presented in Sinovas-Alonso et al.
(2022) compared the GDI and the WISCI II, showing limited
discriminative properties of the GDI in SCI because there were
statistically significant differences in the GDI values only between
levels 13, 19, 20, and the control group. Therefore, the
applicability of the GDI to SCI population that leads to
discriminate the heterogeneity of gait impairment is still an
open question calling for investigation.

The main objective of this article is to investigate the
application of the mathematical methodology behind the GDI
(Schwartz and Rozumalski, 2008) to a dataset of adults with SCI,
resulting in the new SCI-GDI. Then, an evaluation of the
differences between new SCI-GDI with the original GDI is
presented, assessing the need for a specific GDI for SCI. Last,
the relationship between our SCI-GDI and theWISCI II, the most
validated scale in SCI developed specifically for this population
(Sinovas-Alonso et al., 2021), is further presented to investigate
the differences between the GDI and our novel SCI-GDI in terms
of stratification and sensitivity to walking impairment with
respect to a validated scale.

2 MATERIALS AND METHODS

2.1 Participants
A dataset containing the kinematic data from 3D gait analysis of
patients with SCI was used in this study. The 3DGA were
conducted between August 2019 and July 2021 at the
Biomechanics and Technical Aids Unit of the National
Hospital for Paraplegics of Toledo, Spain. Patients aged
≥16 years old with diagnosis of SCI, regardless of the etiology,
time since injury, injury level, or injury severity were included. A
total of 302 strides from patients aged between 16 and 70 years
old (33.91 ± 17.86), with injury levels between C1 and L5 and the

ASIA impairment scale (AIS) C to D were gathered. The ratio of
males to females of the dataset is 3.25:1. The detailed
demographic and clinical characteristics of the sample are
presented in Table 1. In addition, a control group with the 3D
kinematic gait data of 446 strides from adults without gait
pathologies was collected. These healthy volunteers (HV) were
between 18 and 63 years old (35.10 ± 15.41), and the ratio of
females to males was 1.63:1.

All patients and HV signed an informed consent to perform
the gait analysis. The study protocol was approved by the local
bioethics committee (Clinical Research Ethics Committee at
Complejo Hospitalario Universitario de Toledo, no. 823) and
conformed to the Declaration of Helsinki.

2.2 Experimental Procedure
A Codamotion® motion capture system (Charnwood
Dynamics Ltd, United Kingdom) was used to capture 3D
kinematic gait data. The standard protocol with 22 active
markers placed on the lower limbs (Charnwood Dynamics
Limited, 2004), three scanners, and two force platforms
Kistler 9286A (Kistler Group, Switzerland) in the center of
a 10-meter walkway were used. Post-processing was
performed using the software ODIN v. 2.02 (Codamotion
Ltd., England, United Kingdom). The subjects were asked to
walk barefoot at a comfortable speed with the minimum
external assistance required. Five complete gait cycles were
recorded and time-normalized. For patients who were not
able to complete five trials, at least three cycles were gathered.

2.3 Overview of the Calculation of the Gait
Deviation Index
The GDI derivation procedure was described in detail in Schwartz
and Rozumalski (2008). The calculation is based on a matrix with
kinematic data from several walking strides where each column
vector is a stride represented by nine joint angles of a whole gait
cycle extracted at 2% increments: three planes for the pelvis and
hip, knee flex/extension, ankle dorsi/plantarflexion, and foot
progression angle. Singular value decomposition (SVD) of the
matrix is computed to obtain its singular values and singular
vectors. Using the latter, referred herein as gait features, the
authors build an orthonormal basis that is both optimal to
maximize the variance accounted for (VAF) of the whole
dataset, and useful to reconstruct gait data. When multiplying
the first m-vectors of this basis by any gait vector, an mth order
approximation of the vector is obtained, therefore forming a
vectorial basis. The accuracy of this reconstruction is calculated
with its projection onto the original vector, normalized by the
original gait curve. Two criteria were used to find out the
minimum m features needed to form a reduced order basis
such that it represented the whole CP dataset; first, these first
m features accounted for 98% of the total variance of the original
dataset, and second, the accuracy of the mth order reconstructed
curves was 98% on average. The authors in Schwartz and
Rozumalski (2008) found that 15 features were sufficient to
form the reduced order basis. Last, using the approximation of
a gait vector obtained with this basis, its Euclidean distance with
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an average gait vector from a control group is calculated and
scaled to obtain the GDI.

2.4 Data Analysis
An overview of the data analysis performed is presented in this
section. The detailed description of each step is found on the
following subsections. Henceforth, all data analysis was
performed with Matlab R2019a (The MathWorks, Inc., Natick,
MA, United States).

Using the dataset described previously, the first step of the data
analysis was the computation of what we call the SCI-GDI basis,
that is, the optimal reduced order orthonormal basis to
reconstruct gait data of SCI with high fidelity and to account
for most of the variance of the SCI dataset (data analysis details in
Section 2.4.1). Once the SCI basis is formed with the sufficient
amount of gait features m, in order to assess the appropriateness
of computing the GDI in adult population with SCI using the
original GDI basis, developed using a dataset of pediatric patients
with CP (Schwartz and Rozumalski, 2008), we compared the
quality of the reconstructions of the whole SCI dataset obtained
with three bases: our SCI-GDI basis, the original GDI basis
comprises 15 gait features (Schwartz and Rozumalski, 2008),
and the first 15 features of our SCI-GDI basis. From the three
bases, the latter was used to compare the fidelity of the
reconstructions of the same order as those obtained with the
original GDI basis. Figure 1 shows a diagram of the steps
followed to obtain these three bases. In addition, to assess the
generalizability of the new SCI basis in foreign data, we computed

the quality of reconstruction in a set of strides not used during the
computation of the SCI basis.

Afterward, we calculated the SCI-GDI of the dataset using our
basis and compared it with the WISCI II scale, to assess the
stratification of gait impairment and discriminative properties of
the new index (data analysis details in Section 2.4.2). To our
knowledge, there is only one work published that studies the
relationship of the GDI with a scale developed specifically for SCI
and validated in this population, which is the WISCI II (Sinovas-
Alonso et al., 2022). We did not perform comparisons with other
validated metrics in SCI, such as 10MWT, 6MWT, TUGT, or the
BBS because these were not available. Last, we compared and
correlated the GDI with the SCI-GDI in our dataset to find out
whether there is an actual difference between both indexes when
computed in the same set of SCI subjects, in order to recommend
one index over the other in this specific population of adults with
SCI (data analysis details in Section 2.4.3).

2.4.1 Computation of the Spinal Cord Injury-Gait
Deviation Index Basis
In this work, 302 strides from SCI patients were used to form a
matrix to compute the reduced order optimal basis. We refer to
this data as our train dataset. We performed a grid search
considering values of m between 10 and 30 to find the
minimum features needed to form the optimal reduced order
SCI basis with the two criteria explained at the end of Section 2.3.
We also considered the percentage of gait vectors of the whole
dataset reconstructed with a fidelity ≥95%, a parameter reported

TABLE 1 | Demographic and clinical characteristics of the samples in the train and validation datasets.

Characteristic Type Train (n = 302) Validation (n = 72)

Age 16–25 156 52
26–40 32 0
41–60 79 10
>60 35 10

AIS A 0 10
C 36 10
D 256 36

Cauda equina 10 10
N.A. (congenital) 0 6

Time since injury 6 months (incl.) or less 58 10
6 months (excl.) to 1 year (incl.) 40 0

1 (excl.) to 5 years (incl.) 86 26
More than 5 years 92 30

Congenital 26 6

Injury level C1–C8 153 0
T1–T6 12 26
T7–T12 68 20
L1–L5 69 20

N.A. (Congenital) 0 6

WISCI II level 12 2 0
13 6 0
15 18 10
16 65 26
18 12 6
19 87 0
20 112 30
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in the original work of the derivation of the GDI (Schwartz and
Rozumalski, 2008). Although our dataset could be considered
small to perform Feature Analysis, especially when compared to
the 6000-stride dataset of the original GDI work, it is possible to
obtain reliable, high-quality solutions with small datasets if the
communalities between the features are high because accurate
recovery of population structure may be obtained with a small

sample; thus, the size of the dataset will have little impact on the
quality of the result (MacCallum et al., 1999). Communality is
related to the VAF criteria previously defined in this work because
it is defined as the proportion of the variance of the variable that is
accounted for by the features (Hogarty et al., 2005). Therefore, to
consider the validity of our dataset in this task, we performed a
Monte Carlo cross-validation with 10 iterations to assess the

FIGURE 1 | Diagram showing the steps followed to obtain the three reduced order bases compared in this article. The column on the left, with matrices in blue,
represents the process followed in the original article by Schwartz and Rozumalski (2008), whereas the green matrices on the right correspond to the steps performed in
this work, using SCI gait data. Note that the reduced order SCI basis with 15 features, located in the middle at the bottom of the diagram is merely the set of the first 15
features of the 21-feature reduced order SCI basis. We compare the results of the three criteria in red when using this basis because the number of features in the
basis determines the order of the reconstructions of the gait curves. Thus, it is fair to compare the quality of the reconstructions of the same order.
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stability of the result. On each iteration, five percent of the data
was randomly removed before computing the SVD and a
surrogate model was built. With each model, the three criteria
were assessed to find the minimum m features that allowed
fulfilling each criterion: VAF≥98%, average fidelity of the
reconstructions ≥98%, and percentage of the dataset
reconstructed with fidelity ≥95%. Small differences between
the m values found on each run indicated similarity between
the models and stable results (MacCallum et al., 1999).

Moreover, we compared these results with the quality of the
15th order reconstructions of all the gait vectors in the dataset
using the basis provided in Schwartz and Rozumalski (2008),
built with 15 features from CP patients, and also with the
reconstructions obtained with the first 15 features of the basis
calculated with our SCI dataset. Furthermore, to validate the
generalizability of the new basis built from SCI gait data, a
validation set was built with 72 additional strides that were not
used to calculate the basis. These were reconstructed and
compared using the three bases, and the reconstruction

fidelity was assessed with the same criteria used in the train
set, allowing to compare the quality of the reconstructions in
foreign data.

2.4.2 Comparison Between the Spinal Cord Injury-Gait
Deviation Index and the Walking Index for Spinal Cord
Injury II Scale
The SCI-GDI was calculated for each stride of both patients
and HV using the reduced order orthonormal basis built in
this work. Control group data, used as the reference gait
pattern to compute the gait deviation, was collected at
National Hospital for Paraplegics, as described in Section
2.1, following the same procedure used with the patients.
Each gait analysis study had an associated WISCI II level,
according to the walking impairment of the patient when
recording the study. SCI-GDI data were grouped according to
the corresponding WISCI II level, and HV data were
considered as an additional set. The dataset included
WISCI II levels 12, 13, 15, 16, 18, 19, and 20. Normal

TABLE 2 |Comparison of the quality of reconstruction of the whole dataset when using our SCI basis withm = 21, our SCI basis withm = 15 and the basis of the original GDI
derived for children with CP withm = 15 (Schwartz and Rozumalski 2008).The best results in terms of average fidelity of the reconstructions and percentage of vectors
reconstructed with a fidelity ≥95% are obtained with our m = 21 basis, followed by our basis built using only the first 15 features.

Basis
(no of features)

Set VAF Average fidelity of
reconstruction

% of gait
vectors reconstructed with

average fidelity ≥95
(%)

SCI basis (m = 21) Train 98.27% 97.99% ± 1.54% 97.86
Validation 94.74% ± 4.88% 72.22

SCI basis (m = 15) Train 97.11% 96.58% ± 2.49% 83.11
Validation 92.40% ± 6.64% 52.78

CP basis (m = 15) (10) Train N/A 93.13% ± 5.51% 44.70
Validation 90.73% ± 7.81% 40.28

VAF, variance accounted for; SCI, spinal cord injury; CP, cerebral palsy; N/A, not applicable.

FIGURE 2 | Kinematic reconstructions of a validation stride using the three bases. The black line is the original curve, the blue line is the result when using the SCI
basis withm = 21, the red dashed line corresponds to the reconstruction with the SCI basis withm = 15, and the gray dashed line is the reconstruction with the CP basis
(Schwartz and Rozumalski 2008). For all nine angles, the reconstructions with the original CP basis provide the largest deviation from the original curve.
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distribution for each group was assessed with
Kolmogorov–Smirnov tests (p < 0.05).

To facilitate the analysis, a histogram of the SCI-GDI data
comprised within each WISCI II level was calculated with a
normal distribution curve fitted to its mean and standard
deviation. A stratified result of the histograms was expected, in

accordance with the ordinal nature of the WISCI II scale.
Afterward, one-way ANOVA tests were performed between
the SCI-GDI values of each pair of WISCI II levels to identify
differences among groups (p < 0.05). In addition, a Kendall’s Tau-
b correlation was run between both scales to assess their
relationship.

TABLE 3 | Descriptive statistics of the SCI-GDI values within each WISCI II level. Numbers in parentheses indicate statistically significant differences found with an ANOVA
(p < 0.05). The values marked with * indicate statistically significant differences found only in the SCI-GDI but not with the original GDI (Sinovas-Alonso,
Herrera-Valenzuela, et al., 2022).

WISCI II No. strides Mean ± S.D.
SCI-GDI

Minimum SCI-GDI Maximum SCI-GDI Normally distributed
(K–S test)

C (12, 13, 15, 16, 18, 19, 20) 446 100.0 ± 10.0 72.2 126.5 True
20 (12, 13, 15, 16, 18, 19, C) 112 77.7 ± 15.8 53.8 120.8 True
19 (12, 13, 15, 16, 18, 20, C) 87 67.0 ± 8.4 51.7 95.0 True
18 (13, 19, 20, C) 12 54.7 ± 5.1 42.0 59.2 True
16 (13, 15*, 19, 20, C) 65 59.3 ± 10.8 41.0 80.2 True
15 (13, 16*, 19, 20, C) 18 52.6 ± 6.6 44.8 66.2 True
13 (12, 15, 16, 18, 19, 20, C) 6 42.7 ± 1.9 40.7 44.9 True
12 (13, 19, 20, C) 2 52.4 ± 3.5 49.9 54.8 True

WISCI II, Walking Index for Spinal Cord Injury II; SCI-GDI, gait deviation index for spinal cord injury; S.D., standard deviation; C, control; K–S Test, Kolmogórov–Smirnov test.

FIGURE 3 | Histograms of the SCI-GDI stratified by the WISCI II level (12–20 and control). The dotted line represents the normal distribution curve fitted to the data
within each level. The vertical black line indicates the control mean.
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2.4.3 Comparison and Correlation Between the Spinal
Cord Injury-Gait Deviation Index and the Gait
Deviation Index
To seek differences between the original GDI, calculated from a
basis derived from a CP pediatric population (Schwartz and
Rozumalski, 2008), and the SCI-GDI, both indexes were
calculated for each stride of the dataset using the HV data
gathered in our institution. The results were grouped
according to the WISCI II level of the sample. Normal
distribution for each group was assessed with
Kolmogorov–Smirnov tests (p < 0.05). Consequently, one-way
ANOVA tests were performed between each pair of equivalent
WISCI II levels to identify differences among groups (p < 0.05). In
addition, to study the relationship between both indexes,
Pearson’s correlation and linear regression were calculated
between both GDI values using the whole dataset.

3 RESULTS

3.1 Computation of the Spinal Cord
Injury-Gait Deviation Index Basis
The Monte Carlo cross-validation demonstrated stable results in
terms of differences no larger than one in the minimum number of
features necessary to build the basis, according to the criteria defined.
On average, 19.3 ± 0.5 features were sufficient to account for 98% of
variance of the dataset. Nevertheless, 21.0 ± 0.0 features were
necessary to reconstruct the vectors of the dataset with an
average fidelity of 98%. At m = 21, 97.9 ± 0.4% of the whole
dataset was reconstructed with a fidelity of at least 95%. Therefore,
m = 21 was set as theminimumnumber of features to build the basis
to represent the whole SCI gait dataset.

The comparison of the quality of reconstruction of the
whole dataset when using our SCI basis with m = 21, our
SCI basis withm = 15 and the basis of the original GDI derived
for children with CP with m = 15 is presented in Table 2. The

best results in terms of average fidelity of the reconstructions
and percentage of vectors reconstructed with a fidelity ≥95%
were obtained with ourm = 21 basis, followed by our basis built
using only the first 15 features. Less than 50% of the dataset
was reconstructed with a quality of at least 95% when using the
basis provided in Schwartz and Rozumalski (2008). Note that it
was not possible to calculate the VAF with the original GDI
basis because the singular values of the original dataset are not
publicly available. In the validation set, the results for all
criteria followed the same pattern when using each type of
basis but all scores were lower than those obtained in the train
dataset. In Figure 2, we present the reconstructions obtained
with the three bases on a sample of the validation dataset with a
SCI-GDI of 55.59 and a GDI of 60.03.

3.2 Comparison Between the Spinal Cord
Injury-Gait Deviation Index and the Walking
Index for Spinal Cord Injury II Scale
The results showed that the SCI-GDI is normally distributed
across all WISCI II levels and in the HV group. Table 3 presents
the distribution of the data, the mean and the standard deviation
of the SCI-GDI values comprised in each WISCI II level. There is
a trend of increasing SCI-GDI with a decreasing level of
functional limitation in WISCI II levels 13 to 20 and in the
control group, except in level 18, with an average SCI-GDI lower
than the average on level 16. This can be easily seen in Figure 3
that shows the histograms of the SCI-GDI stratified by WISCI II
level. Statistically significant differences were found between
control group, levels 13, 19 and 20 with all other groups, and
additionally, between levels 15 and 16. In essence, all the levels
had statistically significant differences except from 12 to 18 (see
Table 3). Furthermore, both SCI-GDI and WISCI II have a
strong, positive correlation of 0.460, which is statistically
significant, according to Kendall’s coefficient of rank
correlation (p = 1.63e-26) (Botsch, 2011).

3.3 Comparison and Correlation Between
the Spinal Cord Injury-Gait Deviation Index
and the Gait Deviation Index
Both SCI-GDI and GDI are normally distributed across allWISCI
II levels and in the control group, according to the KS tests. When
comparing the GDI and SCI-GDI values within each WISCI II
level (Figure 4), statistically significant differences were found
between all levels except for 12, 20, and the control group. For all
levels, average GDI was greater than average SCI-GDI and
followed the same pattern among adjacent WISCI levels
(Figure 4). Furthermore, a strong linear correlation between
both GDI and SCI-GDI was found (r = 0.993) (Figure 5),
although both deviate at lower values.

4 DISCUSSION

The main objective of this article was to derive a specific GDI
applicable to SCI (SCI-GDI). Our hypothesis was that, since the

FIGURE 4 | Average ± one standard deviation for GDI (black) and SCI-
GDI (red) for each WISCI II level. In all levels, GDI values are greater than SCI-
GDI values. WISCI II levels with a statistically significant difference between
both indexes are marked with a circle.
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GDI was obtained from a database of children with CP, the
application to SCI would not correctly represent the gait
impairments of this population. To this extent, we derived a
GDI following the methodology originally proposed (Schwartz
and Rozumalski, 2008) to a gait database of adults with SCI to
obtain the SCI-GDI, studied the correlation of our SCI-GDI with
the WISCI II, and compared the GDI and the SCI-GDI to assess
their differences.

Although our dataset to compute the reduced order SCI basis
contained fewer number of steps than the original one, there is no
rule of thumb to define the minimum size that a dataset should
have to perform SVD and feature selection given an initial
number of features (Bandalos and Boehm-Kaufman, 2009).
Different recommendations stated in the literature and some
studies demonstrate that it is feasible to obtain quality solutions
with small datasets if certain conditions are met, like having data
with high communalities (MacCallum et al., 1999; Hogarty et al.,
2005; Mundfrom et al., 2005). During the process of finding the
number of gait features necessary to form our optimal reduced
order SCI basis, a high variables-to-factors ratio and stable results
with variations of at most one feature in the Monte Carlo cross-
validation suggested that our dataset is large enough to represent
robustly the variety of gait patterns within the population of SCI
comprised in the data, by using linear combinations of the
information. Nevertheless, a larger dataset would be
recommendable, given the number of features of the original
matrix in which SVD is performed.

Regarding the process of defining the minimum number of
features to form the reduced order basis, our results showed that
m = 19 was enough to account for at least 98% of the variance
comprised in the dataset, indicating high communalities in the
data, and suggesting that the size of our dataset is acceptable to

be used in this study. Two more features are necessary (m = 21)
to reconstruct the curves within the dataset with an average
fidelity of 98%. This difference is understandable because the
first criterion was calculated with the singular values of the PCA
while the second one depended on the singular vectors. In
addition, at m = 21, almost 98% of the whole dataset was
reconstructed with a fidelity of at least 95%, only 1% less
than the results presented by Schwartz and Rozumalski
(2008) in the original derivation of the GDI in CP.
Therefore, we defined m = 21 to build our SCI basis because
both criteria must be fulfilled in order to build a basis that
represents the whole dataset. It is important to note that these
results indicate that six features or more are necessary to
represent the variety of gait in SCI when compared to the 15
features that were sufficient in CP (Schwartz and Rozumalski,
2008). These results suggest a larger variance in the kinematics
of gait in SCI when compared to CP, which may be related to the
heterogeneity of the clinical forms of incomplete SCI depending
on the level of injury and AIS. Hence, the original 15-feature
basis of the GDI may not account for the variety or reconstruct
with enough precision gait vectors in SCI.

In this regard, the results presented in Table 2 show that when
calculating the quality of the reconstructions obtained with the
original basis of the GDI (Schwartz and Rozumalski, 2008) on our
train dataset, fidelity drops from an “ideal” value reported in
Schwartz and Rozumalski (2008) of 98–93% and most
importantly, only 44.70% of the dataset is reconstructed with a
fidelity of at least 95%. These findings support the fact that the
implementation of the GDI in SCI is not recommended because
the dataset used to derive the GDI basis was a pediatric CP
population and there are differences in the etiology of the
neurological impairment, clinical consequences related to
function and maturity of gait between adults and children that
cause differences in gait patterns among populations. Indeed,
even when using only the first 15 features of our SCI basis, the
average fidelity of reconstruction is 1.41% lower when compared
to our SCI basis with 21 features, but only 83.11% of the dataset is
reconstructed with high quality, which is almost twice the value
obtained with the CP basis. This means that even when using a
basis built with data of adults with SCI, 15 features are not enough
to represent and reconstruct with accuracy the whole dataset, but
are better than using the 15 features from the original CP basis.

The results obtained using the validation dataset follow the
same pattern, supporting the previous findings and indicating
that results are not due to an overfitting to our dataset.
Nevertheless, we highlight the fact that all the values obtained
when using the validation dataset are lower than the
corresponding results in the train dataset, suggesting that
using more train data would be recommended to obtain a SCI
basis that provides more generalizable results, as reflected by
smaller differences in performance when evaluating the criteria in
both sets.

Moreover, the reconstruction of a single sample of the
validation set with a large level of gait deviation (WISCI II =
18, SCI-GDI = 53.47, and GDI = 60.43) in Figure 2 shows that the
reconstructions obtained with the CP basis are poorly related to
the original vector, whereas reconstructions with the SCI basis

FIGURE 5 | Strong linear correlation between GDI and SCI-GDI was
found (r = 0.993). The linear regression between both indexes, represented by
the continuous line, is given by the equation SCI GDI � 1.0573pGDI − 7.5915.
The dashed line indicates the 1:1 axis. For all the samples, GDI values are
larger than SCI-GDI values. The difference between both indexes is larger in
data with greater impairment and it reduces progressively toward a normal
gait pattern.
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with 15 features have a better quality and the most accurate
results are obtained with our 21st order reconstructions. It is also
noteworthy that pelvic movement in the three axes is poorly
reconstructed in all cases. We hypothesize this might be because
the pelvis is the most complicated segment to model accurately
and with reliability during a 3DGA (O’Sullivan et al., 2010). The
anatomical landmarks used to place or align the pelvic markers
on most motion capture systems, including the Codamotion, are
the anterior and posterior superior iliac spines. These are bony
protuberances in the pelvis covered with adipose tissue; therefore,
the markers cannot be placed accurately on the subjects (C-
Motion Wiki Documentation, 2019) and are prone to soft tissue
artefacts (Langley et al., 2019). Based on these markers, the
position of the pelvis is estimated; thus, the sources of error
propagate from marker positioning to the computation of the
kinematics of the segment. The improvement of the register of the
pelvis during 3DGA is out of the scope of this article, but the
issues for precisely estimating the position of the pelvis during a
3DGA are common to any capture, and therefore it is a limitation
present in any 3DGA, and not only applicable to the calculation
of the GDI or the SCI-GDI. Although it is not stated in the work
by Schwartz and Rozumalski (2008), in their Figure 2 it seems
they identified similar difficulties in achieving precise pelvic
representations. On the contrary, kinematics in the sagittal
plane for the knee, hip, and ankle have more precise
reconstructions in the three examples. The angles that are
better reconstructed might be more useful in attempts to
derive indexes that use less variables than the nine used in
the GDI.

In other respects, the comparison between the SCI-GDI and
the WISCI II scale showed the stratification expected in levels
13 to 20 and in the control group, except in level 18 (see
Figure 3), similarly to the results obtained when using the GDI
(Sinovas-Alonso et al., 2022). Nevertheless, an important
difference is that only in the SCI-GDI, levels 15 and 16
showed a statistical difference, unlike in GDI (see Table 3).
Therefore, the SCI-GDI provides a better discrimination of
more WISCI II levels when compared to the GDI. The new
index managed to discriminate all the levels comprised in the
dataset except for 12 and 18, which have few data, especially
level 12. Therefore, the SCI-GDI provides a good
discrimination of most WISCI II levels between 13 and 20.
We hypothesize that level 18 is hard to discriminate first
because there are few data in this level, and second because
it indicates the use of braces to improve functionality, which
blocks differently hip, knee, and ankle joints, depending on the
nature of the orthosis, imposing a less-physiological gait
pattern. Asking a patient who usually uses braces to walk
without them, even in short distances like during a 3DGA,
increases considerably the difficulty of the task, highlighting
the impairment of gait with respect to the normal pattern. That
might be why impairment as measured by the GDI is increased
in level 18 with respect to level 16, and that does not include
the use of braces but the use of crutches that affect mostly gait
kinetics instead of kinematics. Moreover, the strong, positive
correlation found between both scales (τB = 0.460) show that
they are related and measure gait impairment while at the same

time, with a τB value far from a perfect correlation,
representing different aspects of gait pathology.
Furthermore, the comparison between the GDI and SCI-
GDI demonstrated that both indexes are statistically
different (see Figure 4) for all the WISCI II levels analyzed
that include any type of walking assistance, supporting the
importance of using a gait deviation index derived from a
proper sample, in essence, a SCI adult population. Level 12 is
not analyzed in detail because it is poorly represented with
only two samples.

The results shown in Figure 4 indicate that walking
impairment is less penalized by the GDI when compared to
the SCI-GDI. This is congruent with the findings stated
previously in our work because if the CP basis covers a
smaller variance on gait patterns and provides low quality
reconstructions on SCI, the GDI calculated from a SCI gait
vector using this basis might be based on a poorer
representation of the original SCI vector and therefore, less
penalized than when the vector is better reconstructed and
includes the alterations present in the gait curves.
Furthermore, the similar patterns between both deviation
indexes across all WISCI II levels presented in Figure 4
and the strong linear correlation (r = 0.993) support that
our SCI-GDI represents the same aspects of gait impairment as
the GDI. The linear relationship between both indexes
presented in Figure 5 show clearly that in higher values of
GDI, the differences between GDI and SCI-GDI reduce. Thus,
the application of the GDI in SCI could provide misleading
information about the dimension of the gait impairment,
especially in patients with greater neurological damage.
Therefore, our SCI-GDI is more sensitive to larger gait
impairment than the GDI, but the difference between both
indexes reduces progressively towards normal gait. These
findings are congruent with the statistical differences found
between both indexes for all WISCI II levels except for level 20
(see Figure 4), corresponding to individuals that do not
require any assistance to walk. This makes sense because no
difference in the degree of gait impairment is identified in
subjects that do not need assistance to walk.

Our study had several limitations. First, as mentioned
before, even though the computation of the SCI-GDI basis
showed stable results, using a larger dataset would allow us to
verify that our results (number of features m, VAF and
reconstruction percentages) indeed remain independently of
the number of strides in the database. Other limitations
inherent to the SCI pathology is that due to the high
variability of gait impairment in SCI ,which depends on
several factors such as the neurological level of injury
(NLI), the severity of the injury according to the AIS and
the time since onset of injury, there is no topographic
classification of SCI to assess an ordinal level of gait
impairment, unlike other neurological pathologies such as
CP (Gage, 1991). Therefore, it is not possible to compare or
validate the SCI-GDI with neither the AIS nor the NLI. Even
though we only compared the SCI-GDI with the WISCI II due
to data availability, a more balanced distribution of the data
within the WISCI II levels was desirable. In this regard, our
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study lacks data of other gait tests or scales validated in SCI,
like the 6MWT, TUG, 10MWT, or BBS, to further validate the
SCI-GDI. Such validation will also reinforce the need of
developing specific GDIs for each condition instead of
implementing the pediatric CP-based GDI to several
populations without sufficient validation. Centers with gait
datasets from other pathologies than CP (Schwartz and
Rozumalski, 2008) and SCI (this work) can reproduce this
methodology to develop specific gait deviation indexes for
their specific pathologies.

In spite of these limitations, the SCI-GDI can be applied in any
person with a SCI regardless of the severity or neurological level
of injury, from 16 to 70 years old in both men and women. The
most important changes in gait kinematics occur during
adolescence, and gait is considered mature and steady
afterward, with few changes (Cupp et al., 1999). Children have
different gait kinematics than adults (Ganley and Powers, 2005)
that are constantly changing through ages, and in elderly, around
the age of 60–70, significant changes in gait are also reported
(Prince et al., 1997). In addition, after an SCI is chronic, changes
in gait are reduced mostly to those related to rehabilitation
outcomes and are covered by the data included in our dataset.
Likewise, the small differences in gait kinematics between men
and women that are mostly present in the frontal plane of the
pelvis and hip (Bruening et al., 2015) are not as conditioning as
the gait limitations after an SCI, allowing the application of the
SCI-GDI regardless of sex. We intentionally captured a wide
variety of gait data of SCI with different severity, neurological
level of injury, time since injury onset, sex, and age, to capture the
largest variety in gait patterns we had access to, and guarantee
that the SCI-GDI could properly represent any of these patterns.
This leads us to suggest the implementation of the SCI-GDI in
adults with SCI from 16 to 70 years old, using the electronic
addendum provided in the Supplementary Material.

5 CONCLUSION

The SCI-GDI is calculated using a 21-feature vectorial basis derived
from gait data of adult population with SCI, instead of the 15-
feature basis used for the original GDI. Our index has better
discriminative properties of more WISCI II levels than the
original GDI when applied to adults with SCI and conforms to
the stratification of gait impairment of the WISCI II scale. In
addition, the SCI-GDI is more sensitive to larger gait impairment
than the GDI, but its sensitivity decreases with less impaired gait
function. Indeed, the implementation of the original GDI in SCI
may lead to overestimation of gait function. The SCI basis also
allows building higher-quality reconstructions of gait curves when
compared to the original GDI basis. Although further validation of
the index with other scales used in SCI would be of interest, we
recommend its implementation in adults with SCI. It can be easily
computed using the electronic addendum provided in the
Supplementary Material.
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