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Within the last decade there have been several severe combined immunodeficient

(SCID) pig models discovered or genetically engineered. The animals have mutations

in ARTEMIS, IL2RG, or RAG1/2 genes, or combinations thereof, providing SCID pigs

with NK cells, but deficient in T and B cells, or deficient in NK, T, and B cells for

research studies. Biocontainment facilities and positive pressure isolators are developed

to limit pathogen exposure and prolong the life of SCID pigs. Raising SCID pigs in such

facilities allows for completion of long-term studies such as xenotransplantation of human

cells. Ectopically injected human cancer cell lines develop into tumors in SCID pigs,

thus providing a human-sized in vivo model for evaluating imaging methods to improve

cancer detection and therapeutic research and development. Immunocompromised pigs

have the potential to be immunologically humanized by xenotransplantation with human

hematopoietic stem cells, peripheral blood leukocytes, or fetal tissue. These cells can be

introduced through various routes including injection into fetal liver or the intraperitoneal

(IP) space, or into piglets by intravenous, IP, and intraosseous administration. The

development and maintenance of transplanted human immune cells would be initially (at

least) dependent on immune signaling from swine cells. Compared to mice, swine share

higher homology in immune related genes with humans. We hypothesize that the SCID

pig may be able to support improved engraftment and differentiation of a wide range of

human immune cells as compared to equivalent mouse models. Humanization of SCID

pigs would thus provide a valuable model system for researchers to study interactions

between human tumor and human immune cells. Additionally, as the SCID pig model

is further developed, it may be possible to develop patient-derived xenograft models

for individualized therapy and drug testing. We thus theorize that the individualized

therapeutic approach would be significantly improved with a humanized SCID pig due

to similarities in size, metabolism, and physiology. In all, porcine SCID models have

significant potential as an excellent preclinical animal model for therapeutic testing.
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INTRODUCTION

A new field of personalized medicine has been evolving over
the last decade, especially with respect to advances in
individualized cancer therapies, ranging from T cell and
NK cell immunotherapies, targeted monoclonal antibody
therapy, and newly developed small molecule drugs. As progress
is made toward the development of cancer therapies, it is critical
that preclinical animal models can dependably represent human
responses to drugs. Presently, mice are the most commonly used
model for preclinical animal drug trials (1). However, many
preclinical cancer drug trials that succeed in mice fail in humans
due to vast differences in physiology, metabolic processes, and
size (2, 3). The drug development process is intensive; on average,
12 years of research and $1–2 billion is required to bring a new
drug to market (4, 5). To maximize the efficiency of preclinical
drug and therapy testing, large animal models that better parallel
human physiology are needed.

Mice with severe combined immunodeficiency (SCID) are an
extremely versatile animal model for the field of cancer biology,
although they pose significant limitations. The ability to engraft
SCID mice with a human immune and/or cancer cell lines has
made them an invaluable model for research (6, 7). Although
mice are important for initial studies in different cancer fields,
they are often not good models for specific aspects of human
oncology (2, 8). Limitations of mouse models of cancer include
small size, difficulties in modeling human tumor heterogeneity
(9) and metabolic differences to humans (10, 11).

Large animal models can be more costly than murine studies,
thus murine studies remain valuable for first line screens.
However, testing in larger animal models is warranted to better
predict outcomes in human and should be used in follow-up
studies as an alternative animal model (12). Immunocompetent
and SCID pigs are now being developed for human disease
research purposes (13–18). Swine are more similar to humans
with respect to size, anatomy, genetics, and immunology,
therefore immunodeficient pigs may be a superior animal model
for preclinical testing of cancer therapeutics (19–21).

Within the last decade there have been numerous SCID pig
models created (16–18, 22–28) or discovered (29, 30). One of
the hurdles to working with SCID pigs is maintaining viability
due to susceptibility to disease. The use of positive-pressure
biocontainment facilities (31) and standard animal isolators
(27) have improved SCID pig health and viability. The ability
to house immunodeficient pigs in a controlled environment
increases their lifespan allowing them to be utilized for long-term
biomedical research. Pigs are comparable in size to humans, have

Abbreviations: SCID, severe combined immunodeficiency; IL2Rγ, Interleukin 2

receptor gamma; RAG, recombination activating gene; Hematopoietic stem cells,

HSCs; PBL, peripheral blood leukocytes; VDJ, variable, diversity, and joining;

TCR, T cell receptor; BCR, B cell receptor; DSB, double stranded break; NSG,

NOD-SCID-IL2Rγ; IP, intraperitoneal; IV, intravenous; TREC, T cell receptor

excision circles; GVHD; graft vs. host disease; BLT, bone marrow, liver, and

thymus; CAR, chimeric antigen receptor; CRS, cytokine release syndrome; PET,

positron emission tomography; MRI, magnetic resonance imaging; CT, computer

tomography; US, ultrasound; PDX, patient derived xenograft; CDX, cell derived

xenograft.

more similar metabolism to humans than mice (32, 33), and can
be transplanted with larger human tumors.

In this review we describe the different SCID pig models that
have been reported in recent years, as well as published methods
established to raise SCID pigs for use in long-term research trials
of 6 months or more. We describe the importance of human
tumor or cancer cell xenotransplantation and how researchers
can utilize immunodeficient pigs for translational studies relevant
to human patients. In addition to tumor xenografts, the SCID
pig has the potential to be engrafted with a human immune
system, or “humanized,” just as numerous SCID mouse models
have been humanized. While there is no published research on
the development of a humanized SCID pig, substantial progress
is being made toward this endeavor. We describe the different
methods of humanization that could be used in SCID pigs,
including fetal liver and intraperitoneal (IP) injections, as well
as intravenous (IV), IP, and intraosseous (IO) injection in piglets.
Despite the early developmental stage for humanized SCID pigs,
the SCID pig has vast potential to be utilized for translational
oncology. Our overarching hypothesis in this review is that
porcine SCID models will be more translational than mouse
models for oncology research in the future.

EXISTING SCID PIG MODELS

Previously Described and Generated SCID
Pigs
Within the last decade, numerous SCID pig models have
been developed through mutagenesis or discovery of natural
mutations. These SCID pig models are outlined in Table 1.
Figure 1 shows the genetic and molecular mechanisms for the
mutations described below that cause SCID, and Figure 2 shows
the differentiation step blocked by each of these mutations.

The first SCID pig was described in 2012 (13) after a
serendipitous discovery in an infection study (29). To confirm
the lack of a functional immune system, these SCID pigs were
transplanted with human cancer cell lines. Injected cells were not
rejected and developed into tumors in the SCID pigs (13). After
further analysis, it was found that the discovered SCID pigs had
two naturally occurring mutations in two separate alleles within
the Artemis (DCLRE1C) gene, which leads to SCID either in the
homozygous or compound heterozygous state (30).

Artemis is required for DNA repair during T and B
cell development. Specifically, during the process of VDJ
recombination, after RAG1/2 nucleases cleave DNA at the RSS
sequences flanking V, J (and sometimes D) segments (34), a
hairpin loop then forms at the end of the double stranded break
(DSB). Ku70/80 proteins are recruited to the area of the DSB
along with Artemis protein, which is responsible for cleaving
the hairpin loop so it can be ligated by Ligase IV (35). Without
functional Artemis, these hairpins are not cleaved, and functional
V, D, and J joins cannot be made. Lack of Artemis function leads
to a cellular profile in which T and B cells are deficient, but
NK cells develop (T− B− NK+) and are functional (29, 30, 36).
Homozygous or compound heterozygous Artemis pigs can be
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TABLE 1 | Previously described SCID pig models.

Mutation(s) Mutagenesis method Cellular phenotype Breed Rearing method Oldest age reported References

IL2RG Gene targeting vector T – B+ NK– Landrace × Large White Conventional housing 54 days (16)

ARTEMIS Natural T – B – NK+ Yorkshire Biocontainment bubble 6 months (29, 30)

IL2RG Zinc finger nuclease T – B+ NK– Cross bred Did not rear neonatal (18)

RAG 1/2 TALENs T – B– Bama miniature Conventional housing 29 days (22)

RAG 1 Gene targeting vector T – B– Duroc Did not rear neonatal (23)

RAG 2 TALENs T – B– NK+ Minnesota minipig Conventional housing 29 days (24)

IL2RG CRISPR/Cas9 T – B+ NK– Cross bred Conventional housing 12 days (17)

RAG 2 Gene targeting vector T – B – NK+ Cross bred Conventional Housing 12 weeks (25)

RAG 2 IL2RG CRISPR/Cas9 T – B – NK− Yorkshire cross breed Gn Isolator 34 days (26)

IL2RG Zinc finger nuclease T – B+ NK− Cross bred Isolator 103 days (18, 27)

ARTEMIS IL2RG Natural and CRISPR/Cas9 T – B – NK− Yorkshire Biocontainment bubble 18 days (28)

raised to 6 months of age in biocontainment facilities developed
at Iowa State University [31, unpublished observation].

Another SCID pig was also described in 2012 with an

engineered mutation within the IL2RG gene (16). In humans
and mice, the IL2 receptor γ (IL2Rγ) subunit is required for IL-

2, IL-4, IL-7, IL-9, IL-15, and IL-21 signaling (37). The IL2RG
gene is on the X chromosome in mammals and the receptor
is expressed on lymphoid cells, including developing cells. The
cytokines noted are required for proper lymphoid development,
and thus deletion of the IL2Rγ subunit disrupts development of T
and NK cells, and B cells to a variable extent (38, 39). The cellular
phenotype of these IL2RG knockout pigs was T− B+ NK−,
similar to humans (38, 39). B cells in IL2RG knockout SCID pigs
were not able to secrete immunoglobulin nor class switch due to
absence of helper T cells (16). Interestingly, cloned heterozygous
IL2RG+/− females exhibited SCID-like phenotypes, which was
attributed to aberrant X-inactivation. These females were raised
to sexual maturity and crossed withWTmales; female IL2RG+/−

offspring from this cross phenotypically resembled WT animals
(16). This finding emphasizes the importance of monitoring for
SCID phenotype status in cloned piglets even if the expected
outcome is a carrier animal. Other groups have also introduced
mutations in the IL2RG gene by CRISPR/Cas9 (17) and zinc
finger nuclease (18) methods, and the resulting pigs also
displayed cellular phenotypes of T−B+NK−. Animals in these
studies were raised in conventional settings and had lifespans that
ranged from 12 days to 7 weeks (16–18).

The recombination activating genes, RAG1 and RAG2, have

previously been mutated to create pig models. They code for
subunits of a nuclease (RAG1/2), that is involved in VDJ
recombination required for T and B cell receptor (TCR and
BCR, respectively) generation (40). Without functional RAG1/2
nuclease, VDJ recombination does not initiate, and T and B cells
do not develop (41, 42). Homozygous or biallelic RAG1 or RAG2
SCID pigs lacked IgM+ B cells and CD3+ cells in peripheral
blood (22, 23, 25). NK cells were present in these animals and
were classified as either CD3− CD8α+ (22) or CD16+ CD8α+

(25). RAG knockout pigs were generated with either TALENs
(22, 24), gene targeting vectors (25), or CRISPR/Cas9 (26)

mutagenesis methods. Previous RAG1 or RAG2 mutant SCID
pigs have been raised to 29 days (22, 24) to 12 weeks (25) of age
in conventional housing.

Once single mutant pigs were established, research groups
began to introduce mutations in both VDJ recombination
pathway genes (RAG1/2 or ARTEMIS) and IL2RG to produce
pigs that lacked innate and adaptive immune function, generating
T− B− NK−/lo SCID pigs (26, 28). Double-mutant pigs are
an important animal model to develop, as rodent models of
SCID mice lacking NK cells, as well as T and B cells, engraft
human cells better than T−B− NK+ models (43). It is therefore
of interest to generate a T− B− NK− SCID pig model for
humanization studies. In 2016, RAG2/IL2RG knock out piglets
were generated and used in pathogenesis study with human
norovirus (26). RAG2/IL2RG SCID pigs lacked T and B cells, and
there were decreased numbers of NK cells compared to controls.
The presence of some NK cells was attributed to a hypomorphic
mutation within IL2Rγ (26). Our group has recently engineered a
complete IL2RG knockout that was introduced into an ARTEMIS
null genetic background resulting in SCID pigs that lack T, B, and
NK cells (28).

Methods for SCID Pig Rearing
One of the difficulties to overcome when using SCID pigs
in research is maintaining animal viability. SCID pigs
raised in conventional settings typically succumb to disease
between 6 and 12 weeks of age [unpublished observation, 17].
Biocontainment facilities have been specifically designed to
limit exposure of Iowa State University’s ARTEMIS−/− SCID
pigs to any micro-organisms (Figure 3A). These rooms have
positive-pressure HEPA filtered air flow into a containment
bubble and all water entering the bubble is UV irradiated
and filtered through a 0.5µm filter. Personnel entering the
bubble wear appropriate garments to limit introduction
of organisms into the room, including room dedicated
protective suits, hair net, surgical mask, gloves and rubber
boots (31). Piglets are derived either by snatch farrowing
(caught in a sterile towel as they are delivered vaginally) or
by cesarean section and are transferred immediately into
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FIGURE 1 | Genetic and molecular mechanisms of Rag1/2, Artemis, and IL2Rγ in lymphoid development. Previous SCID pig models have been generated or

described with mutations in ARTEMIS, RAG1, RAG2, or IL2RG. (A) Rag1 and 2 are subunits of an endonuclease that cleave recombination signal sequences (RSS)

flanking V, D, and J gene segments. Cleavage of RSS sequences are required for the gene segments to be joined together. Non-functional Rag1 or 2 proteins cannot

cleave these sequences, therefore preventing T cell receptors (TCRs) and B cell receptors (BCRs) from forming. T cells and B cells cannot develop due to

non-functional TCR and BCR rearrangement. (B) Artemis is an endonuclease that is responsible for the cleavage of hairpin loops that form after Rag1 and 2 cleaves

RSS sequences. These hairpin loops must be cleaved in order for Ligase IV to ligate V, D, and J gene segments together. If Artemis is not functional, these hairpin loops

cannot be cleaved, which prevents TCR and BCR rearrangement. (C) IL2Rγ is a subunit required in the receptors for IL-2, IL-15, IL-4, IL-7, IL-9, and IL-21. Without

functional IL2Rγ, developing cells that require these cytokines for development (mainly T, B, and NK cells) are not receptive to cytokine signaling, which prevents

proper differentiation of T, B, and NK cells. (D) Pigs with mutations in both a VDJ recombination gene (RAG1/2 or ARTEMIS) and IL2RG lack T, B, and NK cells.

a sterilized bubble. Piglets are immediately fed pasteurized
colostrum for the transfer of maternal immunoglobulin (44),
fed sterile milk replacer for 21 days, and then transitioned
to irradiated feed, which is continued throughout life (31).
Specific pathogen-free (SPF) ARTEMIS+/− carrier females have
been raised to sexual maturity and are able to naturally farrow
ARTEMIS−/− SCID litters within the ISU bubble facilities
(Figure 3B). ARTEMIS mutant SCID pigs can be successfully
reared to 6 months of age in these facilities (unpublished
observation).

Survivability of previous IL2RG knock out pigs has varied
from 2 to 7 weeks (16) and derivation of animals and available
housing likely impacts outcome. Recently Hara et al. (27) used
small isolators and developed piglet delivery protocols to help
extend the lifespan of IL2RG knock out SCID pigs. To achieve this
goal, excised uteruses were brought into isolators units, piglets
were delivered, and reared within these isolators. One SCID
piglet raised in the isolators was raised to a planned endpoint
of 12 weeks of age without incidence of bacterial or fungal
disease (27).
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FIGURE 2 | Lymphoid development and relevant SCID pig mutations. Mutations in Artemis, RAG1/2, and IL2Rγ leads to SCID in pigs. Artemis and Rag1/2 are active

in Pro-B and -T cells during differentiation. IL2Rγ is required at an earlier stage of development than RAG1/2 and Artemis. NK cells and T cells both require cytokine

signaling through IL2Rγ early in differentiation. Mutations in IL2Rγ prevent differentiation of T and B cells. Mouse B cells appear to rely on IL2Rγ signaling more than

human and pig B cells. B cells can still develop in humans and pigs with mutations in IL2Rγ, although they are mostly non-functional due to the absence of helper T

cells.

FIGURE 3 | Biocontainment facilities for rearing SCID pigs. (A) Biocontainment facilities for the rearing of ARTEMIS−/− SCID pigs. (B) SPF female ARTEMIS+/−

carriers nursing 3 week old SCID and non-SCID piglets after naturally farrowing in biocontainment facilities.

SCID PIG CANCER
XENOTRANSPLANTATION STUDIES

Existing Immortal Cell Lines Develop Into
Tumors in SCID Pigs
Since the generation of SCID pigs is so recent, there are only a
few studies that have been published on the ability of SCID pigs
to accept human xenografts. The first SCID pig xenograft study
involved the transplantation of human melanoma (A375SM)

and pancreatic carcinoma cell (PANC-1) into the ear tissue of
ARTEMIS−/− SCID pigs (13). All SCID pigs receiving cancer
cells developed tumors at the site of injection, thus establishing
an orthotopic model of melanoma that could be studied further
(13). Additionally, the ability of ovarian carcinoma cell line
OSPC-ARK1 to develop tumors in ARTEMIS−/− SCID pigs was
explored. SCID pigs were injected in the ear and neck muscles
with OSPC-ARK1 cells and subsequently monitored for tumor
development. In 3 of the 4 SCID pigs injected, tumors developed
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within 30 days, with a shortest time of 7 days to palpable
tumors. Biopsy samples revealed the ovarian tumors in SCID pigs
expressed diagnostic markers commonly used in human cancer
diagnoses, and tumors in SCID pigs resembled human tumors
(45).

Pigs biallelic for RAG2 mutations can engraft human
induced pluripotent stem cells (iPSCs). Injected iPSCs developed
teratomas that represented endoderm, mesoderm and ectoderm
tissues (24). Teratomas were grossly visible 12 days after cell
inoculation for one recipient; and about 7.5 weeks in the other
recipient. Histological analysis revealed CD34+ and CD45+ cells
developed in the teratoma, (24), indicating that human immune
lineage can survive and differentiate in RAG2 knockout pigs. This
important finding indicates that SCID pigs can accept various
types of human xenografts. In a follow-up study, PERFORIN, and
RAG2 double knock out (Pfp/RAG2 dKO) mice and RAG2 knock
out pigs were compared for their ability to engraft human iPSCs.
The RAG2−/− pigs developed teratomas from injected iPSCs at
a higher rate than the Pfp/RAG2 dKO mice. Human teratomas
that developed in the RAG2 knockout SCID pigs also had a
higher prevalence of CD45+ and CD34+ cells in the teratoma
than in SCID mice (46). Thus, the in vivo environment in pigs
supports the growth and differentiation of human cells, and in
some instances, is an improved system over SCID mice.

PORCINE IMMUNOLOGICAL
SIMILARITIES TO HUMAN

Several aspects of the pig immune system are more similar
to humans than mice, providing another advantage of swine
models for research (39). Humans and pigs have higher sequence
orthology for immune-related genes (termed the “immunome”)
than humans and mice (20). Immunome-specific gene family
expansions, a measure of evolutionary divergence, have occurred
in pig relative to human at half the rate detected in mouse or
cow (20), and pigs have significantly fewer unique genes not
found in humans when compared to unique gene abundance
in cow or mouse (Figure 4). Additional analyses have further
expanded human and pig similarities, although absence of two
inflammasome gene families have also been found uniquely in the
pig genome (47). As well as immunome structural similarities,
immune responses are highly comparable between human and
pig [reviewed in (41)]. For example, the transcriptomic response
to lipopolysaccharide of pig macrophages in vitro is more similar
to human responses as compared to mice. Specifically, clusters
of genes with IDO1 as hub were detected in human and pig
macrophage responses, but not in mice, while a NOS2A-related
gene cluster was only found in the mouse macrophage LPS
response (48).

Human hematopoietic stem cell (HSC) development in swine
for humanizing pigs will be dependent on swine cytokine
signaling. Hence, it is important to determine the cross reactivity
of porcine cytokines with human cells. Protein sequence
analysis shows that swine share more homology in cytokines
involved in hematopoiesis with humans than mice (Figure 5;
Supplemental Table 1), which suggests that certain human

FIGURE 4 | Swine have fewer unique immunological genes compared to

humans than do mice. A comparison of the number of unique immunological

genes was compared between humans, mice, cows, and pigs. Pigs have 2

times less unique genes, while mice have 4.7 times more unique genes

compared to humans [Reprinted from Dawson et al. (20); Figure 1].

lineages may differentiate with greater success in SCID pigs than
in SCID mouse models.

ROUTES FOR HUMANIZATION AND
APPLICATIONS

Given the high similarity of swine and human immune genes, we
would anticipate that human HSCs transferred into SCID pigs
would successfully engraft and differentiate into representative
human immune cell types. Current building of swine SCID
models relies heavily on translating methods used for mouse
humanization to generate new humanized SCID pig models.
To humanize the mouse, three different approaches are utilized
(6, 7). These methods include transfer of purified human CD34+

stem cells, peripheral blood leukocytes (PBLs), or transfer of fetal
bone marrow, liver, spleen, and lymph node tissues. Just as in
SCIDmouse models, these same approaches and cell types can be
investigated as methods to humanize SCID pigs. The pig immune
signaling molecules that support engraftment are expected to be
similar to humans, thus we expect successful development of
human immune cells.

Currently the NOD-SCID-IL2Rγ (NSG) knockout mouse is
the gold standard model for humanization. The Sirpa allele in
the NOD background contains polymorphisms that allow the
encoded Sirpa protein to bind to human CD47, which then sends
a inhibitory signal that prevents phagocytosis of human cells
(49, 50). Swine SIRPA also binds to human CD47 (51), so we
speculate that porcine SIRPA-dependent phagocytosis of human
cells would not be a barrier to SCID pig humanization.

The following sections describe previous humanization
methods performed in SCIDmice and other large animal models,
and how these methods can be utilized to humanize SCID pigs.
Figure 6 shows an overview of different human immune cell
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FIGURE 5 | Amino acid sequence comparisons in hematopoietic cytokines for pig and mouse compared to humans. Amino acid sequences for relevant

hematopoietic cytokines and other ligands were acquired from Ensembl (https://useast.ensembl.org/index.html). The percentage of matching sequence between

humans to pigs and mouse is shown above. Porcine shares higher sequence similarity to humans for a majority of hematopoietic cytokines compared to mice.

Supplemental Table 1 shows the accession numbers from the sequences that were compared.

types and anatomical injection sites for SCID pig humanization.
Past studies utilizing injection of humanHSCs or human induced
pluripotent stem cells into large animal models are presented in
Table 2.

CD34+ Cell Injection via Fetal Liver and
Intraperitoneal Space
Successful humanization of SCID pigs will require that human
HSC be injected into sites of hematopoiesis in the pig. During
gestation the initial location of hematopoiesis is the yolk
sac (58). As gestation continues, the fetal liver becomes the
site of hematopoiesis, typically around the beginning of the
second trimester (59–63). During swine gestation, hematopoiesis
begins at day 30 in the fetal liver (62). Intrauterine injection
of human hematopoietic cells during the fetal liver phase of
hematopoiesis would provide a rich environment for human
stem cells to engraft and differentiate (64), as supporting cells in
the fetal liver niche express c-Kit, CD34, CXCL12, and NOTCH
(59). Additionally cell subsets in the fetal liver can promote
hematopoiesis, such as CD34lo CD133lo cells that have been
described in human (65). Differentiated human cells that develop
in the SCID pig liver may also migrate to the bone marrow
around the same time as other developing swine immune cells,
which may increase the ability of human immune progenitors
to engraft within the SCID pig bone marrow. Fewer human
cells would be required for the fetal liver injection strategy
when compared to the number of cells required to engraft a
fully developed piglet. Taken together, we hypothesize that fetal
injection of human hematopoietic stem cells will likely lead to
the highest levels of engraftment compared to other methods
described in later sections.

The first study involving in utero injection of human cells into
a large animal was performed by Zanjani et al. (52). Human fetal

liver cells were injected into the IP space of fetal sheep at days
48–54 gestation (145 day term) through the uterine wall. The
recipient sheep were immunocompetent, but pre-immune at this
stage of development. Two of the derived sheep were raised to
15 months of age, and human CD3+, CD16+, and CD20+ cells
were still in circulation, albeit at very low frequencies (52). Other
studies involving the transplantation of human CD34+ cells in
the fetal liver of pre-immune sheep have resulted in similarly low
levels of human cell engraftment and differentiation (55, 57).

In addition to sheep, in utero injection of human CD34+ cells
have been performed in pre-immunocompetent conventional
pigs. The first was described in 2003 (53) with the injection
of cord blood derived CD34+ cells into the IP space of pre-
immune fetal piglets at ∼40 days of gestation (114 day term).

Populations of human CD3+ cells were detected in the thymus,

CD19+ cells and myeloid cells also developed de novo in the pig,

in as short as 40 days post-injection. Additionally, human CD34+

CD45+ cells were isolated from pig bone marrow 120 days after

transplantation and were subsequently transplanted into SCID
mice with successful engraftment of human cells observed. This

result indicates that the pig bone marrow environment is able to

support the development of functional human HSCs (53).
Humanization of pigs could serve as a source of human T

cells for immunotherapeutic use. Ogle et al. (56) depleted CD3+

cells from human bone marrow or cord blood and injected into
the IP space of fetal piglets at 40–43 days of gestation. Human
T, B, macrophages, and NK cells were detected in peripheral
blood of piglets using RT-PCR by amplification of CD3, CD19,
CD14, and CD16/CD56, respectively. In order to determine if
the human T cells had developed de novo, blood was analyzed for
the presence of human T cell receptor excision circles (TREC).
Human TRECs were observed at a level that suggested new
human T cells had developed in the swine thymus (56). Similar,
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FIGURE 6 | Cell types and routes of injection for SCID pig immunological humanization. Swine can be injected with human cells at two different developmental

stages. During gestation, fetal piglets at ∼40 days of gestation can be injected with human CD34+ stem cells within either the liver or intraperitoneal space via

ultrasound guidance. Newborn piglets can also be injected with human CD34+ stem cells through either intravenous or intraosseous routes. PBLs can also be

injected via intravenous injection. Fetal tissues including bone marrow, liver, thymus, or spleen can be transplanted within the abdomen, potentially under the kidney

capsule as is done with SCID mice.

TABLE 2 | Previously described human stem cell injection studies in swine and sheep.

Large

animal

Type of human cells injected Number of cells

injected

Age and injection site Human cell type(s)

that differentated

References

PI sheep Fetal liver cells 0.2–1 × 1010/kg Fetal peritoneal cavity T, B, NK, myeloid, erythroid (52)

PI pig CD34+ cells from cord 0.5–3 × 106 Fetal intraperitoneal cephalad space T, B, NK, Myeloid (53)

PI pig T cell depleted bone marrow 5 × 107 (5 × 109/kg) Fetal peritoneal cavity B (54)

PI sheep CD34+ cells from bone marrow 3.6 × 106 Fetal peritoneal cavity T, B, myeloid,dendritic cells, erythroid (55)

PI pig T cell depleted bone marrow or cord blood 5 × 107 (5 × 109/kg) Fetal peritoneal cavity T, B, NK, myeloid (56)

PI sheep ESC-derived CD34+ 3 × 106 Fetal peritoneal cavity T, B, NK, Monocytes, neutrophils (57)

SCID pig iPSCs 5–10 × 106 Piglet ear and lateral flank CD34+, CD45+ (24)

SCID pig iPSCs 10 × 106 Piglet ear and lateral flank CD34+, CD45+ (46)

PI, Pre-immunocompetent; ESC, embyronic stem cells; iPSC, induced pluripotent stem cells.

studies were performed in which fetal swine were injected with
human T cell depleted bone marrow (54) or T cell depleted cord
blood (66), in which human cell engraftment was observed. In all,
these studies show that human T cells can develop de novo when
human HSC are injected into fetal swine.

Successful engraftment of SCID pigs utilizing in utero
injections requires consideration of timing and surgical
procedures. We hypothesize that a humanized SCID pig could
be developed via in utero injection of human CD34+ cells within
the fetal liver or IP space at ∼40 days of gestation. We have
described detailed laparotomy protocols that can be followed for
procedures involving stem cell injection into fetal IP space and
livers [(67); Figure 7]. The level of human cell hematopoiesis in a
SCID pig model has yet to be determined, however it is expected
that engraftment would be comparable to that described for
immunocompetent animals. Given the lack of pig immune cell
development in pigs with SCID, the available niches for human
progenitor cells to develop in the bone marrow and thymus
would be increased.

Peripheral Blood Leukocyte Injection via
Intravenous or Intraperitoneal Routes
In 1988, the first humanized mouse models were generated in
efforts to investigate the AIDS virus interaction with its human
host. One of these models described the injection of human PBLs
into the IP space of SCID mice (68). Mice were injected by the
IP or IV routes with 10–90 million human PBLs (termed hu-PBL
SCID mice). IV injection was deemed ineffective in mice, likely
due to the difficulty of proper IV administration in a mouse.
Human cells injected IP in mice were able to migrate to the
spleen, lymph nodes, and were also detected in peripheral blood;
4 weeks post IP injection very few human PBL were detected in
the peritoneal space. Mice were vaccinated with tetanus toxoid,
which PBL donors were known to be immune. Eight of 10
animals injected with PBLs produced human immunoglobulin
against tetanus toxoid which supported that human helper T
cells and B cells were functional in the hu-PBL SCID mice.
Human CD14+ monocytes were also present in the spleens of
mice 8 weeks post transplantation (68). These hu-PBL SCID
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FIGURE 7 | In utero injection of fetal intraperitoneal space via laparotomy. (A) Exteriorized uterus at 40 days gestation being ultra-sounded for fetuses. Water soluble

marker can be used for marking fetuses. (B) Ultrasound image of fetal liver with which human CD34+ stem cells would be injected.

mice are utilized in a variety of different fields including HIV
(69–71), cancer (72, 73), basic immunology (74, 75), and atopic
dermatitis (76).

Hu-PBL-SCID pigs could be generated by IV or IP injection
of human PBLs into SCID pigs. IV injection of human cells
have been deemed ineffective for engraftment in mice. However,
tail veins are typically used in mice, which are difficult to
properly inject. Piglets have large and visible ear, cephalic,
and saphenous veins that are easily accessible. A limitation of
human PBL injections in pigs could be the amount of cells
required relative to the number of cells injected into mice.
Mice are typically 20 g (0.02 kg), while a typical newborn piglet
weighs about 1–2 kg. In previous studies, the minimum amount
of human PBLs injected into mice is about 10 million cells,
which scales up to 0.5–1 billion in a piglet. However, there are
strategies to overcome the cell number limitation. One source
for human PBLs could be leukoreduction system chambers
(LRSCs), which are utilized by blood banks to remove PBLs
during plateletpheresis. During a normal collection of platelets
from a donor, ∼2 billion PBLs can be obtained from LRSCs
(77). Another approach is matching a human with a SCID pig
and performing repeat PBL injections from the same human
donor. Also, it is possible that the number of human PBLs
required for successful engraftment of SCID pigs would not be
as high as calculated from murine studies. Given that methods to
obtain large numbers of PBLs are available, the number limitation
is not expected to prevent development of a hu-PBL-SCID
pig.

One consideration for using a SCID pig injected with human
PBLs is that these animals will eventually develop graft vs. host
disease (GVHD). SCID mice injected with human PBLs develop
GVHD ∼3–11 weeks after injection (78) while it takes 14–16
weeks in SCID rats (79). It is currently unknown how long it
would take SCID pigs to develop GVHD after human PBL cell
transplantation, as well as how the cellular dose would impact
the GVHD time frame. This is a question that will need to
be addressed as this model is developed. Another important
question that will need to be addressed in developing this model

is the time period required for human PBL engraftment within
the SCID pig.

One benefit of the PBL model is that it could be used
for short term studies in SCID pigs. SCID pigs raised in
conventional settings can typically survive to 6 weeks of age.
If piglets are injected with human PBLs shortly after birth (1–
5 days), this would give researchers ∼a 6 week window to
perform experiments. It may also be appropriate to administer
immunosuppressive drugs during this period of time to reduce
the effects of GVHD.

CD34+ Cell Injection via Intraosseous or
Intravenous Routes
Another route for humanization is through the injection of
purified human CD34+ HSCs into live-born piglets. We have
previously performed bone marrow transplantations (BMT) on
our SCID pigs through IV injection of unfractionated pig bone
marrow cells (80). One hypothesis is that human HSC could
be administered in the same way to generate a humanized
SCID pig. Typically in pig to pig bone marrow transplants, it
takes ∼10 weeks to observe a moderate increase in the number
of circulating porcine lymphocytes (80). We hypothesize that
human engraftment and de novo development of human cells
would require at least 10 weeks to observe human cells in
circulation based on pig to pig BMT observations. It may be of
value to compare cell dosages and engraftment rates of human
and pig HSC in SCID pigs. IV injection of human HSC is much
less invasive than fetal injections, however it may take longer to
achieve engraftment and differentiation of human cells.

Another method of human HSC administration is through
intraosseous (IO) injection. IO injection of stem cells and
mesenchymal stem cells have previously been performed in
SCID mice (81), dogs (82, 83), and pigs (84). IO injection is
also a method for bone marrow transplantation in humans
(85). It is hypothesized that IO injections are preferable over
IV injections due to stem cell trapping in pulmonary tissue,
which is often observed in IV injections (86, 87). In addition,
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IO administration introduces cells to the site within which they
would differentiate. Protocols have also been developed for the
delivery of various substances though IO injection in swine
(84, 88, 89). IO injection of human CD34+ cells into SCID pigs
is therefore another potential route for studying engraftment and
humanization models.

Implantation of Human Fetal Bone Marrow,
Thymus, and Liver Tissues
Another potential method for humanization of SCID pigs is
through the transplantation of human fetal liver, thymus, lymph
node, and spleen tissue, as has been previously performed inmice
(90). Such human lymphoid tissues can be transplanted into mice
either by implantation under the kidney capsule or IV injection
of a cellular suspension.Mice transplanted with human lymphoid
tissues appear to have immunological protection, as the lifespan
of transplanted mice can be extended to 17 months, compared
to 4 months for non-transplanted mice. Mice injected with both
human thymic and fetal liver cells developed human T and
IgG secreting B cells (90). The chimeric mice with human bone
marrow, liver and thymus (BLT) are used to study interactions
between human immune cells and patient derived melanomas
(91).

De novo development of human T cells within the pig
requires that human T cells can differentiate within the swine
thymus. Transplantation studies show that the porcine thymus
supports human T cell development, as mature human T cells
develop in athymic mice transplanted with porcine thymus and
human HSCs (92, 93). Human T cell development within the
swine thymus is particularly important for long term studies
because this would allow newly differentiated human T cells to
develop tolerance to pig antigens. Human thymic tissue could
also be transplanted into SCID pigs for human HLA restricted
T cell development. Development of GVHD is observed in
mice humanized with fetal bone marrow, liver, and thymic
tissue (94), potentially due to human thymus dependent T cell
development. Depending on the experimental question being
addressed, transplantation of a human thymusmay be a preferred
method in humanizing SCID pigs.

One issue with generating BLT humanization models is the
limited fetal tissue availability, as well as ethical implications.
Smith et al. described a way to circumvent these issues by
propagating and expanding BLT tissues in one mouse and then
transplanting into 4–5 other mice (95). SCID pigs could be useful
in this regard as human tissues would have the potential to grow
to a large enough size that they could be transplanted again into
a second set of animals.

FUTURE OUTLOOK ON THE UTILIZATION
OF SCID PIGS FOR CANCER THERAPIES
AND RESEARCH

Humanized SCID Pigs for CAR-T and
CAR-NK Cell Therapy Research
Chimeric antigen receptor (CAR) T and NK cells have been
developed in recent years as a cancer immunotherapy. CAR-T

cells targeted against CD19 for patients with B cell lymphomas
and leukemias (96) have been approved by the FDA for
therapeutic use (97, 98). One of the issues associated with CAR-
T cells is that they can persist and be activated for long periods
of time in the body, causing cytokine release syndrome (CRS).
Symptoms of CRS manifest as fatigue, fever, nausea, cardiac
failure, among other symptoms (99). CAR-NK therapies are
being developed to overcome some of the issues associated with
CAR-T cell therapy. Protocols have been developed to isolate NK
cells from cord blood and expanded for use in patients. NK cells
do not persist for long periods of time in vivo after infusion (100),
do not cause GVHD, and can recognize tumor targets through
intrinsic receptors (101). If SCID pigs can successfully develop
human NK cells de novo, humanized SCID pig blood could be a
source of NK cells. Six month old ARTEMIS−/− Yorkshire SCID
pigs are ∼85 kg (personal observation), and thus according to
IACUC guidelines, up to 1.2 L of blood could be collected for
human NK cell isolation and used for CAR therapy research.

We envision several applications for a hu-PBL SCID pig
in testing cell-based immunotherapies. As more CAR therapy
targets are generated, it may be possible to test their efficacy
and safety in a humanized SCID pigs that are xenografted with
a human tumors. Other CAR therapies that are currently under
development are CAR-T cells targeting CD20 (102), CD30 (103),
CD33 (104), CD7 (105), and CAR-NK cells targeting CD33 (106)
and CD19 (107). In addition, as the field of precision medicine
continues to grow, a patient’s tumor could be xenografted into
a SCID pig and a therapy could be tested. Tumors in SCID pigs
could be grown to a comparable size to those found in humans
and would therefore be amore representative model compared to
the limited size of tumors in mouse models. Similar, studies have
been performed in hu-PBL-mice, in which interactions between
human thyroid tumors and PBLs were studied (108).

Improving Targeting Imaging Techniques
Pigs are an excellent animal model for surgical and clinical
imaging research. Due to their larger size, techniques that are
used for humans in the clinics (PET, MRI, CT, US) can also be
readily adapted for use in swine. There are immunocompetent
pig models of cancer that exist with inducible mutations in p53
(15, 109, 110) and KRAS (111). Pigs with inducible tumors have
previously been imaged with CT and MRI, which is proof of
concept that these imaging techniques can be performed on pigs
(110).

There are also practices that involve targeted imaging of
tumors using small peptides and molecules. SCID mice have
previously been used for such studies for ovarian (112),
nasopharyngeal, breast (113), hepatic (114), lung cancer (115),
and others. SCID mice are useful animal models for proof
of concept studies that certain molecules and peptides can
specifically bind to certain tumor types. After preliminary testing
has been completed in mice, SCID pig models engrafted with
human cells could then be used for testing these targeting
techniques with respective imaging equipment that would be
used in the clinics. As an example, human ovarian carcinomas
expressing high levels of Claudin 3/4 expression will grow in
SCID pigs (45). A Clostridium perfringens enterotoxin (CPE)
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peptide can specifically bind to Claudin 3/4 (112, 116), and such
a SCID pig ovarian cancer model can be used as an imaging
and therapeutic target of the CPE peptide in targeting ovarian
carcinomas in such a way that it is translatable to human
patients.

Development of Patient Derived Xenograft
Models in SCID Pigs for Personalized Drug
Testing
Since SCID pigs have previously been shown to accept xenografts
of human cancer cells (13), as well as pluripotent stem cells
(24, 46), it would be expected that they would also accept solid
tumor tissues as well. Patient derived xenograft (PDX) and cell
derived xenograft models have previously been utilized in SCID
mouse models for patient specific drug testing (117). SCID pig
models can also be developed for these purposes. Due to higher
similarity in metabolism between humans and pig (32) compared
to mice, drug responses in the pig would likely lead to more
directly comparable responses to those that would be found in
humans (33). Additionally, the size of the pig would also allow
representative drug doses to be tested that could be applied to
future doses for human patients.

CONCLUDING REMARKS

Here we have described many of the novel uses of SCID pigs
in oncology research involving the use of xenotransplantation
of human tumor tissues, HSCs, and lymphoid tissues. The full
potential of these animals will be realized when biocontainment
facilities are more readily available and survivability of SCID pigs
improved. Additionally, dissemination of handling protocols will
be essential to prolonging the lives of these animals for long-term
studies.

Research groups generating SCID pigs are at the forefront of
creating a new animal model that can be used for translational
preclinical research. We have learned an incredible amount of
information by use of small animal mouse models for cancer
research. However, in order for therapies to be developed and
tested thoroughly, they now need to be evaluated in a larger
animal model that better represents human disease states and
which can provide realistic opportunities for improved modeling
of imaging and surgical approaches. As such, we believe that
SCID pigmodels will provide a foundation for researchers to gain
valuable and translational results to improve patient outcomes in
a clinical setting.
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