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There is a need to identify biomarkers predictive of response to neoadjuvant

chemotherapy (NACT) in triple-negative breast cancer (TNBC). We previously obtained

evidence that a polyamine signature in the blood is associated with TNBC development

and progression. In this study, we evaluated whether plasma polyamines and other

metabolites may identify TNBC patients who are less likely to respond to NACT.

Pre-treatment plasma levels of acetylated polyamines were elevated in TNBC patients

that had moderate to extensive tumor burden (RCB-II/III) following NACT compared to

those that achieved a complete pathological response (pCR/RCB-0) or had minimal

residual disease (RCB-I). We further applied artificial intelligence to comprehensive

metabolic profiles to identify additional metabolites associated with treatment response.

Using a deep learning model (DLM), a metabolite panel consisting of two polyamines as

well as nine additional metabolites was developed for improved prediction of RCB-II/III.

The DLM has potential clinical value for identifying TNBC patients who are unlikely to

respond to NACT and who may benefit from other treatment modalities.

Keywords: triple-negative breast cancer, biomarkers, artificial intelligence, deep-learning model, neoadjuvant

chemotherapy, prediction

INTRODUCTION

Triple-negative breast cancer (TNBC) accounts for ∼15–20% of breast cancers and represents
a heterogeneous subtype characterized by high pathological grade, strong invasiveness, local
recurrence, highmetastasis rate, and poor prognosis (Foulkes et al., 2010). TNBCs are defined based
on the lack expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal
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growth factor receptor type 2 (HER2) and are thus not
amenable to endocrine therapy or therapies targeted to the
HER2 receptor type (Foulkes et al., 2010). Chemotherapy
remains the mainstay of systemic treatment, typically consisting
of anthracycline and taxane-based chemotherapy regimens
(Foulkes et al., 2010; Bianchini et al., 2022). Platinum-
based neoadjuvant chemotherapy has been shown to increase
pathological complete response (pCR) rates compared to
platinum-free neoadjuvant chemotherapy. However, platinum-
based treatment is associated with higher rates of toxicity
and treatment discontinuation, and the optimal integration
of platinum-based agents remains controversial (Poggio et al.,
2018). The addition of immunotherapy has shown promise with
recent Phase III clinical trials demonstrating that the addition of
the anti-PD-L1 inhibitor atezolizumab or the anti-PD1 inhibitor
pembrolizumab with chemotherapy improved pCR compared to
chemotherapy alone in patients with TNBC (Schmid et al., 2018,
2020).

In the curative neoadjuvant setting, a pCR after neoadjuvant
chemotherapy (NACT) in TNBC is associated with improved
long-term survival yielding estimated 10-year relapse survival
rates of 86% (Symmans et al., 2017). However, up to 60% of
patients will have residual disease after receiving standard NACT
and are at an elevated risk of poor outcome, with reported 10-
year estimated relapse survival rates of 81, 55, and 23% for TNBC
patients with a residual cancer burden (RCB) index of I, II,
and III, respectively (Huober et al., 2010; Symmans et al., 2017;
Schmid et al., 2020). Currently, there is a paucity of biomarkers
that can reliably identify TNBC patients that will have poor
response to NACT.

Polyamines, including putrescine, spermidine, and spermine,
are polycationic alkylamines that are essential for eukaryotic
cell growth. Dysregulation of polyamine metabolism is frequent
in cancer and polyamines have been reported to play central
roles in neoplastic transformation and tumor progression (Park
and Igarashi, 2013; Casero et al., 2018; Chia et al., 2022).
We previously obtained evidence that increased plasma levels
of the acetylated polyamine diacetylspermine (DAS) in TNBC
was prognostic for poor progression-free survival and overall
survival. Specifically, we found that elevated levels of plasma DAS
to be prognostic for worse 5-year metastasis free survival and
poor 5-year overall survival in newly-diagnosed treatment naïve
TNBC patients (Fahrmann et al., 2020).

Here, we tested the utility of plasma polyamines for
identifying subjects who will be insensitive to NACT as part
of a comprehensive plasma metabolomics profiling. We further
applied artificial intelligence to plasma metabolic profiles and,
using a deep-learning model (DLM), established a metabolite
biomarker panel consisting of two polyamines as well as nine
additional metabolites for prediction of response to NACT.

MATERIALS AND METHODS

Specimen Sets
Patients with stage I–III TNBC enrolled in the prospective,
Institutional Review Board (IRB)-approved, clinical study, “A
Robust TNBC Evaluation framework to Improve Survival”

TABLE 1 | Patient and tumor characteristics.

TNBC
†
cases Controls

N 88 167

Age, mean +/– SD 50 +/– 11 58 +/– 9

Stage, N (%)

I 9 (10) –

II 64 (73) –

III 15 (17) –

RCB status, N (%)

0 48 (55) –

I 14 (16) –

II 21 (24) –

III 5 (6) –

†
All TNBC patients received NACT; plasma samples were collected pre-treatment.

TNBC, triple-negative breast cancer; RCB, Residual Cancer Burden.

(ARTEMIS, NCT02276443), were included in this study.
Briefly, the ARTEMIS trial included treatment-naïve patients
with localized TNBC (stage I-III) that underwent a pre-
treatment ultrasound with biopsy following by 4 cycles
of Adriamycin-cyclophosphamide (AC) chemotherapy. The
outcome of the molecular characterization from the pre-
treatment biopsy in combination with response assessment
(clinical exam/diagnostic imaging, after 4 cycles of AC) were used
to identify chemotherapy-insensitive disease and to inform the
second phase of neoadjuvant therapy. Patients deemed to have
chemo-sensitive disease after 4 cycles of AC (≥70% volumetric
reduction by ultrasound after 4 cycles of AC) were recommended
to undergo standard paclitaxel-based chemotherapy as the
second phase of their NACT consisting of 4 cycles or weekly for
12 doses. Patients with TNBC predicted to be chemo-insensitive
(≤70% volumetric reduction by ultrasound after 4 cycles of AC)
were offered therapy on clinical trials using targeted therapy in
combination with chemotherapy based on the specific molecular
characteristics of their tumor as the second phase of their therapy
with dose regimens varying depending on therapy. Response to
neoadjuvant therapy was determined using the residual cancer
burden (RCB) index (Symmans et al., 2007). The specimen set
consisted of pre-treatment EDTA plasma from 88 patients who
received standard-of-care NACT; 62 of the 88 patients had a
second plasma sample available after four cycles of AC. Detailed
patient and tumor characteristics are provided in Table 1.

EDTA plasma from cancer-free women (n = 167) were
obtained from the MD Anderson Cancer Center (MDACC)
Longitudinal High-Risk Cohort initiated September 1st,
2011, for the prospective follow-up of cancer-free high-
risk women seen in the MDACC Cancer Prevention
Center (IRB protocol LAB07-0086).

Immunohistochemistry
Immunohistochemical (IHC) staining for Ki-67 was performed
on unstained 4-µm-thick tissue sections that had been prepared
from a representative paraffin block of tumor in each case. IHC
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staining for Ki-67 was performed using the polymeric biotin-free
horseradish peroxidase method on the Leica Microsystems Bond
III autostainer (LeicaMicrosystems, Buffalo Grove, IL, USA). The
slides were incubated at 60◦C for 25min. Following heat-induced
epitope retrieval with Tris-EDTA buffer for 20min at 100◦C,
slides were incubated with mouse monoclonal antibody to Ki-
67 (clone MIB-1, Dako; 1:100). The Refine Polymer Detection kit
was used to detect bound antibody, with 3,3-diaminobenzidine
serving as the chromogen (Leica Microsystems). For Ki-67, the
percentage of any nuclear staining of any intensity in the tumor
cells was recorded.

Metabolomic Analysis
Sample Preparation
Plasma metabolites were extracted from pre-aliquoted
biospecimens (15 µL) with 45 µL of LCMS grade methanol
(ThermoFisher) in a 96-well microplate (Eppendorf). Plates
were heat sealed, vortexed for 5min at 750 rpm, and centrifuged
at 2,000 × g for 10 mins at room temperature. The supernatant
(30 µL) was transferred to a 96-well plate, leaving behind the
precipitated protein. The supernatant was further diluted with
60 µL of 100mm ammonium formate, pH3 (Fisher Scientific).
For Hydrophilic Interaction Liquid Chromatography (HILIC)
positive ion analysis, 15 µL of the supernatant and ammonium
formate mix were diluted with 195 µL of 1:3:8:144 water
(GenPure ultrapure water system, Thermofisher): LCMS grade
methanol (ThermoFisher): 100mm ammonium formate, pH3
(Fisher Scientific): LCMS grade acetonitrile (ThermoFisher).
For C18 analysis, 15 µL of the supernatant and ammonium
formate mix were diluted with 90 µL water (GenPure ultrapure
water system, ThermoFisher) for positive ion mode. Each sample
solution was transferred to 384-well microplate (Eppendorf) for
LCMS analysis.

Untargeted Analysis of Primary Metabolites and

Biogenic Amines
Untargeted metabolomics analysis was conducted on Waters
AcquityTM UPLC system with 2D column regeneration
configuration (I-class and H-class) coupled to a Xevo G2-
XS quadrupole time-of-flight (qTOF) mass spectrometer as
previously described (Fahrmann et al., 2019, 2020, 2021a,b).
Chromatographic separation was performed using HILIC
(AcquityTM UPLC BEH amide, 100 Å, 1.7µm 2.1 × 100mm,
Waters Corporation, Milford, U.S.A) and C18 (AcquityTM UPLC
HSS T3, 100 Å, 1.8µm, 2.1 × 100mm, Water Corporation,
Milford, U.S.A) columns at 45◦C.

Quaternary solvent system mobile phases were (A) 0.1%
formic acid in water, (B) 0.1% formic acid in acetonitrile and (D)
100mm ammonium formate, pH 3. Samples were separated on
the HILIC using the following gradient profile at 0.4 mL/min
flow rate: (95% B, 5% D) linear change to (70% A, 25% B and
5% D) over 5min; 100% A for 1min; and 100% A for 1min.
For C18 separation, the chromatography gradient was as follows
at 0.4 mL/min flow rate: 100% A with a linear change to (5%
A, 95% B) over 5min; (95% B, 5% D) for 1min; and 1min
at (95% B, 5% D).

A binary pump was used for column regeneration and
equilibration. The solvent system mobile phases were (A1)
100mm ammonium formate, pH 3, (A2) 0.1% formic in 2-
propanol and (B1) 0.1% formic acid in acetonitrile. The HILIC
column was stripped using 90% A2 for 5min at 0.25 mL/min
flow rate, followed by a 2min equilibration using 100% B1 at 0.3
mL/min flow rate. Reverse phase C18 column regeneration was
performed using 95% A1, 5% B1 for 2min followed by column
equilibration using 5% A1, 95% B1 for 5min at 0.4 mL/min
flow rate.

Mass Spectrometry Data Acquisition
Mass spectrometry data was acquired using ‘sensitivity’ mode
in positive and negative electrospray ionization mode within
50–800 Da range. For the electrospray acquisition, the capillary
voltage was set at 1.5 kV (positive), sample cone voltage
30V, source temperature at 120◦C, cone gas flow 50 L/h and
desolvation gas flow rate of 800 L/h with scan time of 0.5 sec
in continuummode. Leucine Enkephalin; 556.2771 Da (positive)
was used for lockspray correction and scans were performed
at 0.5 sec. The injection volume for each sample was 6 µL.
The acquisition was carried out with instrument auto gain
control to optimize instrument sensitivity over the samples
acquisition time.

Data were processed using Progenesis QI (Non-linear,
Waters). Peak picking and retention time alignment of LC-MS
and MSe data were performed using Progenesis QI software
(Non-linear, Waters). Data processing and peak annotations
were performed using an in-house automated pipeline as
previously described (Fahrmann et al., 2019, 2020, 2021a;
Vykoukal et al., 2020). Annotations were determined by
matching accurate mass and retention times using customized
libraries created from authentic standards and by matching
experimental tandem mass spectrometry data against the NIST
MSMS, LipidBlast or HMDB v3 theoretical fragmentations. To
correct for injection order drift, each feature was normalized
using data from repeat injections of quality control samples
collected every 10 injections throughout the run sequence.
Measurement data were smoothed by Locally Weighted
Scatterplot Smoothing (LOESS) signal correction (QC-RLSC) as
previously described. Values are reported as ratios relative to the
median of historical quality control reference samples run with
every analytical batch for the given analyte (Fahrmann et al.,
2019, 2020, 2021a; Vykoukal et al., 2020).

Statistical Analysis
A deep learning algorithm employing all quantified metabolites
with tuned hyperparameters using the grid search approach
(Candel et al., 2016) was run 20 times, and the relevance
importance score for each metabolite was calculated using
the Gedeon method (Gedeon, 1997). Metabolites were
prioritized based on consistently exhibiting a relative importance
score >0.5. Ten models, including deep learning, random
forest, ensemble learning and gradient boosting method
algorithms, incorporating eleven metabolites were assessed for
distinguishing responder/partial responders (RCB-0/I) from
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FIGURE 1 | Predictive performance of individual polyamines for distinguishing

treatment-naïve TNBC cases from healthy controls. Table beneath shows AUC

(95% CI), Wilcoxon rank sum test 2-sided P-values as well as sensitivity and

specificity estimates at 95% specificity/sensitivity thresholds of individual

polyamines for distinguishing TNBC cases from healthy controls.

non-responders (RCB-II/III). The predictability, reliability,
and stability of the models in the training set was evaluated
using a 5-fold cross validation as well as through introducing
perturbations (e.g., random sample selection with replacement)
to the dataset.

Model discrimination was assessed based on receiver
operating characteristic curve (ROC), as well as sensitivity and
specificity estimates. The 95% confidence intervals (CI) for AUCs
were estimated using the Delong method (DeLong et al., 1988).
All modeling was performed using the H2O package and R
statistical program (Candel et al., 2016).

RESULTS

Plasma Polyamine Levels in
Triple-Negative Breast Cancer
Using mass spectrometry, we first assessed polyamines
levels in plasmas from 88 newly diagnosed treatment-
naïve TNBC cases and 167 cancer-free women enrolled
in the MDACC Longitudinal High-Risk Cohort (Table 1).
A total of four polyamines, acetylspermidine (AcSpmd),
diacetylspermidine (DiAcSpmd), diacetylspermine (DAS), and
N-(3-acetamidopropyl)pyrrolidin-2-one (N3AP) were detected
and quantified. Of these, AcSpmd and DAS were statistically
significantly elevated (Wilcoxon rank sum test 2-sided p
< 0.01) in case plasmas compared to controls (Figure 1).
DAS exhibited the highest discrimination performance for
distinguishing all cases from controls with an AUC of 0.72
(95% C.I.: 0.64–0.79) (Figure 1).

Association of Polyamines With RCB
Status
All 88 TNBC patients were treated with AC in the neoadjuvant
setting. A subset of 62 (70.5%) had a complete pathological
response (pCR/RCB-0) or minimal residual disease (RCB-I)
following NACT, whereas 26 (29.5%) had a moderate to extensive
tumor burden (RCB-II and III) (Table 1). Pathological response
tended to be associated with tumor stage and % tumoral
Ki-67 staining positivity, albeit not statistically significant
(Supplementary Figure 1).

Elevated pre-treatment plasma levels of AcSpmd, N3AP,
DiAcSpmd and DAS were associated with higher odds of
RCB-II/III following NACT [adjusted ORs of 1.24 (95% CI:
0.76–2.04), 1.33 (95% CI: 0.79–2.46), 1.15 (95% CI: 0.71–1.85)
and 1.26 (95% CI: 0.71–1.91) per standard deviation increase,
respectively] (Table 2).

Applying Artificial Intelligence to Metabolic
Profiles to Develop a Combination Rule for
Prediction of RCB-II/III
Complementary to the four polyamines, untargeted
metabolomics analyses of these plasmas yielded an
additional 82 uniquely annotated metabolite features
(Supplementary Table 1). To prioritize metabolites associated
with response to NACT for model building, relative importance
scores were calculated using the Gedeon method (Gedeon,
1997) and metabolites were selected that constantly showed a
relative important score of > 0.5 (see Methods). This approach
resulted in 11 cancer-related metabolites, consisting of two
polyamines, two lipids, three amino acids, a purine catabolite,
and two indole-derivatives (Supplementary Table 2). Spearman
correlation analyses indicated low to moderate associations
between these metabolites (Supplementary Figure 2).

We next sought to develop a machine learning algorithm
that incorporated the eleven metabolites for predicting RCB-
II/III. For model building, we tested 10 different machine
learning algorithms (Table 3). Of these, a deep learning model
(DLM) with 3 hidden layers and 20 nodes in each layer
achieved the highest predictive performance with an AUC
of 0.97 (95% CI: 0.93–1.00) with 85% sensitivity at 95%
specificity for identifying RCB-II/III (Figure 2). Notably, the
DLM yielded an AUC of 0.76 (95% CI: 0.65–0.87) with 48%
sensitivity at 95% specificity for distinguishing TNBC cases
with residual disease (RCB-I/II/III) from those that achieved a
pCR (Supplementary Table 3). To assess model reproducibility
and stability, we introduced perturbation into the dataset (e.g.,
random selection with replacement) and re-evaluated model
performance, the results of which showed that the DLM was
robust (Supplementary Table 4).

We additionally assessed the predictive performance of the
DLM model using plasma samples collected during NACT from
a subset of TNBC patients (n = 62). The DLM model showed
an AUC of 0.74 (95% CI: 0.62–0.87) with 21% sensitivity at 95%
specificity for RCB-II/III (Figure 3).
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TABLE 2 | Performance estimates of polyamines for distinguishing RCB-II/III from RCB-0/I.

Polyamines AUC (95% CI) Sensitivity

@ 95% sen

Specificity @ 95% spec Odds ratio Adjusted Odds ratio
†

AcSpmd 0.59 (0.46–0.71) 0.12 (0.00–0.23) 0.19 (0.10–0.31) 1.34 (0.85–2.10) 1.24 (0.76–2.04)

N3AP 0.55 (0.42–0.68) 0.12 (0.00–0.27) 0.10 (0.02–0.32) 1.34 (0.86–2.26) 1.33 (0.79–2.46)

DiAcSpmd 0.54 (0.40–0.67) 0.08 (0.00–0.23) 0.08 (0.00–0.26) 1.15 (0.72–1.80) 1.15 (0.71–1.85)

DAS 0.58 (0.46–0.71) 0.15 (0.00–0.31) 0.24 (0.10–0.39) 1.39 (0.89–2.23) 1.26 (0.77–2.10)

Area under the Receiver Operating Characteristic Curve (AUC), sensitivity, specificity, odds ratios, and adjusted odds ratios estimates and corresponding 95% confidence intervals of

individual polyamines are shown. AcSpmd, acetylspermidine; N3AP, N-(3-acetamidopropyl)pyrrolidin-2-one; DiAcSpmd, diacetylspermidine; DAS, diacetylspermine.
†
age and stage

were included as covariables in adjusted odd ratios.

TABLE 3 | Performance of the different learning models in the training set.

Model Hyper parameters AUC Log loss AUCpr Mean per

class error

RMSE

Deep learning model Activation: Maxout, hidden

layers:3, number of nodes in

each layer: 20

0.97 0.396 0.62 0.249 0.339

Deep learning model Activation: Maxout, hidden

layers:2, number of nodes in

each layer = 1

0.86 0.412 0.61 0.268 0.385

Deep learning model Activation: Tanh, hidden

layers: 1, number of nodes

in each layer = 3

0.78 0.429 0.60 0.283 0.393

Deep learning model Activation: Tanh hidden

layers:1, number of nodes in

each layer: 1

0.72 0.438 0.60 0.297 0.399

GLM Family: Binomial 0.68 0.585 0.53 0.331 0.47

Gradient boosting method Number of tree: 50,

Maximum depth:6

0.61 0.692 0.53 0.342 0.499

Distributed random forest

(DRF)

– 0.55 0.709 0.51 0.49 0.507

Extremely randomized trees

(XRT)

– 0.53 0.787 0.45 0.429 0.537

StackedEnsemble Ensemble models (best of

each family): GLM, Deep

Learning, Random Forest,

Gradient Boost Method

0.53 2.274 0.46 0.421 0.671

Extreme gradient boosting – 0.52 4.198 0.47 0.481 0.66

AUC, Area under the ROC curve; AUCpr, Area under precision-recall curve; RMSE, root-mean-square deviation; GLM, generalized linear model; DRF, Distributed Random Forest; XRT,

Extremely Randomized Trees.

DISCUSSION

The heterogeneity of TNBC results in a spectrum of responses
to NACT with pCR being achieved in only a subset of
patients (Sikov et al., 2015; Gamucci et al., 2018). Several
methods have been used to measure and predict residual
disease during course of treatment, including ultrasound,
MRI scans, histopathology; however, none have yet achieved
adequate performance to predict response to NACT (Croshaw
et al., 2011; Shin et al., 2011; Ono et al., 2012; De Los
Santos et al., 2013; Leon-Ferre et al., 2018). Here, we
applied artificial intelligence to metabolomic profiles of TNBC
patient plasmas obtained prior to NACT and, using a
DLM, establish a blood-based polyamine-centric metabolite
panel that is predictive of non-response to NACT. The

metabolite panel may be implemented in the clinical setting
to stratify TNBC patients who are at high-risk of being non-
responsive to NACT and who may benefit from alternate
treatment modalities. Conversely, TNBC patients who are
likely to be responsive to NACT may potentially benefit
from dose de-escalation, thereby permitting management of
treatment-associated toxicity.

The metabolite panel consisted of several cancer-relevant
metabolites including the acetylated polyamines DAS and
AcSpmd, which were found to be elevated in TNBC patients
who were less likely to respond to NACT. Elevated levels
of acetylated polyamines in various biofluids including urine,
plasma, and serum, have been shown to report on cancer
status (Park and Igarashi, 2013; Wikoff et al., 2015; Fahrmann
et al., 2019, 2020, 2021b). Targeting of cancer cell polyamine
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FIGURE 2 | ROC curve for the DLM for distinguishing TNBC patients that went on to have RCB-II/III following NACT from those that had RCB-0/I. Table provides

tabulated performance estimates of the DLM.
†
Age and stage were included as covariables in adjusted odd ratios.

FIGURE 3 | ROC curve for the DLM for distinguishing TNBC patients that went on to have RCB-II/III following NACT from those that had RCB-0/I using plasmas

collected after four cycles of AC. Table provides tabulated performance estimates of the DLM.
†
Age and stage were included as covariables in adjusted odd ratios.

metabolism via small molecule inhibitors has been proposed
for anti-cancer therapy for cancer, including TNBC (Casero
et al., 2018; Geck et al., 2020; Capellen et al., 2021).
Acetylation of polyamines is mediated by spermidine/spermine
N1-acetyltransferase 1 (SAT1) (Pegg, 2013; Fahrmann et al.,
2020). Our prior investigations demonstrated that oncogenic
MYC regulates transcription of polyamine metabolizing enzymes
ornithine decarboxylase (ODC1), spermidine synthase (SRM),
and spermine synthase (SMS) in TNBC, and that elevated
intracellular polyamine levels induce expression of SAT1
(Pegg, 2013) resulting in elevated cancer cell biosynthesis and
secretion of acetylated polyamines (Fahrmann et al., 2020).
We further reported that plasma polyamines, particularly
DAS, are associated with TNBC development and progression
(Fahrmann et al., 2020). Given our prior findings, we posit
that the elevation in polyamines may underly an aggressive
subtype of TNBC (Fahrmann et al., 2020) that is less likely to
respond to NACT.

Elevated serum levels of urate, a purine catabolite, are also
reported to be prognostic for TNBC recurrence and poor

overall survival (Ackermann and Tardito, 2019; Gong et al.,
2021). Lysophosphatidylethanolamines and lauroylcarnitine
are associated with cancer metabolic plasticity and fatty acid
oxidation (Melone et al., 2018). We have previously reported
that JAK/STAT3-mediated fatty acid oxidation promotes
chemoresistance in TNBC (Chakraborty et al., 2016; Wang
et al., 2018). Methylhistidine has been shown to be elevated in
serum of TNBC patients who had an cPR following NACT (He
et al., 2021). TNBC cells are reported to exhibit a glutamine-
dependent phenotype; promoting survival advantage as well as
chemo-resistance (Kung et al., 2011; Lampa et al., 2017).

Remarkably, among the metabolites in the metabolite panel
were two microbiome-related metabolites, indoleacrylic acid
(IAA) and indole-acetylaldehyde (IAALD). IAA and IAALD
are produced through the catabolism of tryptophan by the
gut microbes (Vujkovic-Cvijin et al., 2013). Increasing evidence
implicates that alterations in the microbiome influence resistance
to anticancer treatment, including conventional chemotherapy,
immunotherapy, radiotherapy, and surgery (Pryor et al., 2020;
Garajová et al., 2021; Pandey and Umar, 2021). The relationship
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between changes in the microbiome and response to NACT
warrants further investigation.

On balance, limitations to our study include limited sample
availability and lack of external validation. To assess for potential
overfitting, we tested the model by introducing perturbation
(e.g., random selection and replacement) to the dataset and re-
evaluated performance, the results of which demonstrated that
our model was robust. We performed further validation using
available samples and found that the metabolite panel provided
good classifier performance for distinguishing individuals with
RCB-II/III following four cycles of NACT from those with
RCB-0/I, thus providing an independent validation. We note
that attenuation of model performance after four cycles of
NACT could be attributable to elevations in plasma metabolites
consistent with chemotherapy-induced cancer cell death and
turnover. Additionally, the relative cost-effectiveness of using the
metabolite panel for risk-based prediction of non-responsiveness
to NACT needs to be considered compared to other clinical
predictors (Croshaw et al., 2011; Shin et al., 2011; Ono et al., 2012;
De Los Santos et al., 2013; Leon-Ferre et al., 2018).

In conclusion, using a deep learning model, we developed
a blood-based metabolite panel and that offers potential utility
for identifying TNBC patients who are at high-risk of being
non-responsive to NACT and who may benefit from more
personalized treatment modalities.
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