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Abstract: Green synthesis of silver nanoparticles (AgNPs) employing an aqueous plant extract has
emerged as a viable eco-friendly method. The aim of the study was to synthesize AgNPs by using
plant extract of Sanvitalia procumbens (creeping zinnia) in which the phytochemicals present in plant
extract act as a stabilizing and reducing agent. For the stability of the synthesized AgNPs, different
parameters like AgNO3 concentration, volume ratios of AgNO3, temperature, pH, and contact
time were studied. Further, AgNPs were characterized by UV–visible spectroscopy, FT-IR (Fourier
Transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy),
and EDX (Energy Dispersive X-ray Spectrometer) analysis. FT-IR analysis showed that the plant
extract contained essential functional groups like O–H stretching of carboxylic acid, N–H stretching
of secondary amides, and C–N stretching of aromatic amines, and C–O indicates the vibration of
alcohol, ester, and carboxylic acid that facilitated in the green synthesis of AgNPs. The crystalline
nature of synthesized AgNPs was confirmed by XRD, while the elemental composition of AgNPs
was detected by energy dispersive X-ray analysis (EDX). SEM studies showed the mean particle
diameter of silver nanoparticles. The synthesized AgNPs were used for photocatalytic degradation
of Orange G and Direct blue-15 (OG and DB-15), which were analyzed by UV-visible spectroscopy.
Maximum degradation percentage of OG and DB-15 azo dyes was observed, without any significant
silver leaching, thereby signifying notable photocatalytic properties of AgNPs.

Keywords: green synthesis; Sanvitalia procumbens; silver nanoparticles; azo dyes degradation

1. Introduction

Metal nanoparticles have a variety of features in various fields. Since the sizes, di-
mensions, and compositions of metallic nanomaterials are all tied to their optical, physical
and chemical properties, nanoscale materials have already been used in a wide range
of applications [1]. Nanostructured metallic nanoparticles with extraordinary tunable
complex surface plasmon, optoelectronics, biomedical, and catalytic properties were cre-
ated owing to their high surface area to volume ratio and limited effort to the surface
functionalization [2]. Despite the fact that many metals occur in nature, only elements such
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as silver, palladium, platinum and gold are widely synthesized for their nanostructured
aspect [3]. Silver nanoparticles (AgNPs), among the metals listed above, have drawn a
great deal of interest because of their unique properties for use in the textile industries,
agriculture, water detoxification, pharmaceutics, and as a catalyst in oxidation reactions
and air filtration [4–7]. Chemical, physical, electrochemical, irradiative, photochemical,
and biological methods are now available for the synthesis of silver nanoparticles [8,9].
Since most of these methods involve the use of hazardous chemicals and extreme reaction
conditions, this often results in chemical toxicity and environmental contamination. The
detrimental effects of chemical processes, as well as the growing focus on green chemistry,
have increased the importance of biological methods for the synthesis of AgNPs [10,11].
Because of their versatility, organic design, and profitability, biomediated methods are
considered a viable alternative to physical and chemical methods. Several groups have
reported on the synthesis of silver nanoparticles by using different plants extract like
Andrographis paniculata [12], Cathranthus roseus [13] and Rhynchosia suaveolens [14], which
act as a reducing and stabilizing agent.

Recently, silver nanoparticles (AgNPs) have risen in prominence due to their wide
range of applications in biomedicine such as anticancer [15], antibacterial [16], and an-
tioxidant activity [17]. AgNPs toxicity has been linked to an increase in the synthesis of
reactive oxygen species (ROS), which causes the release of silver ions to occur [18]. ROS
development may induce oxidative stress, which is basically the reported mechanism of
AgNP’s toxicity, by lowering superoxide dismutase (SOD) and glutathione (GSH) levels
and raising the lipid peroxidation levels in cells [19,20]. Nowadays, textile and synthetic
dyes cause pollution that threaten living organisms and also contribute to changes in the
climate. One of the possible strategies for achieving meaningful remediation is the catalytic
degradation of synthetic pollutants by nanoparticles. Plant-mediated nanoparticles have
proven to be effective photocatalytic agents in the fight against organic pollutants [21].
Numerous techniques like oxidation, adsorption, ion-exchange, chemical coagulation, and
biological photocatalysis are available to overcome this issue [22]. AgNPs from Phaseolus
vulgaris have recently been shown to degrade 4-nitrophenol, reactive red 141 dyes [23], and
other fabricated AgNPs designed from Solanum surattense, which are utilized as an efficient
catalyst towards Rhodamine B (RhB) [24]. Green synthesis of AgNPs has a wide range of
applications for dye removal in a practical operating system that produces less sludges
than other methods.

In the light of other discrepancies, different biological methods have reported on the
synthesis of AgNPs and on the photocatalytic activities of other dyes. So, this work was
carried out to synthesize AgNPs using Sanvitalia procumbens (S. procumbens) aqueous plant
extract, and then to explore the photocatalytic applications of the synthesized AgNPs. The
synthesis of AgNPs using aqueous extract of this plant and its photocatalytic degradation
of azo dyes (Orange G and Direct blue-15) has not been reported in literature, and in this
article we are reporting it for the first time. According to an ethnobotanical survey of weeds
in the state of Mexico, S. procumbens (ornamental perpetually flowering plant) is one of
the major plant families of commercial importance for medicinal, herbal, culinary, and
ornamental uses [25]. Thus, the medicinally essential S. procumbens aqueous plant extract
has since been used as a possible bioreducing agent for the green synthesis of AgNPs in
such a cost-effective and environmentally sustainable manner. In light of the foregoing,
the current study was conducted to produce low-cost, clear, and easily reusable AgNPs
from S. procumbens that contains bioreductants and stabilizers such as alkamides, phenolics,
proteins, and terpenoids, which are responsible for the reduction of Ag+ to Ag0 [25–28].
Sanvitalia procumbens-based silver nanoparticles can be highly reproducible. Large-scale
utilization assessing the reproducible process can show the natural variability that occurs
in the chemical composition of plant species that grow at the month of December, as well
as assess how a plant can be used for this purpose so that the entire plant extract can
be gainfully utilized in the process. Furthermore, the elemental composition, geometry,
morphological, and optical study of synthesized AgNPs was carried out by using var-
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ious techniques such as Energy Dispersive X-ray analysis (EDX), X-ray Diffractometer,
Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FT-IR),
and UV–visible spectrophotometry. Moreover, the current study also assessed potential
applications in the environment via green-synthesized AgNPs for the photocatalytic degra-
dation of hazardous Orange G and Direct Blue-15 azo dyes by considering these dyes to be
biodegradable.

2. Results and Discussion

Several studies have stressed and illustrated the possible use of shade-dried plants as
a reducing and stabilizing source for nanoparticle synthesis. After integrating an aqueous
plant extract of S. procumbens with the AgNO3 solution at a ratio of 1:9 (0.01 mol/L solution
of AgNO3), the color change indicated that the synthesis of AgNPs occurred, where the
plant extract was used as a reducing and stabilizing agent in this analysis. According to
the literature, the initial indication of AgNPs was observed as a color transition from pale
yellow to dark yellow and eventually colloidal brown, within a few minutes. The observed
results were consistent with previous reports in which AgNPs were synthesized using
various plant extracts, and aqueous silver nitrate solution (10−3 mol/L) altered the color
from transparent to brown after extract addition [29,30].

2.1. UV-Visible Spectroscopy

On the nanoscale level, one of the most intriguing features of metal nanoparticles is
their optical properties, which vary proportionally with their size and shape. The large-size
AgNPs are obtained at the weak absorbance peak and shift towards higher wavelength,
while maximum absorbance peak shifts towards a lower wavelength when the particle
size becomes smaller. In the current study, the absence of an absorbance peak in the visible
region was examined when the plant extract and AgNO3 solution was observed in a UV-
visible spectrophotometer. However, the synthesis of AgNPs was confirmed by a mixture
of AgNO3 and plant extract. The AgNPs formation in aqueous colloidal solution showed
the sharp SPR (surface plasmon resonance) peak recorded at 438 nm as shown in Figure 1.
This is because plant extracts contain plenty of phytochemicals that aid in the reduction
of AgNPs and serve as a capping agent [31]. Due to the coupled oscillation of electrons
in light wave resonance of metal nanoparticles, particularly AgNPs, a free electron to
absorb the surface plasmon resonance phenomenon is provided [32]. The achieved results
are comparable to those reported in the literature, wherein the Datura stramonium plant
extract was used to reduce silver nanoparticles, and UV-visible absorbance spectra revealed
that the SPR (surface plasmon resonance) band for silver occurred in the 400–450 nm
range. The reproducibility of AgNPs synthesis was confirmed using the aqueous extract
of a previously collected batch of plant, which provided silver nanoparticles when the
optimized ratio of plant extract and AgNO3 (1:9 mL) was used [33,34].

2.1.1. Effect of AgNO3 Concentration

This parameter was measured by varying AgNO3 concentrations under ideal cir-
cumstances. The size and forms of AgNPs were affected by varying the concentration of
AgNO3 solution. In this analysis, SPR (surface plasmon resonance) peak showed that at
lower AgNO3 concentrations, AgNPs with larger size distributions were present, implying
the presence of AgNPs with broader size distributions. The SPR peak became sharper and
narrower as the concentration of AgNO3 rose, along with an increase in its intensity [35].
This suggests that AgNPs with a narrow particle size distribution were involved when the
concentration of AgNO3 solution was increased. However, if the concentration of AgNO3
further increases to 0.02 mol/L, the intensity of such SPR peak weakens and broadens due
to agglomerations induced by Van der Waals interactions between adjacent nanoparticles. It
was concluded that with 0.01 mol/L AgNO3 solution, a distinct peak was found at 438 nm,
but as stated in the literature, the concentration rises from 0.01 mol/L, and the intensity
peak of synthesized nanoparticles decrease, which was also mentioned in Figure 2 [36].
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Figure 1. UV-Visible spectra of: (A) Pure extract of S. procumbens; (B) Synthesized AgNPs; and (C)
0.01 mol/L solution of AgNO3.

Figure 2. UV-visible spectrum of synthesized AgNPs from S. procumbens aqueous extract at various
concentrations of AgNO3.

2.1.2. Effect of AgNO3 Volume to Plant Extract Ratios

To decide the impact of volume ratios on AgNPs, different extracts and AgNO3v/v
ratios were used. The transition in spectrum was observed at each ratio, as seen in Figure 3,
where intensity increases as the ratios rises from 1:3 to 1:9; the peak becomes sharp as
volume increases. The size and shape of AgNPs are also effected by increasing the volume
of AgNO3 solution, as mentioned in Figure 3, which showed that, with increasing the
volume of AgNO3 solution, the peak intensity also increased, indicating that small-size
AgNPs were obtained. While at lower volume of AgNO3 solution, non-uniform large-sized
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AgNPs were synthesized [37]. As a result, from the given data, the maximum absorbance
spectra were recorded at 438 nm for 1:9 v/v ratio, beyond this the peak becomes broader.
The absorbance showed the quantity of AgNPs formed due to the reduction of silver ions.

Figure 3. Effect of AgNO3 volume to S. procumbens plant extract ratios.

2.1.3. Effect of Temperature on AgNPs

The production of AgNPs is heavily influenced by temperature. The reaction mixture
of synthesized AgNPs was placed at various temperatures from 20–70 ◦C for 30 min. The
color and intensity shift of the reaction mixture is illustrated in Figure 4. In general, silver
nanoparticles aggregate together easily. The color changes from brown to black as shown
in Figure 4, which is due to more aggregation within the particles at 40 ◦C. The structure
and size of the particles formed during the aggregation were too large and lost the property
of surface plasmon resonance. Hence, the synthesized AgNPs were stable up to 70 ◦C, but
the more intense absorbance peak observed at 70 ◦C was due to the formation of small size
AgNPs. This also implies that, at high temperature, the kinetic energy of the molecules
increases and silver ions gets consumed faster, leaving less possibility for particle size
growth. Thus, smaller particles of nearly uniform size distribution are formed at higher
temperature. It was discovered that absorbance increased with increasing temperature [38].
Hence, the maximum intensity peak of 438 nm at 70 ◦C resulted.

2.1.4. Effect of Time on AgNPs

The impact of reaction time was studied by regularly reviewing the reaction mixture
of an aqueous plant extract and AgNO3 solution at different time intervals. The AgNO3
solution reacts with the plant extract, resulting in a color shift within 1 h of the reaction.
With the aging process, the color became more intense [39]. According to UV–visible
spectrophotometric measurements taken at regular intervals of time, the broad surface
plasmon resonance peak was obtained between 0 h and 2 h, which was due to the sluggish
conversion of silver ion (Ag+ to Ag0). Since a significant amount of Ag+ was transformed
to Ag0, an outstanding SPR (surface plasmon resonance) spectrum was found as the
reaction time increased. The absorption peak of synthesized AgNPs was observed in the
UV–vis spectra with strong SPR in the range of 438 nm at 8 h, indicating fast synthesis
(Figure 5) [40].
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Figure 4. Absorption spectra of AgNPs achieved at different reaction temperatures using S. procum-
bens plant extract AgNPs.

Figure 5. Absorption spectra of AgNPs obtained at different time intervals.

2.1.5. Effect of pH on AgNPs

The potential of the reaction pH is to comprehend the electrical charges of biomolecules,
which may affect their reducing and capping capabilities, as well as the subsequent growth
of the nanoparticles. The impact of pH on the absorption spectra of synthesized AgNPs via
plant extract was shown in Figure 6. AgNPs were configured at various pH levels: 2, 4, 6,
8, 10, and 12. The absorption peak shifted towards lower wavelength, implying that the
size of synthesized AgNPs was shrinking with the increasing pH of the reaction mixture.
Furthermore, it was also noticed that the rate of reduction and the color of the solution
turned colloidal brown faster at higher pH. As a result, the more favorable synthesis of
AgNPs occurs at alkaline pH; this could be accredited to the ionization of the functional
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groups at higher pH. The slow rate of reduction observed in the acidic medium could be
attributed to the electrostatic repulsion of anions present in the reaction mixture. Referring
to the previously reported literature, the SPR (surface plasmon resonance) peak of AgNPs
was not observed in the range of 400 to 500 nm at pH 2, 4, and 6 [41]. Whereas in the
current study, the sharp and narrow SPR (surface plasmon resonance) peak was obtained
within the range of 438 nm at pH 8, as shown in Figure 6, inferring that OH groups were
responsible for a reduction of Ag+ as supported by Davidovic et al. [42].

Figure 6. Normalized absorption spectra of AgNPs at different pH values of the reaction mixture
employed S. procumbens plant extract.

2.1.6. Stability of AgNPs

The stability test of synthesized AgNPs was checked at 5, 10, and 15 days after synthe-
sis. According to the results, there are no vibrational shifts at the surface plasmon resonance
of AgNPs. The presence of a sharp peak indicated the development of mono-dispersed
nanoparticles. As reported, from an aqueous extract of Cassia roxburghii, synthesized
AgNPs were found to be stable for 2 months in a previous analysis [43].

2.2. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis

The synthesis of AgNPs was achieved by biologically active functional groups and
interaction sites present in an aqueous plant extract of S. procumbens that acts as a reducing,
capping, and stabilizing agent, which were identified by using FT-IR (Bruker, Alpha-II)
spectroscopy. The data suggests that during AgNPs synthesis, the phytochemicals present
in a plant extract play an important role in the production of metal nanoparticles, which
reduce the metal salt into its nanoparticles. It is tough to select an individual phytochemical
entity, but in general, flavonoids, phenolic groups, organic acids, and proteins all are
thought to be essential for the synthesis of nanoparticles [44]. In FT-IR spectroscopy, S.
procumbens extract showed prominent bands of absorbance at around 3277, 2923, 2364,
1590, 1405, and 1033 cm−1 (Figure 7). The phenolic groups and proteins act as capping
and stabilizing agents, which play an important role in the production of AgNPs; this was
confirmed by a band at 3277 cm−1, which was responsible for O–H stretching vibration of
carboxylic acid [45]. The small band at 2923 cm−1 was due to C–H stretching of alkane,
whereas the band at 2364 cm−1 represents the C–O vibration [46,47]. The band at 1590 cm−1

showed the N–H stretching vibration of amines present in proteins and 1405 cm−1 aligns
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to the C–N stretching of aromatic amine groups [48]. The 1033 cm−1 band was assigned
C–O stretching vibration of alcohols, ester, or carboxylic acid. The reduction in bands at
3020, 2713, 2362, 1536, 1363, 1027, and 670 cm−1 is attributed to biomolecules present in the
plant extract, which reduced Ag+ ions to Ag0. We theorized that the synthesized AgNPs
were capped by biomolecules that were involved in silver nanoparticles formation [49].

Figure 7. FTIR spectra of synthesized AgNPs (A) and S. procumbens plant extract (B).

2.3. X-ray Diffraction Analysis (XRD)

To investigate the crystalline nature and surface morphology of the synthesized
AgNPs, the X-ray diffraction (XRD) analysis was performed in the range of 20–70 degrees
at 2θ. The XRD pattern of the AgNPs synthesized by the reaction of silver salt solution with
an aqueous plant extract of S. procumbens is shown in Figure 8. In XRD analysis, the crystal
structure depends on the arrangement of atoms in a specific plane; the XRD peak showed
higher intensity due to more atomic counts accumulated in its orientation. So, synthesized
AgNPs, by using a plant extract of S. procumbens, were observed at high-intensity peaks at
around 38◦, 45◦, and 64◦. The mentioned peaks correspond to the hkl planes (111), (200),
and (220) Bragg reflections, respectively, which were the exact peak positions as given
for the face center cubic (FCC) lattice structure of AgNPs. This diffraction pattern was
very similar to JCPDS file no. 04–0783 standard diffraction pattern [50]. The 38◦ peak
was explained by assuming that the peak intensity of XRD becomes smaller along with
the decrease in crystallite size. These facts revealed that the measuring content with the
crystallites sizes of AgNPs were smaller than 30 nm [51]. The particle size of synthesized
AgNPs was 26 nm, calculated by employing Scherrer’s equation.

D =
0.9λ

β cos θ
(1)

where D is crystallite size, λ corresponds to the X-rays wavelength that used 1.5406 ◦A, β
is FWHM (Fill width half maximum), and θ corresponds to Bragg’s angle.
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Figure 8. X-ray diffraction pattern of AgNPs synthesized from S. procumbens.

2.4. Energy Dispersive X-ray (EDX) Analysis

The elemental composition was determined by using energy dispersive X-ray (EDX)
analysis. The EDX result of synthesized AgNPs revealed the existence of silver, as well
as the residual carbon, oxygen, and chlorine peaks that were unwittingly inserted from
the surface molecule of the plant extract. Green-synthesized AgNPs were responsible for
the observed C, O, Cl, and Ag peaks. The peak of Ag at 3 eV confirms the formation of
silver nanoparticles, where standard weight percent of silver was 90.88%. In this analysis,
the green-synthesized AgNPs showed aggregated morphologies and a nonuniform size
distribution (Figure 9). The particle size is dependent on how the aqueous extract is
administered during the synthesis. Likewise, in accordance with these statements, the
presence of Ag, Cl, and O were observed within the spectrum that appeared around 3 keV,
which indicated the existence of elemental silver in the biosynthesized AgNPs [52].

Figure 9. (A) Energy dispersive X-ray spectrum for AgNPs from S. procumbens; (B) Weight percentage of atoms present
in AgNPs.

2.5. Scanning Electron Microscopy (SEM)

Researchers used scanning electron microscopy (SEM) to design the images of the
sample and consider the morphology of the nanoparticles. The shape and size of synthe-
sized AgNPs by using green synthesis were shown in a micrograph of a scanning electron



Molecules 2021, 26, 6144 10 of 16

microscope (SEM). According to the given micrograph, the scale of the synthesized AgNPs
was up to 250 nm. The micrograph revealed that the particle sizes range from 10–80 nm
and are spherical in shape. Most of them are synchronized in the form of large clusters, but
few of them are dispersed as seen in Figure 10. So, the average particle size was found to
be 46 nm, which is consistent with XRD results of 26 nm (crystallite size).

Figure 10. SEM image of AgNPs with 250 nm scale bar (A), and their corresponding size distribution histogram (B).

2.6. Photocatalytic Degradation Analysis
2.6.1. Photocatalytic Degradation of Orange G Azo Dye

To investigate the photocatalytic capability of stable AgNPs towards the degradation
of various organic dye molecules, the commonly used Orange G dye in many dyeing
industries was selected. Orange G is a well-known water-soluble dye that has always
had widespread usage in industries such as leather, textiles, pharmaceuticals, paper, and
printing [53]. To evaluate dye degradation in the presence of AgNPs as a catalyst, a UV–vis
spectrophotometer was used. The high absorption peak of OG was centered around 483 nm;
the reaction of degradation was carried out at room temperature. The photocatalytic
degradation of dye was monitored by changing the absorbance peak. Degradation of OG
did not proceed in the absence of synthesized AgNPs. Experiments were performed by
using 0.05 g/100 mL of synthesized AgNPs, and the results were expressed in terms of dye
degradation. Figure 11 showed the photocatalytic degradation of OG versus time. It was
concluded that the maximum photocatalytic degradation of OG dye was ascertained by
noting the time required for the OG absorption peak to reach baseline. Pertaining to this
principle, the upper limit percentage of OG dye degradation was found to be 70.61% at
about 180 min with S. procumbens-AgNPs [11].

2.6.2. Photocatalytic Degradation of Direct Blue-15 Azo Dye

Dye pollution has grown in tandem with the development of industries that use
colorants, such as in clothing, leather, food, and agrochemicals. Since the majority of
commonly used azo dyes are made from benzidine, these dyes contain a carcinogenic
substance that is hazardous to marine biota. The azo dye DB-15 used in the textile had a
variety of toxic effects on microalgae, Cladocera, and zebrafish embryos. So, the dumping
of this colorant waterbody should be controlled to prevent environmental impacts [54].
As a result, deterioration of the azo dye DB-15 in wastewater is strongly recommended
to alleviate their harmful impacts. A UV–visible spectrophotometer was used to monitor
the extent of degradation by green-synthesized AgNPs. The absorption maxima for BD-15
were recorded at a wavelength of 602 nm. However, in the presence of 0.05 g/100 mL
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AgNPs as a catalyst, the decrease in absorption peak of dye was observed as the time
progressed, as shown in Figure 12. To determine the maximum photocatalytic degradation
of DB-15, the amount of time required for the absorbance peak to reach baseline was
measured. At 180 min, the maximum percentage of DB-15 dye degradation was found to
be 70%. However, the synthesized catalyst showed more degradation efficiency against
OG dye than DB-15, which might be due to the complex structure of DB-15 with many N
atoms and its difficult conversion into oxidized nitrogen.

Figure 11. (A) Absorbance spectra of Orange G (15 ppm) dye at different time intervals, (B) Percentage degradation of
Orange G dye at different time intervals.

Figure 12. (A) Absorbance spectra of Direct Blue-15 (10 ppm) dye at different time intervals, (B) Percentage degradation of
direct Blue-15 dye at different time intervals.

3. Materials and Methods
3.1. Plant Collection

The S. procumbens plant was harvested from the area of Kohat, Khyber Pakhtunkhwa,
Pakistan and was identified by Dr. Nisar Ahmed, Department of Plants and Environmental
Sciences, Kohat University of Science & Technology.
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3.2. Preparation of Sanvitalia procumbens Aqueous Plant Extract

The plant of S. procumbens was washed thoroughly with tap water to remove debris
and other contamination, followed by washing with distilled water. The plant was shade-
dried at room temperature. Twenty grams of finely cut plant was heated at 70 ◦C for 30 min
in 200 mL of distilled water. The extract was cooled down and then filtered via Whatman
No. 1 filter paper, and the aqueous plant extract was stored in the refrigerator for further
analysis.

3.3. Green Synthesis of AgNPs

At room temperature, 1 mL volume of aqueous plant extract was added to 9 mL of
0.01 mol/L AgNO3 solution in a dropwise manner. After mixing the aqueous plant extract
into silver ion solution, the reaction mixture was placed onto a rotatory orbital shaker
operating at 200 rpm, then it was subjected to a water bath for 70 ◦C. Complete reduction
of Ag+ to Ag0 ions in the reaction mixture was confirmed by the color change of AgNO3;
plant extract solution from pale yellow to dark brown implied the formation of AgNPs
(further scanned by UV-visible spectrophotometry). Finally, the samples were centrifuged
for 15 min at 6000 rpm. The organic moieties were removed after centrifugation, and the
pellet was washed with distilled water and methanol. The powder form of nanoparticles
was obtained, which were utilized for further characterization and photocatalytic studies.

3.4. Effects of Different Parameters on the Stability of AgNPs

Green synthesized AgNPs were produced by using S. procumbens aqueous plant ex-
tract and different parameters including AgNO3 concentration, volume, pH, time, and
temperature were studied to check the stability of AgNPs. Spectrophotometric study of
AgNPs after 6–8 h of incubation in the dark at room temperature revealed the optimal
conditions for efficient reduction of silver ions and eventual nucleation into silver nanopar-
ticles. The impact of plant extract volume on green synthesis of AgNPs was explored
through executing the reaction with various volumes of AgNO3 solution (1, 3, 5, 7, 9,
and 11 mL), whilst maintaining the volume of plant extract remains as constant. The
reaction mixtures were deposited with various AgNO3 concentrations, which were used to
investigate the impact of AgNO3 concentration on AgNPs synthesis (0.004, 0.006, 0.008,
0.01, and 0.02 mol/L). So, the optimal AgNO3 concentration measured the absorbance of
nanoparticles by UV-visible spectrophotometer. The aforementioned reaction mixture was
subjected at different temperature conditions, namely 20 ◦C, 30 ◦C, 40 ◦C, 50 ◦C, 60 ◦C, and
70 ◦C, for synthesizing AgNPs. Following the synthesis, every single reaction tube was
held at the specified temperature for 15 min. The pH effect was observed by exposing a
reaction mixture of AgNPs at various pH level, and 0.1 mol/L NaOH solution was used to
change the pH of the reaction solution to the optimal level.

3.5. Characterization of AgNPs

To calculate the reduction of silver nitrate into silver nanoparticles, UV-visible spec-
troscopy was used on a regular basis (Shimadzu-UV-1800). The AgNPs sample was diluted
with distilled water and then examined under UV-visible spectrophotometer. The quartz
cuvette cell filled with distilled water was used as a reference for recording the spectro-
graph at scanning speed of 300–700 nm [55]. The morphology of AgNPs was investigated
by using SEM (SIGMA HV-Carl Zeiss, Oberkochen, Germany); this the sample of AgNPs
was put onto a carbon grid, and the remaining sample was washed with blotting paper.
Synthesized AgNPs were subsequently allowed to dry for 15 min under a mercury lamp be-
fore being imaged. A high-pressure mercury lamp was used to excite the storage molecules
or proteins that exhibited autofluorescence [56]. At a 10 kV accelerating voltage, the charac-
terization procedure of SEM was carried out. XRD was used to assess the crystalline nature
and average grain size of AgNPs (XPERT-PRO). CuKa radiation was used to monitor X-ray
diffraction in the 2θ range from 20–70 at 40 kV/40 mA current with dried AgNPs on a XRD
grid [57]. The production of AgNPs was responsible for biologically active compounds that
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act as a reducing, capping, and stabilizing agents, which were identified by using a KBr
pellet system in FT-IR (Bruker, Alpha-II) analysis. FT-IR (Bruker, Alpha-II) (Billerica, MA,
USA) was performed by using a KBr pellet method to identify the functional groups of bio-
logical active compounds present in plant extract that act as reducing and capping agents
for the formation of AgNPs. This spectral analysis was performed at 4 cm−1 resolution,
within the range of 4000 to 500 cm−1 [58,59].

3.6. Photocatalytic Degradation Assay

The photocatalytic degradation studies were performed by mixing 100 mL of the
reaction mixture into a 250 mL glass beaker, distinctly. Prior to being irradiated, the
reaction sample (0.05 g/100 mL) was mixed with (15 ppm) OG and (10 ppm) DB-15 azo
dye solution, respectively. Both solutions were constantly stirred for 30 min in the dark to
ensure that equilibrium was reached. An absorption capacity of pure AgNPs for OG was
evaluated at room temperature in the dark condition. Then the solution was irradiated by a
Hg lamp with a high-pressure (max = 254 nm, 60 W, located 10 cm above the sample) sealed
in to a rectangular steel box. The reactors were put on a magnetic stirrer to ensure that the
solvent was evenly dispersed. After the irradiation times, aliquots of a previously utilized
sample were removed at specific time intervals. Finally, the solution was centrifuged for
10 min at 4000 rpm to extract the suspended particles and then examined with a UV–visible
spectrophotometer. The experiment was repeated twice, and the standard deviation did
not reach 5%, indicating that the findings were relevant. The percentage degradation was
calculated by using the following equation on the base of standard curve y = x0.0386 −
0.035 (R2 = 0.9935) and y = x0.034 − 0.0428 (R2 = 9.997) for OG and DB dyes, respectively.

%Degradation = 100 × (A0 − A)/A0 (2)

where, ‘A0’ is the initial absorbance of Orange G and DB-15 azo dyes, and ‘A’ shows the
absorbance of dyes solution obtained at each time interval [60].

4. Conclusions

In the current study, the synthesis and optimization of AgNPs was demonstrated by
using plant aqueous extract of S. procumbens. The synthesized AgNPs were successfully
characterized by using different techniques like UV-Visible, FT-IR, SEM, XRD, and EDX.
Furthermore, AgNPs exhibited potential photocatalytic degradation activity of Orange G
and Direct blue-15; the synthesized catalyst showed more degradation efficiency against
OG dye than DB-15. Overall, all these results suggest that AgNPs, as synthesized in this
study, can be used as a potent photodegradation analyte.
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