
molecules

Review

An Overview of the Potential Therapeutic Applications of
Essential Oils

Mariam Nasser Aljaafari 1, Asma Obaid AlAli 1, Laila Baqais 1, Maream Alqubaisy 1, Mudhi AlAli 1,
Aidin Molouki 2, Janna Ong-Abdullah 3 , Aisha Abushelaibi 4, Kok-Song Lai 1 and Swee-Hua Erin Lim 1,*

����������
�������

Citation: Aljaafari, M.N.; AlAli, A.O.;

Baqais, L.; Alqubaisy, M.; AlAli, M.;

Molouki, A.; Ong-Abdullah, J.;

Abushelaibi, A.; Lai, K.-S.; Lim, S.E.

An Overview of the Potential

Therapeutic Applications of Essential

Oils. Molecules 2021, 26, 628.

https://doi.org/10.3390/

molecules26030628

Academic Editor: Vivian Tullio

Received: 2 December 2020

Accepted: 10 January 2021

Published: 26 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology,
41012 Abu Dhabi, UAE; H00349760@hct.ac.ae (M.N.A.); H00323776@hct.ac.ae (A.O.A.);
H00307981@hct.ac.ae (L.B.); H00349801@hct.ac.ae (M.A.); H00349412@hct.ac.ae (M.A.);
lkoksong@hct.ac.ae (K.-S.L.)

2 Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute,
Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
a.molouki@rvsri.ac.ir

3 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences,
Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia; janna@upm.edu.my

4 Dubai Colleges, Higher Colleges of Technology, 17258 Dubai, UAE; aabushelaibi@hct.ac.ae
* Correspondence: erinlimsh@gmail.com or lerin@hct.ac.ae; Tel.: +971-563893757

Abstract: The emergence of antimicrobial resistance (AMR) has urged researchers to explore ther-
apeutic alternatives, one of which includes the use of natural plant products such as essential oils
(EO). In fact, EO obtained from clove, oregano, thymus, cinnamon bark, rosemary, eucalyptus,
and lavender have been shown to present significant inhibitory effects on bacteria, fungi, and viruses;
many studies have been done to measure EO efficacy against microorganisms. The strategy of combi-
natory effects via conventional and non-conventional methods revealed that the combined effects of
EO–EO or EO–antibiotic exhibit enhanced efficacy. This paper aims to review the antimicrobial effects
of EO, modes of EO action (membrane disruption, efflux inhibition, increase membrane permeability,
and decrease in intracellular ATP), and their compounds’ potential as effective agents against bacteria,
fungi, and viruses. It is hoped that the integration of EO applications in this work can be used to
consider EO for future clinical applications.

Keywords: essential oils; antimicrobial activity; oregano; thymol; carvacrol; cinnamon bark; syner-
gistic activity; genomics; proteomics

1. Introduction

Antimicrobial substances are secreted naturally in the microbial ecosystem as a sur-
vival mechanism. Antimicrobial-producing microorganisms, in order to avoid self-toxicity,
commonly develop resistance genes to protect themselves from their own antimicrobials [1],
while microorganisms faced with antimicrobials develop their own resistance in the process.
This very same scenario is now replayed in the clinical setting whereby the application of
antibiotics has caused the emergence of antimicrobial resistance (AMR) [2]. Some factors
such as the inappropriate and incorrect prescription of antibiotics, their overuse in clinics
and animal husbandry, in addition to poor sanitation of water in developing countries have
exacerbated the phenomenon of antibiotic resistance [3–10]. Infections with multidrug
resistant (MDR) microbes can be life-threatening as the clinical outcomes worsen [11,12].
This may also cause challenges for successful treatment [13].

Bacterial resistance to antibiotics can either be inherited or acquired via resistant
genes [14]. Vertical gene transfer occurs from a parent cell while horizontal gene transfer
of plasmids is acquired from other cells; the acquisition can also be due to a spontaneous
recombination [9,15,16]. Due to the acquisition of these genes, bacteria are able to produce
enzymes such as β-lactamase, carbapenemase, and nucleotidyltransferase (NTase) that
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act against the antibiotics, on the efflux pump on the bacterial cell membrane, or change
the original target site of the antibiotic [17]. Fungi can also develop antifungal resistance.
For example, Candida, an opportunistic yeast, can develop resistance to drugs when an
antibacterial drug is consumed by the host. Despite the drug not being targeted to Candida,
prolonged exposure can introduce Candida resistance to the drug [18]. Both Aspergillus and
Candida species have shown resistance to antifungal drugs such as azole and fluconazole,
which can be used to treat systemic fungal infections by inhibiting its growth [19,20].
Viruses have also shown antiviral resistance; for example, influenza virus has shown
resistance against Oseltamivir, Amantadine, and Rimantadine. Resistance to Acyclovir by
herpes simplex virus (HSV) has been detected in different countries [21].

In addressing the diminishing antibiotic pipeline, natural products such as essential
oils (EO) have been studied as a promising alternative. Several cultures around the world
used EO either for domestic use or for wound healing. In early 4500 BC, ancient Egyptians
have used aromatic oils for different purposes; however, the first record of aromatic oils
use was between 2000 and 3000 BC in Chinese and Indian medicine, which included the
use of hundreds of substances for healing purposes. Between 400 and 500 BC, Greece has
documented use of some EO such as thyme, peppermint, and saffron [22]. Furthermore,
scientists in the 18th century have identified active components of medicinal plants that
possess biological effects [22].

Compounds with functional groups in the EO were found to play a role in their
reactivity against pathogenic microorganisms [23]. Therefore, the use of EO was taken
as a new direction to treat microbial infections due to their antimicrobial, antifungal,
and antiviral properties [24]. EO contain mixtures of volatile and concentrated organic
compounds that are produced naturally in plants [25]. EO are produced in almost all parts
of the plants such as flowers, fruits, leaves, stems, seeds, buds, twigs, bark, and stored in
epidermal cells, glandular trichomes, secretary cells, cavities, or canals [26–29]. EO are
plants’ secondary metabolites that play a significant role in plant reproduction, as they
attract pollinators to contribute to distributing the seeds and pollens. However, some EO
such as oil from Cryptomeria japonica also possess a repellent effect against arthropods
and pests, which is a crucial part of the plant’s defense mechanism [30,31]. These EO and
their constituents are well documented for antimicrobial potentials [32,33]. EO obtained
from medicinal plants are reported to have more than 20–60 constituents of different
concentrations and two to three main compounds, which are usually in high amounts
(20–70%) [34].

Among the main components of EO are two distinctive chemical groups of bio-
synthetic origin: terpenes and terpenoids. These compounds are usually responsible
for antimicrobial action against disease-causing bacteria [35,36]. Terpenoids are diverse
natural plant products that show various pharmacological properties due to their diverse
structure and functions [37]. Terpenes are one of the most valuable classes of natural
origin compounds that have economic value due to their use in different sectors such as
in pharmaceuticals and food [38], with most of the common or medicinally important
terpenes being monoterpenes and sesquiterpenes. Monoterpenes are found in about 90%
of EO. These EO have a broad spectrum activity against bacterial infections due to their
high content of oxygenated monoterpenes [39]. Terpenes are the hydrocarbons that consist
of isoprene units with the general formula (C5H8)n joined together by the head to tail
rule—this meaning the fourth carbon atom of a single unit bonds with the first carbon
atom of another unit to form a 1-4 linkage.

The role of EO is mainly in plant protection; apart from providing antimicrobial ac-
tivities, they also provide protection against insects and herbivores [34]. According to the
United States Food and Drug Administration (FDA) (2005), EO can be used safely, and its
components can be used as additives in antimicrobial drugs to reduce the development
of resistance against antibacterial, antifungal, and antiviral drugs [34,40,41]. Owing to
the presence of various compounds, these EO have antimicrobial potential. This review
summarizes EO effectivity on microorganisms and aims to extensively focus on the ef-



Molecules 2021, 26, 628 3 of 27

fectiveness of EO and their compounds against various microorganisms such as bacteria,
fungi, and viruses. Moreover, we will discuss the potential of various EOs in inhibiting
microbial growth in addition to identifying the mode of action of EO and synergistic activ-
ity. Finally, the genomic perspective of EO against bacteria and the proteomic technologies
used to study the bacterial proteome when treated with EO will be discussed.

2. Essential Oil Research
2.1. AMR and Antimicrobial activity

Different compounds found in EO such as aldehydes, phenylpropanoid, and terpenes
make EO effective against a wide range of pathogens [42,43], as the composition and
the nature of each functional group gives each EO its reactivity [23,44]. Tables 1 and 2
summarize the antimicrobial activity of a few selected and popular compounds in EO
against different microorganisms.
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Table 1. Antimicrobial activity of some essential oils (EO) compounds against different microorganisms.

Antimicrobial
Activity

EO Main
Compound

Structure Microorganism MIC/IC50 MBC/MFC Reference

a,bAntibacterial
activity

Peppermint and
mint oils

Menthol
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500 μg/mL 

1000 μg/mL 
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namon oil 
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E. coli—S17 strain 
E. coli—ATCC 8739 
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Bacillus cereus—ATCC 14579 
Salmonella typhimurium—ATCC 14028 

1300 μg/mL 
400 μg/mL 
30 μg/mL 
3 μg/mL 
70 μg/mL 
70 μg/mL 

1.5 mg/mL 
0.5 mg/mL 
Bacterial growth 
Bacterial growth 
Bacterial growth 
0.06 mg/mL 

[45,49–53] 

 Ginger oil Gingerols  

6-Gingerol 

 

 

8-Gingerol 

Porphyromonas gingivalis—ATCC 53978 
Porphyromonas endodontalis—ATCC 35406  
Prevotella intermedis—ATCC 25611 

6–30 μg/mL 
6–30 μg/mL 
6–30 μg/mL 

4–20 μg/mL 
4–20 μg/mL 
4–20 μg/mL 

[54] 
 

Methicillin-resistant
Staphylococcus aureus
—ATCC 33591
Escherichia coli—ATCC 10798
Streptococcus mutans
—ATCC 25175
Aggregatibacter
actinomycetemcomitans
—ATCC 33384

1000 µg/mL
>2500 µg/mL
1000 µg/mL
500 µg/mL

1000 µg/mL
>2500 µg/mL
1000 µg/mL
1000 µg/mL

[45,46]

Lemon and
cinnamon oil

Linalool
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Table 1. Cont.

Antimicrobial
Activity

EO Main
Compound

Structure Microorganism MIC/IC50 MBC/MFC Reference

Ginger oil Gingerols
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 Compound not specified in article  Cladosporium cladosporioides—air-borne 
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250 μg/mL 

0.075% (w/v) 
0.05% (w/v) 
0.075% (w/v) 

[56,57] 
 

 Tea tree oil 
 

 Compound not specified in article Epidermophyton floccosum  
Microsporum canis 
Trichophyton rubrum 
Aspergillus niger 
Penicillium spp. 
Alternaria spp. 
Fluconazole-Resistant Candida albicans—ATCC 10231 
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40–300 μg/mL 
80–300 μg/mL 
600–1200 μg/mL 
300–600 μg/mL 
160–1200 μg/mL 
1250 μg/mL 

0.12–0.25% (v/v) 
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0.25% (v/v) 

[58] 
 
 

 Arborvitae  Compound not specified in article C. globosum—air-borne 100 μg/mL 0.025% (w/v) [57] 
 Oregano   Compound not specified in article A. fumigatus—air-borne 

C. cladosporioides—air-borne 
Alternaria alternata—air-borne 

250 μg/mL 
100 μg/mL 
100 μg/mL 

0.075% (w/v) 
0.075% (w/v) 
0.05% (w/v) 

[57] 

aMIC = Minimal Inhibitory Concentration. bMBC = Minimum Bactericidal Concentration. cMFC= Minimum Fungicidal Concentration 

10-Gingerol

Porphyromonas gingivalis
—ATCC 53978
Porphyromonas endodontalis
—ATCC 35406
Prevotella intermedis
—ATCC 25611

6–30 µg/mL
6–30 µg/mL
6–30 µg/mL

4–20 µg/mL
4–20 µg/mL
4–20 µg/mL

[54]

Mustard oil AITC
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Table 1. Cont.

Antimicrobial
Activity

EO Main
Compound

Structure Microorganism MIC/IC50 MBC/MFC Reference

a,c Antifungal
activity

Clove oil Compound not specified in article Cladosporium cladosporioides
—air-borne
Chaetomium globosum
—air-borne
Aspergillus fumigatus
—air-borne

500 µg/mL
250 µg/mL
250 µg/mL

0.075% (w/v)
0.05% (w/v)
0.075% (w/v)

[56,57]

Tea tree oil Compound not specified in article Epidermophyton floccosum
Microsporum canis
Trichophyton rubrum
Aspergillus niger
Penicillium spp.
Alternaria spp.
Fluconazole-Resistant
Candida albicans
—ATCC 10231

80–300 µg/mL
40–300 µg/mL
80–300 µg/mL
600–1200 µg/mL
300–600 µg/mL
160–1200 µg/mL
1250 µg/mL

0.12–0.25% (v/v)
0.06–0.25% (v/v)
<0.03–0.25% (v/v)
2–8% (v/v)
0.5–2% (v/v)
0.06–2% (v/v)
0.25% (v/v)

[58]

Arborvitae Compound not specified in article C. globosum—air-borne 100 µg/mL 0.025% (w/v) [57]

Oregano Compound not specified in article A. fumigatus—air-borne
C. cladosporioides—air-borne
Alternaria alternata
—air-borne

250 µg/mL
100 µg/mL
100 µg/mL

0.075% (w/v)
0.075% (w/v)
0.05% (w/v)

[57]

a MIC = Minimal Inhibitory Concentration. b MBC = Minimum Bactericidal Concentration. c MFC= Minimum Fungicidal Concentration.
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Table 2. Antimicrobial activity of individual compounds from EO against different microorganisms.

Antimicrobial Activity Main Compound Structure Microorganism MIC/IC50 MBC/MFC Reference

a,bAntibacterial Cinnamaldehyde
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Antimicrobial Activity Main Compound Structure Microorganism MIC/IC50 MBC/MFC Reference

β-caryophyllene and
Squalene
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 Thyme  

 

 

 

A. alternata—air-borne 
C. globosum—air-borne 

250 μg/mL 
250 μg/mL 

0.05% (w/v) 
0.05% (w/v) 

[57] 
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Table 2. Cont.

Antimicrobial Activity Main Compound Structure Microorganism MIC/IC50 MBC/MFC Reference
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2.1.1. Antibacterial Activity of EO

Different EO exhibits different antimicrobial properties; this may include antibacterial
activity. There are different mechanisms of action that cause the inhibition of microbial
growth, which are still not fully known [51,65]. The antibacterial activity of EO refers
to their ability to inhibit or inactivate bacterial growth [66,67]. Several studies have re-
ported that some plants and EO such as clove, thyme, rosemary, oregano, cinnamon,
and pimento showed potent inhibitory effects against various bacterial pathogens [68–72].
Studies suggests that phenolics found in EO such as eugenol, carvacrol, and thymol are
mainly responsible for their antibacterial action against different bacteria such as Staphylo-
coccus aureus, Bacillus cereus, Streptococcus pneumoniae, and Escherichia coli; phenolics pertains
to the aromatic feature of EO [47,50,51,60].

In addition, it was determined that citronellol and carveol had a strong inhibitory
effect over the growth of E. coli because these EO can interact with the cell wall components
such as the membrane proteins, which will lead to disturbance in cell wall integrity [51].
Properties of certain compounds permit the ability of inhibiting the growth of most Gram-
positive bacteria and a few Gram-negatives. This is explained by the outer structure
of Gram-positive bacteria, which contains a thick peptidoglycan cell wall that allows
penetration by hydrophobic compounds.

Moreover, EO from various sources such as oregano, basil, and rosemary from the
mint family Lamiaceae, as well as parsley, coriander, and anise in the family of Apiaceae and
cardamom from the Zingiberaceae family showed considerable antimicrobial activity against
saprophytic microbes [73]. The result obtained from one study indicated the effectiveness
of oregano EO against Salmonella typhimurium, Yersinia enterocolitica, and E. coli [73]. It was
determined that oregano EO slowed the growth and lactic acid production of bacteria.
Moreover, oregano EO when added to S. typhimurium significantly inhibited its growth [73].
In addition, oregano and lavender EO showed a bactericidal effect on Klebsiella pneumoniae
with a Minimal Inhibitory Concentration (MIC) of 63,000 µg/mL [74]. Furthermore, cinna-
mon bark EO had been shown to cause oxidative stress to K. pneumoniae, leading to the
loss of cell viability [75]. The results mentioned above showed both oregano and cinnamon
bark EO possess great antibacterial benefit; in addition, many studies have investigated
their efficacies as antimicrobials against several species.

Various studies have been conducted to investigate the antibacterial activity of plant
EO. A study determined the effectiveness of pomegranate peel, grape seed cinnamon,
oregano, and clove, but the highest antibacterial activity was shown by clove extract [76].
Moreover, Echinophora platyloba DC. EO showed a strong activity against bacteria,
and S. aureus and L. monocytogenes were the most sensitive bacteria with MIC of about
6250 and 12,500 µg/mL [77]. Rosemary EO was tested against human tumor cells includ-
ing SK-OV-3, HO-8910, and Bel-7402; it was shown to have a variety of activities, based on
the MTT or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The EO
was shown to possess antiproliferative cellular activity. The antioxidant activity was also
assessed by measuring the inhibition of peroxidation percentage by the disc diffusion and
resazurin plate assays. The results show that rosemary EO possesses antiproliferative, an-
tioxidant activity, and antibacterial activity against different microorganisms tested [78,79].

A study that tested seven EO for their antimicrobial activity against resistant bacterial
strains and fungi showed that oregano EO exhibited antibacterial activity against both S. au-
reus and Streptococcus pyogenes with the lowest MIC, which is 25 µg/mL, while other oils at
higher concentrations were active against all microorganisms tested [80]. There were some
EO that were more effective against Gram-positive bacteria while some were more effective
against Gram-negative bacteria, and some EO were effective for both. E. platyloba DC,
oregano EO, as well as the compounds with phenolic properties such as hydrophobicity
have been found to inhibit Gram-positive bacteria while lavender, oregano EO, and cit-
ronellol, carveol compounds can inhibit more Gram-negative bacteria. Both Gram-positive
and negative bacteria have been affected by citral, eugenol, carvacrol, and thymol EO com-
pounds.
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The demand and the usage of EO is currently gaining popularity not only for pharma-
ceutical uses but also in food, fragrance, and cosmetic industries. Their current use may
well be expanded to eventually replace antibiotics, although their activity is still being
established, as it is dependent on the chemical composition of the oil, which may func-
tion to inhibit bacterial growth in different ways, including causing cell wall disruption,
metabolic pathway disruption, or reducing the cellular membrane potential [23].

2.1.2. Antifungal Activity of EO

Fungal infections can be either superficial or invasive [81]. Treating human fungal
infections mainly involves the use of oral tablets or topicals creams. It is also more difficult
to apply treatment for fungal infections than bacterial, because human and fungal cells
share the commonality of being eukaryotic. If the fungal treatment targets and acts against
a common structure in eukaryotic cells, this may also lead to toxicity for the human cells,
compromising host safety [81]. When developing an antifungal drug, it is important for
pharmaceutical industries to target a structure that is found specifically only in fungal cells
such as the chitin structure [81,82].

Accordingly, various EO and their individual compounds have been extensively tested
against various fungal strains [83–86]. It has been found that EO exerted antifungal activity
with roles in blocking cell communication, attenuating fungal growth, and inhibiting
mycotoxin production [42,81,87].

The antifungal activity of multiple EO against C. albicans has been studied. Plants such
as oregano, rosemary, and thymus showed a strong inhibitory effect with an MIC result
ranging from 15.02 to 31.08 µg/mL [56,66,88]. Additionally, different Ocimum EO species
have been tested against different Candida species, and their antifungal activity by the broth
microdilution method have shown that Ocimum micranthum and Ocimum selloi are active
against Candida species with MIC values of 312.5–1250 µg/mL [89]. Therefore, Ocimum EO
can be used to treat infection with fungus such as C. albicans [89]. Due to an abundance of
the phenolic constituents including carvacrol and thymol as major components in oregano
and thyme, EO have shown significant inhibitory activity against fungal pathogens by
breaking the fungal cell membrane [23]. In general, oregano has been found to affect both
spore germination and destroy fungal cell membranes. In addition, it has been determined
that the mycelial growth of three fungal Aspergillus species was inhibited by 90–100% due to
the activity of cinnamon and clove EO [90]. A study has reported the fungicidal potentials
of EO and pure constituents to hamper viable cell count, mycelia growth, and mycotoxin
production by these fungi after treatment with clove, cinnamon, and oregano EO [42].

Main compounds such as terpenes, eugenol, farnesol, benzoquinone, menthol, and men-
thone show strong antifungal properties, especially against C. albicans, Candida neoformans,
Candida tropicalis, Candida glabrata, and Paracoccidioides brasiliensis [45,54,56,58,91]. In gen-
eral, EO can disrupt the chitin synthesis in fungal cell walls to causes abnormality in
glycoproteins synthesis and mitochondrial structure, as well as in sporulation inhibi-
tion [81,82].

Furthermore, use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae),
and Thymus vulgaris L. (Lamiaceae) EO and their main components to enhance itracona-
zole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains has
recently been reported, and the results have shown positive outcomes [92].

2.1.3. Antiviral Activity of EO

Antivirals are medications that are utilized to treat viral infection via targeting the
viral replication events resulting in an inhibition of viral replication [93]. The majority of ef-
fective antivirals against human immunodeficiency virus (HIV) and hepatitis B virus (HBV)
has become ineffective due to antiviral resistance, although they have contributed to com-
bating viral infections; several antivirals have also induced adverse reactions. As a result,
many studies have been done to explore new antiviral treatments to these viruses [94–97].
In addition to the limited effective antiviral medications, alternative therapeutic substances
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such as EO have been explored, as several trials have shown that EO can possess significant
antiviral activity against many RNA and DNA viruses by inhibiting viral multiplica-
tion [98].

Some EO compounds have shown an effective response against viruses through viri-
cidal activity, preventing the viral replication and adsorption of viruses to host cells [99].
A study has proven the antiviral activity of several plants’ EO including Zataria multiflora,
Eucalyptus caesia, Artemisia kermanensis, Satureja hortensis L., and rosemary against herpes
simplex virus-1 (HSV-1) using the plaque reduction assay [100]. However, thymus EO was
tested against HSV and influenza and showed no effective results [101]. In a different study,
the β-caryophyllene, which is constituent in many EO, has been examined for its viricidal ac-
tivity against dengue virus (DENV) proteins, and effective results were reported as it acted
on inhibiting the replication of the DENV [102,103]. Compounds such as γ-terpinene and
cuminyl-aldehyde have been found to have antiviral activity against two types of viruses;
a significant inhibition was observed on HSV-1 (DNA virus), while a lesser inhibitory
effect was observed on the parainfluenza virus type 3 (PI-3) (RNA virus) [97]. Moreover,
ajwain EO, which was tested against Japanese encephalitis virus (JEV), was found to be
effective with viral inhibition at 0.5 mg/mL of oil [104].

However, different EO will have different modes of action on viruses; in general,
they act by targeting the nucleic acid polymerases. Generally, it has been shown that
thymol and phenylpropanoids are compounds that have been responsible for the antiviral
activity in HSV and JEV. EOs’ antiviral properties can be a promising alternative in the
future, as more human trials must be conducted in order to provide more supportive
evidence in terms of efficacy and safety.

2.2. Synergistic Activity in EO

The combinatory effect of EOs and their compounds with antibiotics is a new approach
that is currently being explored. Combination therapy will result in three types of effects:
synergistic, additive, and antagonistic [105,106]. Exploiting the synergistic combination
of EO and antimicrobial agents have been suggested as one possible alternative strategy
for combating antimicrobial resistance. According to a number of studies, several EO
constituents have shown the ability to enhance conventional antimicrobial efficacy and
potency when used in combination [105,106].

In a study, a combination of five EOs with seven antibiotics have been investigated;
the combined effect of peppermint, cinnamon bark, and lavender EO with piperacillin,
peppermint, and meropenem showed significant synergistic effects against various E. coli
strains [25,107,108]. In a different study, the fractional inhibitory concentration (FIC) of
EO was evaluated, and the data showed promising outcome against fungal and bacterial
species [109,110]. Hence, when more than one EO were combined, a greater efficacy was
achieved. Oregano and thyme EO combined showed synergistic effects against different
fungal species studied with FIC ≤0.5, except for Aspergillus niger, which that displayed an
additive effect with an FIC value of 0.75 ± 0.16. Moreover, a synergistic effect was found
between carvacrol and thymol, which are compounds contained in thyme and oregano,
respectively, to have a synergistic effect against Penicillium spp, A. flavus, and Fusarium
species with FIC ≤ 0.5. A synergistic effect was also reported between carvacrol and thyme
EO that showed an enhanced effectiveness against S. typhimurium [109,110].

Tea tree oil is known for its medicinal uses, mainly due to its antimicrobial effects [17,111].
Tea tree oil has been shown to react synergistically with tobramycin against E.coli ATCC
25922 and S. aureus ATCC 29213, with a mean post-antibiotic effect of 1.3 h against E. coli and
1.7 h against S. aureus [112]. This study showed that this combinatory therapy is effective
against the Gram-positive and Gram-negative bacterial strains. In addition, tea tree oil in
combination with peppermint oil showed a synergistic activity against A. niger with an FIC
of 0.43 ± 0.06 [110]. Additional combinations of tea tree oil with different types of EO have
been shown to give different synergistic and additive activities against fungal pathogens
such as Penicillium chrysogenum, A. flavus, Aspergillus parasiticus, and A. niger. For instance,



Molecules 2021, 26, 628 15 of 27

tea tree combined with cinnamon or eucalyptus showed additive activity in all fungal
species with 0.5 ≤ FIC ≤ 1. If combined with thyme, the combination will give an additive
activity with 0.5 ≤ FIC ≤ 1 against all species except A. niger. Moreover, the combination
of oregano and tea tree has been shown to be additive against both P. chrysogenum and
A. niger [110].

EO from Salvia fruticosa, Salvia officinalis, and Salvia sclarea were investigated using five
Staphylococcus epidermidis strains that possess the Tet(K) efflux pump, which is involved in
the tetracycline resistance mechanism [113]. The checkerboard method was used to evaluate
the combined effect of the EO and tetracycline. Using quantitative RT-PCR, the largest
decline of the tetracycline effluxes was detected from S. epidermidis cells treated with S.
fruticosa EO. The mRNA level of Tet(K) gene was lowered by 2·2-fold, which indicated
efflux pump inhibition. Findings demonstrated the synergistic potential of Salvias’ EO
combined with tetracycline, with lowered MICs values showing S. fruticosa EO to be the
most effective of the three EO tested [113].

Furthermore, the synergistic antifungal, allelopathic, and antiproliferative potential
of S. officinalis l. and thymus vulgaris l. EO have been investigated [114]. The results
indicated that the tested EO alone as well as in combination had allelopathic effect, while the
synergistic effect of S. officinalis l. and T. vulgaris l. EO in terms of fungal growth was found
to be 0.06%. Furthermore, thyme and sage EO exhibited in vitro antiproliferative activity
on melanoma cell lines A375 and B164A5 alone, as well as in combination [114].

The antifungal activity of "Mentha of Pancalieri" EO, either alone or in combination
with azole drugs (fluconazole, itraconazole, ketoconazole) was assessed against a wide
panel of yeast and dermatophyte clinical isolates [115]. The EO was analyzed by MIC in
addition to GC-MS and minimum fungicidal concentration (MFC) parameters. The results
suggested that the EO may act as a potential antifungal agent and could serve as a natural
adjuvant for fungal infection treatment.

The antifungal effect of Pelargonium graveolens has also been tested in combination with
fluconazole on C. albicans strains using the micro-broth dilution assay. The results suggest
the synergistic reaction when combining P. graveolens with fluconazole with an FIC of
0.37, which shows that P. graveolens can enhance the efficiency of fluconazole treatment by
78.31% [116]. In addition, Melissa officinalis EO has been examined against avian influenza
virus (AVI) [117]. The combination of M. officinalis EO and oseltamivir antiviral drug
showed synergistic activity as the results showed a reduction in the viral genome copy
number, which proves the inhibitory effect against AVI [117].

2.3. Mode of Action of EO Compounds on Pathogenic Bacteria

EO chemical compounds possess different modes of action that can be used to inhibit
or kill microbes (Figure 1) [23]. The mode of action of each EO compound may differ,
as some act on the outer membrane of bacteria and some act on the membrane proteins’
efflux system. The hydrophobicity of EO enables them to penetrate the cell wall of bacteria,
which subsequently disrupts the cell wall, causing increased permeability and the release
of intracellular materials [51,118].

EO exhibit several antibacterial mechanisms that lead to the inhibition of bacterial
growth; it has been proven through numerous studies that the membrane disruption
phenomenon is one of the modes of action exhibited by EO’s constituents through targeting
the cellular membrane as observed on the L. monocytogenes membrane upon applying
oregano and thyme EO [119].

Bacterial cell membranes are composed of phospholipids and proteins. After the
bacteria had been exposed to CBO, some proteins were lost from the outer membrane and
some were lost from the plasma membrane of the bacteria [75]. These proteins that were
lost play a role in energy generation; losing these proteins may disrupt the bacterial cell
membrane and subsequent killing of the bacteria [75]. Moreover, the lavender EO (LVO)
has been shown to cause oxidative stress to bacteria by oxidizing the outer membrane
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of the bacteria [120–122]. In fact, LVO and meropenem, in addition with reactive oxygen
species (ROS), have resulted in bacterial membrane disruption.

Figure 1. Membrane disruption in a bacterial cell caused by EO leading to the inhibition of bacterial
growth. K+ is potassium ion and H+ is hydrogen ion.

The efflux pump is a protein found in the plasma membrane of the bacteria, and its
major function is to prevent the entrance of toxic compounds into the cytoplasm [17,123].
This protein plays an important role in antibacterial resistance that helps bacteria to survive.
A major mechanism of antimicrobial resistance is increasing the expression of efflux pumps
in bacteria, which will subsequently result in lowering the antibiotic concentration in
bacterial cells [65]. The efflux pump of bacteria works to protect the bacterial cell by
pumping a large amount of antibiotics out of the cells [124]. Recently, some studies have
found that EO are able to inhibit the efflux pump of the bacteria, and the compounds
present in the EO have many targets on the bacterial cells [125]. Therefore, the inhibition of
efflux pumps is a vital target for EO and their metabolites [126].

EO are hydrophobic in nature; thus, the hydrophobicity of the EO compounds causes
an increase in the membrane permeability of bacteria, which may subsequently lead to
the leakage of bacterial cell contents [44]. The leakage of the cell content includes ions
such as potassium ion (K+) and hydrogen ion (H+), and also proteins and genetic material
such as DNA (Figure 2) [127,128]. For example, the loss of cell content in Bacillus subtilis
after exposure to Origanum compactum EO is an indication of the increased membrane
permeability, which results in cell lysis [128].

Figure 2. Increased membrane permeability and leakage of cell contents in a bacterial cell. K+ is
potassium ion and H+ is hydrogen ion.

ATP is an energy source found in all organisms, including bacteria, and it is essential
for respiration and metabolic processes. ATP can be depleted by EO; the mustard EO



Molecules 2021, 26, 628 17 of 27

caused the reduction of ATP intracellularly and increased extracellular ATP (Figure 3) in
E.coli O157:H7 and S. typhimurium [44,129]. Furthermore, cinnamaldehyde and cinnamon
oil decreased the intracellular ATP in Mycobacterium avium subspecies paratuberculosis
(MAP) [130]. A high concentration of EO compound such as carvacrol can result in cell
lysis by depleting intracellular ATP in B. cereus [131].
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3. Recent Approaches
3.1. Genomics Perspective

There is a crucial need for the discovery of novel groups of antimicrobial agents to
counteract the threat of MDR pathogens to reduce the rapid emergence of acquired resis-
tance [132,133]. Therefore, it is important to know how EO operates at the genetic level
and how they modulate microbial genes [134]. The availability of the complete genome
sequence for several pathogenic microorganisms provides extremely useful information
regarding potential drug targets and is a very useful resource in order to mine for novel
antimicrobial drugs [135]. Using this approach, genome databases coupled with bioinfor-
matics are used as tools for the transcriptional examination and recognition of the molecular
basis. This will enable us to screen compounds/molecules as potential inhibitors of patho-
logical targets and may also help us discover and optimize more effective next-generation
antibiotics.

In regard to EO activity on bacterial genes, it has been found that rosemary and
Baccharis psiadioides EO have shown a bacteriostatic effect that impacts the development
and functions of bacterial cells of L. monocytogenes by upregulating and downregulating
stress and virulence genes such as actA, and hly, thus reducing bacterial virulence [136].
In addition, by using scanning electron microscopy, qPCR, and a 96-well plate method,
cinnamon oil has been found to have activity against the expression of icaA gene and
biofilms of S. epidermidis [137]. Furthermore, confocal laser scanning microscopy (CLSM)
has shown that cinnamaldehyde is able to kill the tested bacteria, thus indicating its
effectiveness in biofilms [137]. All these findings prove that different EO can modulate
gene expression by upregulating and downregulating stress and virulence genes of different
microorganisms.

3.2. Proteomics Perspective

Amongst the recent approaches is the use of proteomic technologies for the effective
analytical evaluations and modifications in protein profiles. Indeed, these methods are
important tools to study the mechanisms of AMR in microbes by extensive analysis of
the proteome [138]. They have been used to separate, identify, and quantify the different
classes of EO components and will be discussed below.

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is known as the most
used technique for separating and identifying proteins as it is able to evaluate thousands
of different spots in a protein mixture [139]. It consisted of the isoelectric focusing (IEF)
method in the first dimension, which separates the proteins according to the isoelectric
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focusing, and in the second dimension, separation is performed based on the molecular
size by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- PAGE) [140].
The basic principle of these techniques is to separate the complex protein mixture into two
steps by placing the mixture in a gel and applying an electrical current. This technique
is widely used in proteome analysis, bacterial pathogenesis, diseases research, and the
purification of proteins [140].

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-
TOF MS) is another emerging technology that has been proven to efficiently provide precise
and reliable microorganisms identification results and has been employed in detecting
antibiotic resistance as well [141]. The sample is mixed with an energy-absorbent matrix,
and a laser beam is used to ionize the samples. Then, the molecules are charged, and
consequently, the time of ion flight may differ according to their mass-to-charge ratio (m/z)
value [142].

Understanding the protein profiles helps researchers find effective interactions of EO
components and drugs with their targets, which are mostly proteins in nature. Over the
years, MALDI-TOF MS has proved its ability to detect and quantify changes that occur in
the proteomes of the bacterial cells after the exposure to EO compounds using different
proteomic techniques. For example, it has been used for the identification of stress response
in E. coli upon exposure to EO components [143]. Overall, MALDI-TOF MS has been more
cost-effective, reliable, and rapid compared to other diagnostic tools [144].

To identify the mechanism of action of thymol EO, 2D-PAGE followed by MALDI-TOF
methods was employed to analyze the protein profile in order to detect the induced stress
reaction caused by exposing Salmonella enterica serovar Thompson to sublethal concentra-
tion (0.01%). The study demonstrated that different significant effects occurred including
proteins alteration, increase, and reduction. Proteins such as GroEL and DnaK were overex-
pressed in the treated cells as a reaction due to treatment by EO. However, the thioredoxin-1
protein was downregulated due to thymol action. In conclusion, utilizing proteomics ap-
proaches to observe the effects was helpful to provide evidence of thymol bactericidal
ability and show its particular targets [145].

Other powerful and precise analytical tools that are used for the assessment of the bac-
terial metabolome include gas chromatography-mass spectrometry (GC-MS), liquid chro-
matography coupled to tandem mass spectrometry (LC-MS), nuclear magnetic resonance
(NMR) spectroscopy, and microarray. LC-MS/MS is a technique used for the quantification
of proteins that is highly selective and sensitive [146]. LC-MS/MS may be used to analyze
the effect of EO on the proteome of bacteria by comparing the proteome of the cells that are
treated with particular EO against untreated cells [120].

On the other hand, the combination of GC and MS creates a powerful analytical tool
that separates compounds by subjecting them to heat, which allows the determination of
their chemical structure. Once the volatilization of the compound occurs, the quantification
and qualitative identification of the compound can be recorded. These techniques enable
researchers to identify major constituents and their concentrations present in EO.

Furthermore, NMR instruments allow the molecular structure of a material to be
analyzed by observing and measuring the interaction of nuclear spins under a power-
ful magnetic field. The method allows cellular components to be easily examined and
recognized from their characteristic chemical shifts. In general, intra and extra-cellular
metabolomic studies using the methods mentioned in this section have some basic benefits
such as the provision of important functional genomics, characterization of the strains,
their metabolic engineering, and ways of cellular communications [147]. Bacteria that are
resistant to beta-lactam antibiotics were studied using proteomic analysis [148]. The study
revealed an increase in several proteins related to antibacterial resistance mechanisms such
as the outer membrane protein (To1C) that is involved in the efflux pump system [148].
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4. Limitations in Essential Oils Research

Although extensive studies have been conducted to explore the antimicrobial po-
tential of EO, the results of several studies are not entirely in agreement in terms of
the EO efficiency killing microbes or mitigating their stability at various environmental
conditions, such as in the presence of salts. There are also limited studies on the relation-
ship between the structure of EO compounds correlated to antimicrobial activity [149].
However, the mechanisms by which the EO function are not fully understood in detail.
Moreover, there have been reports of the negative impact of excessive doses of EO on
human health [150].

The variation in results might be due to disparity in EO, level of various impurities in
samples, type of microbes, and experimental conditions. Furthermore, various studies have
indicated slightly variable definitions of MIC and Minimum Bactericidal Concentrations
(MBCs). The main issue is that EO may not be easily tested by routine techniques such
as disc diffusion and MICs may not be easily tested in the traditional way that powdered
materials are tested, because EO undergo volatile evaporation from the discs may provide
inaccurate results. Consequently, there is a great variation in results and reproducibility of
the results, and it is often very difficult to draw useful and applied results from various
research studies.

Despite the fact that EO are highly useful alternative antimicrobial agents, espe-
cially against food-borne microbes, there is a considerable lack of information regarding
their toxicity profiles. Moreover, the likelihood of EO effect on the stress tolerance of
microbes is limited. Though generally regarded as safe, natural products and EO are not
completely safe due to the diversity of metabolites in them when used as antimicrobial
agents [151]. The large amount of secondary metabolites may have synergistic or antago-
nistic properties when used in non-standardized form. Thus, there is a need to optimize
the analysis of a range of EO and compounds more clearly for the effective yet safe use
of EO for human beings. The formation of residues in biological systems and allergic
reactions associated with the use of EO are also among other challenges regarding their
use as antimicrobial agents [152].

Stability is another issue associated with the use of EO due to their heat-labile na-
ture. EO are generally volatile at normal temperature and need to be stored in cool and
dry environments. Exposure to elevated temperatures and humidity might cause their
decomposition and hence efficacy as antimicrobial agents to be reduced. For instance,
cinnamaldehyde was reported to be degraded at elevated temperatures and form ben-
zaldehyde at 60◦C, but when combined with eugenol or cinnamon leaf oil, it is stable
even at high temperatures (200 ◦C for 30 min). More recently, encapsulation tools were
reported to significantly improve stability issues and reduce excessive oxidation, loss of
quantity, change in aroma, and interactions with other chemicals [153,154]. Nevertheless,
more detailed research studies are required regarding the potential use of encapsulated EO
as efficient antimicrobial agents.

Although a plethora of EO are available, only a few have obtained approval as
preservatives in food. This is because certain food components drastically reduce the
antimicrobial efficiency of EO. Consequently, the development of more effective and vali-
dated food model systems that have close resemblance with food components is desirable.
This will predict the effect of food on the antimicrobial potentials of EO and will help
in the optimization of EO as food preservatives. Subsequently, it is very important to
evaluate the antimicrobial mechanisms of various food combinations with EO for opti-
mized and reliable use of these oils as preservatives. As discussed earlier, the combination
of various secondary metabolites is sometimes required for the adequate antimicrobial
efficacy of EO. Some studies have reported that crude extracts and crude oils display a
better antimicrobial spectrum when compared with pure compounds [23]. This might be
attributed to the synergy between various metabolites or the combined antimicrobial effect
of various components.
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Natural products must be carefully evaluated for the antimicrobial activity of their
purified EO before describing them as effective or ineffective antimicrobial agents. EO can
be used in combination with common herbs such as spices, which will improve their preser-
vative capacity for various foods including fish, sauces, meat, and soups. As mentioned
earlier, EO alone may offer only a mild antimicrobial spectrum that leads to an ineffective
organoleptic profile for users. As a consequence, research on the combined synergistic
effect of EO and herbs may be designed in the future for a more effective and optimized
utilization of these oils as preservatives while preserving their aroma and spicy taste.

5. Future Strategies and Prospects

EO reactivity depends on their functional groups; they can increase permeability of
the pathogen cell membrane and cause the leaking of intracellular components, which neg-
atively affects the cell metabolism [23,155]. Moreover, EO are important for reducing
the antimicrobial resistance; more effort is needed to do long-term studies to determine
the EO effectiveness in vivo by conducting clinical trials in order to discover its full po-
tential, the needed dose, and determine if any side effects emerge [23,99]. EO can be
effective by either the absorption, ingestion, or inhalation through lungs of its volatile
compounds [25,156,157]. These oils are effective and used in raw and processed food
preservation, perfumery, and in alternative medicine due to their antimicrobial and antiox-
idant activities for burn healing, and malarial infection [25,158,159]. EO are also shown
to give synergistic activity when used with antibiotics and thought to be effective to treat
antimicrobial resistance, and in the public point of view, it is more accepted due to its
traditional use [23,160,161]. Previous discoveries of EO against antimicrobials still did not
explain exactly the EO mechanism of action and their chemical nature, and this makes
the effectiveness and action of EO against antimicrobials unclear and in need of improve-
ment [23,162].

In the future, research studies should be done to determine the exact mechanism of
action that is specific for each EO and the synergistic mechanisms between its compo-
nents [34]. Further extensive studies might be designed to evaluate or predict the adoptive
behavior of microbes to the EO after chronic or sub-chronic use. As reported in previous
studies, B. cereus have become less susceptible to the antimicrobial effect of carvacrol subse-
quent to culturing at low concentrations of the compound [163]. Meanwhile, a significant
enhancement in the sensitivity of the same bacteria to the action of EO was observed after
alteration in the phospholipids and fatty acids composition, which alter the fluidity and
passive permeability of the bacterial cell membrane. Additionally, the effect of EO on the
bacterial membrane proteins and phospholipids and their mechanisms is not fully under-
stood yet. A few EO have been shown to have low toxicity to the human body; however,
other EOs may affect human cells negatively and might be considered unsafe to be used.
Thus, more studies are needed to check EO toxicity through many clinical phases [164,165].

Some researchers suggested that the antibacterial effect of EO should be checked in
the lag phase of bacterial growth, which will help researchers understand the mechanisms
and pathways involved in the development of EO as potential antimicrobial agents [34].
Nevertheless, with the emerging concept of green consumerism, it is expected that the
use of EO and medicinal plants will increase, and further exploration will occur. The use
of natural products-based drugs, nutraceuticals, herbs, and isolated pure compounds is
tremendously increased in medicine, the food sector, cosmetics, and didactics. The use of
modern analytical techniques can help mankind in the further development of evidence-
based medicine with more efficacy and safety. Thus, new nanoencapsulation strategies
and synergistic studies can help provide powerful information about this topic of interest
in future [34,124].

Despite the fact that genomic technologies have provided us with tremendous op-
portunities to understand the biological drug targets, the problem of microbial-mediated
infections is still a global health challenge. This is mainly due to the emergence of re-
sistant genes and the indiscriminate use of antimicrobial agents. Another reason is that



Molecules 2021, 26, 628 21 of 27

the pharmaceutical industries are in a rush to develop more drugs and are only getting
derivatives of the original drugs. The discovery of novel compounds with new mechanisms
of action is very limited. Thus, for the development of more effective therapeutic agents,
experts from various disciplines are needed; these include genomics, structural biology,
genetics, and bioinformatics. Moreover, the establishment of widespread epidemiological
networks capable of reporting the emergence of new microbes and public awareness is
imperative for effective mitigation.
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48. Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Griensven, L.J.L.D. van Antibacterial Effects of the Essential Oils of Commonly
Consumed Medicinal Herbs Using an In Vitro Model. Molecules 2010, 15, 7532. [CrossRef]
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97. Orhan, İ.E.; ÖzçeliK, B.; Kartal, M.; Kan, Y. Antimicrobial and Antiviral Effects of Essential Oils from Selected Umbelliferae and
Labiatae Plants and Individual Essential Oil Components. Enzym. Inhib. Act. Nat. Compd. 2012, 36, 239–246. [CrossRef]

http://doi.org/10.1080/02713683.2018.1461907
http://doi.org/10.3390/ijms18061283
http://www.ncbi.nlm.nih.gov/pubmed/28621716
http://doi.org/10.3390/pathogens8010015
http://www.ncbi.nlm.nih.gov/pubmed/30696051
http://doi.org/10.1371/journal.pone.0214326
http://doi.org/10.1089/jmf.2010.0009
http://www.ncbi.nlm.nih.gov/pubmed/21142945
http://doi.org/10.1590/S1517-83822010000400027
http://doi.org/10.3390/molecules17032704
http://doi.org/10.1155/2019/8928306
http://doi.org/10.3390/ph10040086
http://doi.org/10.1016/j.foodchem.2016.09.179
http://doi.org/10.1007/s11746-010-1698-3
http://doi.org/10.1080/10773525.2018.1447320
http://www.ncbi.nlm.nih.gov/pubmed/29516785
http://doi.org/10.3390/molecules23092108
http://www.ncbi.nlm.nih.gov/pubmed/30131466
http://doi.org/10.1016/j.ijfoodmicro.2011.01.023
http://www.ncbi.nlm.nih.gov/pubmed/21320730
http://doi.org/10.1016/j.foodres.2012.08.020
http://doi.org/10.1016/j.mycmed.2017.03.004
http://doi.org/10.1016/j.indcrop.2014.02.032
http://doi.org/10.1016/j.fct.2019.110821
http://doi.org/10.1002/cbdv.201000301
http://doi.org/10.1186/s12906-018-2219-4
http://doi.org/10.1111/jgh.12499
http://www.ncbi.nlm.nih.gov/pubmed/24372662
http://doi.org/10.4254/wjh.v9.i5.227
http://www.ncbi.nlm.nih.gov/pubmed/28261380
http://doi.org/10.3906/biy-0912-30


Molecules 2021, 26, 628 25 of 27

98. Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A Comprehensive Review of
the Antibacterial, Antifungal and Antiviral Potential of Essential Oils and Their Chemical Constituents against Drug-Resistant
Microbial Pathogens. Microb. Pathog. 2019, 134, 103580. [CrossRef] [PubMed]

99. Schnitzler, P. Essential Oils for the Treatment of Herpes Simplex Virus Infections. Chemotherapy 2019, 64, 1–7. [CrossRef]
100. Gavanji, S.; Sayedipour, S.S.; Larki, B.; Bakhtari, A. Antiviral Activity of Some Plant Oils against Herpes Simplex Virus Type 1 in

Vero Cell Culture. J. Acute Med. 2015, 5, 62–68. [CrossRef]
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