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Flexible bronchoscopes are medical devices widely 
used for diagnostic and therapeutic procedures. Usu-
ally, they are heat-labile and complex, which leads 
to difficulty in cleaning procedures (DiazGranados 
et al. 2009). Patient-ready reusable, flexible broncho-
scopes can be contaminated and damaged and pose 
a  severe threat to patient safety (Zamani 2004). It is 
well documented in the literature that some nosoco-
mial outbreaks have been linked to contaminated or 
inadequately disinfected bronchoscopes (Srinivasan 
et al. 2003). Moreover, recent studies determined that 
microbial transmission occurs even when proper 
cleaning and disinfection protocols are followed with 
standard guidelines (Galdys et al. 2019). Recently, endo-
scopes have been suggested as point sources of noso-
comial Enterobacteriaceae infections (Gastmeier and 

Vonberg, 2014). Previous investigations have shown 
a significant reduction of microbial contaminants with 
cleaning alone, and recommendations require clean-
ing to be performed promptly following use (Galdys 
et al. 2019). In China, the national standard “Regulation 
for Cleaning and Disinfection Technique of Flexible 
Endoscope (WS507-2016)” was used for disinfection 
of endoscopes, including the selection of chemicals to 
ensure quality control throughout the clinical manage-
ment (Gu et al. 2020). However, the microbiology data 
on cleaning and disinfection of endoscopes is unclear. 
Moreover, bronchoscope-associated microbial profiles 
and phenotypic characteristics are largely unknown.

K. aerogenes is a Gram-negative, rod-shaped, ana
erobic bacterium, a commensal microorganism living 
in the mouth and gut. However, the bacterium is now 
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A b s t r a c t
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resistant to many antimicrobial agents, including one 
of the latest antibiotics-carbapenems, which represents 
a serious challenge to public health (Zheng et al. 2020). 
It is an important opportunistic and multi-resistant bac-
terial pathogen for patients during the past decades in 
clinical settings (Malek et al. 2019). It is widely associ-
ated with bloodstream, skin and soft tissue, respiratory, 
and urinary tract infections (Shen et al. 2019). Recently, 
the emergence of carbapenem-resistant K. aerogenes 
and colistin-resistant K. aerogenes isolates in China is 
of concern (Liao et al. 2020). A previous study revealed 
that the prevalence of carbapenem-resistant K. aero-
genes isolates in a Chinese teaching hospital was caused 
by clonal dissemination (Qin et al. 2014). However, the 
prevalence, epidemiology, resistance mechanism, and 
genetic background of K. aerogenes in China remain 
largely unknown due to the limited number of investi-
gations performed to date in this field (Miao et al. 2019; 
Ma et al. 2020). 

The aims of the current study were to evaluate the 
microbial profiles of endoscopes pre- and post-disin-
fection in the Disinfection and Sterilization Center, and 
investigate the phenotypic characteristics and genomic 
complexity of K. aerogenes strains isolated from bron-
choscope samples. 

From January 2019 to May 2019, the study was 
conducted in the Disinfection and Sterilization Center 
of the First Affiliated Hospital, School of Medicine, 
Zhejiang University, where both gastrointestinal and 
respiratory endoscopes are reprocessed. During the 
study period, procedures in our institution were per-
formed using bronchoscopes (model BF260) (Olym-
pus, Japan). The cleaning of bronchoscopes was carried 
out with an enzymatic detergent solution, endozyme. 
Manual disinfection was performed by soaking the 
device into 2% glutaraldehyde for 30 minutes.

Samples were collected under aseptic conditions 
from bronchoscopes following clinical procedures and 
after usual decontamination procedures by flushing 
thoroughly with 10 ml of sterilized phosphate-buffered 
saline (PBS) and shaking for 30 seconds, as described 
previously (Jørgensen et al. 2016). Collected samples 
were put in cool boxes with ice packs (4–8°C) upon col-
lection and transported within 4 hours to the laboratory. 

All samples (100 µl) were plated on Mueller-Hinton 
agar plates (Oxoid, UK) using the sterile swab. The agar 
plates were incubated for 18–24 hours at 37°C. A sin-
gle colony was selected from each species per sample. 
All of the positive cultures were selected for identifica-
tion. Bacterial identification was conducted by matrix-
assisted laser desorption/ionization-time of flight mass 
spectrometry (MALDI-TOF-MS) (Bruker, Leipzig, 
Germany) and further checked by PCR and sequencing.

The minimum inhibitory concentrations (MICs) 
of seven K. aerogenes isolates were determined using 

the agar dilution method according to the Clinical and 
Laboratory Standards Institute (CLSI) standards (Zheng 
et al. 2015). Nineteen antimicrobials were tested as 
described previously (Zheng et al. 2015). Antimicrobial 
susceptibility testing for colistin and tigecycline was per-
formed using the microbroth dilution method described 
by the European Committee on Antimicrobial Suscep-
tibility Testing (EUCAST). The MIC results were inter-
preted using the CLSI standards (Third Edition: M45).

WGS was performed on all K. aerogenes strains iden-
tified in this work. The extracted genomic DNA was 
evaluated by agarose gel electrophoresis. The concen-
tration and purity of genomic DNA were determined 
using NanoDrop 2000 (Thermo Scientific, Waltham, 
USA) and Qubit® version 2.0 fluorometer (Thermo 
Scientific), respectively. The sequencing library was 
prepared with the Illumina Nextera XT kit (Illumina, 
San Diego, USA). A-tailed fragments were ligated with 
paired-end adaptors and PCR-amplified with a 500-bp 
insert. WGS was performed using an Illumina NovaSeq 
6000 platform (Novogene Co., China). PCR adapter 
reads and low-quality reads from the paired-end and 
mate-pair library were filtered using an in-house pipe-
line. Paired reads were then assembled into many scaf-
folds using Velvet version 1.2.10 (Zerbino and Birney, 
2008). Multilocus sequence typing (MLST) analysis 
was performed as described previously (Cerqueira et al. 
2017). Antibiotics Resistance Genes (ARGs) were iden-
tified using the ResFinder 4.1 database (https://cge.cbs.
dtu.dk/services/ResFinder) (Zankari et al. 2012). 

To further characterize the evolutionary relation-
ship among K. aerogenes isolates, we created a core 
genome-based phylogenetic tree using seven K. aero-
genes genomes sequenced in this study and 51 ran-
domly selected publicly available K. aerogenes genomes 
(Table SI). The isolate collection included strains from 
humans (n = 44), the environment (n = 9), and other 
sources (n = 5) widely distributed over time and geo-
graphical locations. All collection genomes were anno-
tated using Prokka (https://github.com/tseemann/
prokka) and the RAST tool (https://rast.nmpdr.org). 
The core genes in K. aerogenes genomes were identi-
fied using Prokka, and maximum likelihood-based 
phylogenetic reconstruction was performed with 
Roary (https://github.com/yikedou/Roary). One hun-
dred bootstrap replicates were evaluated to determine 
branch support. A maximum-likelihood phylogenetic 
tree based on the core single nucleotide polymorphism 
alignments was generated using FastTree (Price et al. 
2009). Phylogenetic tree visualizations were produced 
using the Interactive Tree of Life (https://itol.embl.de).

Over the five months, 250 bronchoscopes were sam-
pled, and 500 samples were collected in a single cycle, 
including 250  samples after clinical procedures and 
250 samples after usual decontamination procedures. 
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All bronchoscope samples were tested for bacteria. 
A total of 358 isolates and 13 isolates were recovered 
from samples after clinical procedures and samples after 
decontamination procedures, respectively (Table  SII 
and Table SIII). Of note, most of the detected microor-
ganisms were Gram-positive bacteria, such as Staphy-
lococcus epidermidis (n = 69), Streptococcus salivarius 
(n = 42), and Streptococcus oralis (n = 23). Among the 
Gram-negative bacilli isolates, most of them belong to 
the Enterobacterales group (Table SII and Table SIII). 
Moreover, K. aerogenes was found in both groups, 
includes six isolates before the cleaning procedure and 
one after disinfection. This prompted us to investigate 
further the phenotypic and genomic characteristics of 
seven K. aerogenes identified in this work.

Antimicrobial susceptibility of seven K. aerogenes 
isolates is detailed in Table I. The full resistance (100% 
isolates) was observed for amoxicillin-clavulanic acid 
and cefoxitin (100%). All isolates were susceptible to 
piperacillin-tazobactam, cefuroxime, ceftazidime, cef- 
triaxone, cefoperazone-sulbactam, cefepime, ertapenem, 
amikacin, levofloxacin, tigecycline, and trimethoprim-
sulfamethoxazole. Interestingly, five isolates were inter-
mediate to imipenem. Among seven K. aerogenes iso-
lates, we found five sequence types (STs), which were 
ST135 (n = 2) and ST1358 (n = 2), followed by ST1357 
(n = 1), ST1359 (n = 1), and ST1363 (n = 1). 

The Roary matrix-based gene sequence analysis 
generated a large pan-genome of 18,105 gene clusters of 
58 full genomes. The whole-genome phylogeny (Fig. 1) 
revealed a population structure that was generally con-
cordant with MLST (data not shown). Genetic diversity 
was observed in our bacterial collection, which clus-
tered into three main clades. 

We identified a total of 43 antimicrobial resistance 
genes in the K. aerogenes core genomes (Fig. 2). The 
resistome of K. aerogenes comprises a high number of 
antibiotic efflux pumps as well as narrow and extended-
spectrum β-lactamases. As expected, human isolates 
encoded more antimicrobial resistance genes than 
environmental isolates. Of note, three isolates from this 
work possessed only one resistance gene, fosA, which is 
consistent with their phenotypic characteristics.

This study assessed the phenotypic characteristics 
and genomic complexity of K. aerogenes strains isolated 
from bronchoscope samples. It is worthy to note that 
13  strains were isolated after cleaning procedures. It 
might indicate their low-level contamination with envi-
ronmental and skin bacteria since bronchoscope sam-
ples were collected after the clinical procedures without 
disinfection or cleaning processes. 

It is well known that outbreaks and pseudo-out-
breaks may be associated with bronchoscopes (Guy et al. 
2016). These nosocomial infections are commonly asso-
ciated with Mycobacterium spp. and Enterobacteriaceae 05
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isolates (Kirschke et al. 2003). In this work, we recovered 
seven K. aerogenes isolates from bronchoscope samples. 
K. aerogenes is associated with nosocomial infections 
and display multidrug resistance (Shen et al. 2019). 
The most prevalent STs were ST93 and ST4 (Passarelli-
Araujo et al. 2019a). However, we did not detect any 
multidrug-resistant K. aerogenes in this work. Further-
more, STs of K. aerogenes found in this work have not 
been described in the literature. The 2 ST1358 strains 
identified in this study were aggregated in 1 clade with 
1 ST1364 human isolate from Spain, which suggested 
that ST1358 and ST1364 might originate from the same 
ancestor. The results also indicate that 11 ST93 isolates 
and 9 ST56 were clustered into one separate sub-cluster, 
respectively, which exhibited a slight difference in the 
core genome sequence. Recent studies found that ST93 
was the most prevalent clone in the global K. aerogenes 
genome database, indicating that ST93 might be the 
dominant global clone sequence in clinical settings 
(Malek et al. 2019; Passarelli-Araujo et al. 2019b). Fur-
thermore, the emergence of fecal carriage and human 
infection of s K. aerogenes isolates resistant to multiple 
antibiotics, especially resistant to carbapenems, is con-
sidered a substantial threat to public health (Liu et al. 
2019; Tian et al. 2020). 

Although phenotypic and genomic evidence from 
the current study revealed that isolates recovered in 
this work are not multi-resistant. Active surveillance 
of bronchoscope-associated K. aerogenes isolates would 
improve our understanding of the population structure 
of this species. Of note, all isolates recovered from this 
study have a close relation to environmental or human 
isolates. A recent study investigated the population 
structure, virulence, and antimicrobial resistance in 
K. aerogenes (Passarelli-Araujo et al. 2019a). Their find-
ings showed that K. aerogenes has an open pangenome 
and a large effective population size, which is in line 
with our results.

This study described the phenotypic and genomic 
characteristics of bronchoscope-associated K. aero-
genes, although the relatively small number of not 
multi-resistant strains identified limits this finding. 
The detection of seven isolates of K. aerogenes in the 
surveyed Disinfection and Sterilization Center fur-
ther indicates that this opportunistic pathogen may be 
a source of nosocomial infections without proper dis-
infection protocols. These results may lead to a better 
understanding of the genetic background and popula-
tion structure of K. aerogenes in clinical settings.
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