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Abstract

A single bout of aerobic exercise modulates corticospinal excitability, intracor-

tical circuits, and serum biochemical markers such as brain-derived neu-

rotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1). These

effects have important implications for the use of exercise in neurorehabilita-

tion. Here, we aimed to determine whether increases in cardiorespiratory fit-

ness (CRF) induced by 18 sessions of high-intensity interval training (HIIT)

over 6 weeks were accompanied by changes in corticospinal excitability, intra-

cortical excitatory and inhibitory circuits, serum biochemical markers and

working memory (WM) capacity in sedentary, healthy, young males. We

assessed motor evoked potential (MEP) recruitment curves for the first dorsal

interosseous (FDI) both at rest and during tonic contraction, intracortical

facilitation (ICF), and short-interval intracortical inhibition (SICI) using tran-

scranial magnetic stimulation (TMS). We also examined serum levels of

BDNF, IGF-1, total and precursor (pro) cathepsin B (CTSB), as well as WM

capacity. Compared to pretraining, CRF was increased and ICF reduced after

the HIIT intervention, but there were no changes in corticospinal excitability,

SICI, BDNF, IGF-1, total and pro-CTSB, and WM capacity. Further, greater

CRF gains were associated with larger decreases in total and pro-CTSB and,

only in Val/Val carriers, with larger increases in SICI. Our findings confirm

that HIIT is efficacious in promoting CRF and show that corticospinal

excitability, biochemical markers, and WM are unchanged after 18 HIIT bouts

in sedentary males. Understanding how aerobic exercise modulates M1

excitability is important in order to be able to use exercise protocols as an

intervention, especially in rehabilitation following brain injuries.

Introduction

Aerobic exercise promotes brain health and function.

Indeed, exercise has been shown to improve learning and

memory, delay cognitive decline, and protect against

brain atrophy in healthy aging individuals (Barnes et al.

2003; Colcombe and Kramer 2003; Weuve et al. 2004;

Yaffe et al. 2009; Sofi et al. 2011; Gomez-Pinilla and Hill-

man 2013; Ludyga et al. 2016). Exercise programs have

been also shown to reduce blood pressure, insulin

resistance, and brain injury as well as to delay the onset

and progression of neurodegenerative diseases such as

Alzheimer’s and Parkinson’s (Bergen et al. 2002; Whelton

et al. 2002; Cuff et al. 2003; Teri et al. 2003; Rovio et al.

2005; Crizzle and Newhouse 2006; O’Leary et al. 2006;

Stevens and Killeen 2006; Rabadi 2007; van der Heijden

et al. 2010; Dimeo et al. 2012; Shu et al. 2014; Chin et al.

2015). Further, exercise plays protective and therapeutic

roles in depression (Blumenthal et al. 1999; Strawbridge

et al. 2002; Dunn et al. 2005; Singh et al. 2005;
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Nabkasorn et al. 2006; Rethorst and Trivedi 2013; Kvam

et al. 2016; Schuch et al. 2016). Despite the numerous

human studies highlighting the importance of exercise in

maintaining brain function and health, exercise-induced

functional changes in the brain and the underlying molec-

ular mechanisms largely remain to be elucidated in

humans. Changes in M1 excitability have been observed

following a single session of exercise. Yamaguchi et al.

(2012) have shown that short-term, low-intensity pedaling

decreased short-interval intracortical inhibition (SICI) in

the motor cortical representation of the tibialis anterior

and soleus muscles. Notably, the reduction in SICI is not

restricted to the motor cortical representations of the

exercising muscles. Indeed, decreased SICI has been

demonstrated in M1 areas representing resting upper limb

muscles such as the first dorsal interosseous (FDI) after

one session of lower-limb exercise (e.g., biking) (Taka-

hashi et al. 2011; Singh et al. 2014a,b; Lulic et al. 2017).

Further, Singh et al. (2014a,b) have observed increased

intracortical facilitation (ICF), while Lulic et al. (2017)

found decreased ICF in the M1 representations of upper

limb muscles not involved in the exercise following a sin-

gle biking session. Lastly, enhanced corticospinal excitabil-

ity in the nonexercising FDI has been reported after a

single session of moderate-intensity lower-limb aerobic

exercise in fit but not in low-to-moderately fit individuals

(Lulic et al. 2017). Taken together, these findings suggest

that acute exercise modulates plasticity of motor cortical

representations of both exercising and resting muscles. To

date, however, no study has examined whether long-term

aerobic exercise training using the lower limbs induces

changes in the excitability of resting upper limb muscle

representations.

Animal studies have implicated the neurotrophin

BDNF and the growth factor IGF-1 in mediating the ben-

eficial effects of exercise on hippocampal function and

structure as well as cognition (Neeper et al. 1996; Oliff

et al. 1998; Carro et al. 2000; Trejo et al. 2001; G�omez-

Pinilla et al. 2002; Vaynman et al. 2004; Berchtold et al.

2005; Ding et al. 2006; Huang et al. 2006; Cotman et al.

2007; Stranahan et al. 2009; Bechara and Kelly 2013). In

humans, findings are less clear since exercise-induced

increases in peripheral BDNF have been consistently

shown only immediately after a single bout of aerobic

exercise (Gold et al. 2003; Ferris et al. 2007; Goekint et al.

2008; Tang et al. 2008; Bos et al. 2011; Cho et al. 2012;

Heyman et al. 2012; Schmolesky et al. 2013; Mang et al.

2014; Skriver et al. 2014; Saucedo Marquez et al. 2015).

Studies involving longer exercise interventions (i.e., 6

weeks up to 1 year) have reported mixed results. While

the majority of reports have found no changes in circulat-

ing BDNF and IGF-1 at the end of the training period

(Schiffer et al. 2009; Seifert et al. 2010; Erickson et al.

2011; Ruscheweyh et al. 2011; Voss et al. 2013; Maass

et al. 2016; Gourgouvelis et al. 2018), Zoladz and col-

leagues (2008) demonstrated increased plasma BDNF after

5 weeks of endurance training in physically active male

adults. Further, Leckie et al. (2014) found that 1 year of

moderate-intensity walking significantly elevated serum

BDNF only in individuals older than 65 years of age.

Lastly, Heisz et al. (2017) reported that, although no

group differences in serum BDNF were found following

6 weeks of high-intensity interval training in young

adults, participants with greater fitness improvements had

higher serum BDNF levels than their counterparts with

lower fitness gains. One of the goals of the present study

was to investigate whether serum BDNF was enhanced

after 6 weeks of high-intensity interval training in seden-

tary males.

High-intensity interval training (HIIT) is as efficacious

a protocol at improving aerobic fitness as traditional

endurance training despite the reduced time commitment

(Batacan et al. 2017). Phillips et al. (2017) recently

showed that training using a protocol that involved five

1-min intervals at an intensity of ~125% peak workload

(Wpeak; determined during a peak oxygen uptake,

VO2peak, test) improved cardiorespiratory fitness (CRF)

by ~10% in both men and women when performed three

times per week for 6 weeks. In the present study, we

sought to investigate whether gains in aerobic fitness

induced by a similar HIIT protocol were accompanied by

changes in TMS-assessed corticospinal excitability and

intracortical circuits (SICI, ICF) in sedentary, healthy

males. Further, as previous studies have failed to demon-

strate whether long-term aerobic exercise increases serum

BDNF and IGF-1 (Voss et al. 2013; Leckie et al. 2014;

Maass et al. 2016; Heisz et al. 2017), we also examined

whether serum levels of BDNF, IGF-1, and cathepsin B, a

myokine that has been associated with CRF and memory

(Moon et al. 2016), were elevated after the HIIT protocol.

Lastly, since evidence suggests that exercise improves

memory and executive function (Colcombe and Kramer

2003; Smith et al. 2010), we examined whether working

memory (WM), which is defined as the set of cognitive

skills involved in the management and manipulation of

information drawn from short- and long-term memory

(Baddeley 1992, 2010; Engle 2002; Conway et al. 2005;

Fenesi et al. 2015), was increased following 6 weeks of

HIIT.

Methods

Subjects

Eighteen healthy males (23.1 � 3.5 years) were recruited

to participate in the study. All participants were deemed
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sedentary, which was defined as engaging in ≤60 min of

exercise/week (Little et al. 2011; Heisz et al. 2017). Hand-

edness was determined using a modified Edinburgh

inventory questionnaire, which provides a laterality quo-

tient (LQ) (Oldfield 1971). LQ scores range from – 100

(strong left-hand preference) to + 100 (strong right-hand

preference) with 0 indicating ambidexterity (Oldfield

1971). In the present study, all participants were right

handed (LQ: + 90.00 � 10.99). The experimental proto-

col conformed to the declaration of Helsinki and was

approved by the Hamilton Integrated Research Ethics

Board. All participants provided informed written consent

before participation.

Pre- and post-training procedures

At baseline and after the 6-week exercise intervention,

participants completed a body composition assessment, a

ramp test to volitional fatigue on a cycle ergometer (Lode

Excalibur v2.0, Groningen, the Netherlands) and a mem-

ory test (Fig. 1).

Fat and fat-free mass were determined using air-dis-

placement plethysmography (BodPod, COSMED, Con-

cord, California). Peak oxygen uptake (VO2peak) was

measured using an online gas collection system (Moxus

modular oxygen uptake system, AEI technologies, Pitts-

burgh, Pennsylvania). After a 2-min warm-up at 50 W,

the workload was increased by 1 W every 2 sec until voli-

tional fatigue (Little et al. 2011; Percival et al. 2015). For

each participant, VO2peak was calculated based on the

highest value averaged over 30 sec. To assess WM capac-

ity, participants were administered an automated opera-

tion span task (OSPAN) (Unsworth et al. 2005) using

Inquisit software (millisecond, http://www.millisecond.c

om/download/library/OSPAN/). One math equation fol-

lowed by one letter was presented, and participants were

required to solve the math equations while remembering

the sequence of letters. A practice session, which was

comprised of three sections, preceded the actual experi-

mental trial. During the first section of the practice

session, a sequence of letters appeared on the screen and

participants was required to recall the letters in the same

order in which they were presented. In the second prac-

tice section, participants were presented with math equa-

tions and asked to indicate whether solutions were

correct or incorrect. The third practice section included a

series of math equations and letter sequences. After each

math equation-letter string, participants were required to

recall the letters in the order in which they were pre-

sented. The experimental trial consisted of three to seven

math equation-letter sequence sets presented in random

order. Each set was repeated three times for a total of 75

letters and 75 math problems. For each participant, the

number of correct words recalled in the correct order was

summed to obtain the absolute OSPAN score (Unsworth

et al. 2005).

High-intensity interval training (HIIT)

All participants completed a supervised HIIT intervention

that involved 3 sessions per week for 6 weeks. The exer-

cise protocol was performed on an electronically braked

cycle ergometer and consisted of a 3-min warm-up at

50 W, five 1-min high-intensity cycling intervals at ~105–
135% of the participant’s peak power output (Wpeak;

determined during the VO2peak test) interspersed with

1.5 min of active recovery at 30% Wpeak, and a 2-min

cooldown at 50 W (Fig. 2), for a total duration of

17.5 min (Phillips et al. 2017). Individualized workloads

were determined on Visit 2, where participants were

asked, after a 2-min warm-up at 50 W, to perform 1-min

bouts of exercise starting at 85% Wpeak interspersed with

90-sec recovery intervals at 30% Wpeak. Wattage was

increased by 10% (e.g., 95%, 105%, etc.) until partici-

pants were unable to complete a full 1-min interval. The

workload of the last exercise interval that participants

were able to complete was used as the target workload for

the high-intensity intervals in the subsequent training ses-

sions (Phillips et al. 2017). During these sessions, if a par-

ticipant was unable to complete a high-intensity interval

Figure 1. Study timeline. Cardiorespiratory fitness (VO2peak), body composition (BodPod), serum levels of brain-derived neurotrophic factor

(BDNF), insulin-like growth factor 1 (IGF-1), total cathepsin B (CTSB) and pro-CTSB, area under the recruitment curve at rest and during tonic

contraction (AUCRest and AUCActive), intracortical facilitation (ICF), short-interval intracortical inhibition (SICI), and WM capacity (automated

operation span task, OSPAN) were assessed before (baseline) and after 6 weeks of high-intensity interval training (HIIT).
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at the target workload, the intensity was decreased by

10% Wpeak to ensure the completion of all 5 intervals.

When a participant was able to complete all five high-in-

tensity intervals at the target workload, the target inten-

sity was increased by 10% Wpeak on the following training

session.

Electromyography (EMG)

EMG was recorded bilaterally from FDI using surface

electrodes (9 mm diameter Ag–AgCl). FDI was chosen

because previous studies using this muscle have reported

changes in corticospinal excitability and intracortical cir-

cuits after an acute bout of lower-limb exercise (Taka-

hashi et al. 2011; Smith et al. 2014; Lulic et al. 2017).

EMG from the FDI muscle was recorded using a

monopolar electrode montage whereby one electrode was

placed over the muscle belly and referenced to a second

electrode positioned over the metacarpal-phalangeal index

joint. Recordings were band-pass filtered between 20 Hz

and 2.5 kHz, amplified by 10009 (Intronix Technologies

Corporation Model 2024F, Bolton, Ontario, Canada) and

sampled at 5 kHz (Power1401, Cambridge Electronics

Design, Cambridge, UK). All participants maintained a

supine position of the forearms, as corticospinal excitabil-

ity depends on limb posture (Forman et al. 2016).

Maximum voluntary contraction (MVC)

To determine MVC, each participant was asked to com-

plete three isometric contractions of the FDI against an

immovable structure as described in Lulic et al. (2017).

Each contraction lasted 5 sec, and participants were given

rest intervals of at least 30 sec in between contraction tri-

als. The greatest maximum EMG activity obtained from

the three trials was considered FDI MVC for a given par-

ticipant. The EMG voltage corresponding to 10% MVC

was calculated and displayed on the oscilloscope using a

horizontal target line. Participants had to match this line

when maintaining a contraction with their FDI muscle

during the acquisition of active motor threshold (AMT)

and active motor-evoked potential (MEP) recruitment

curve (described below).

Maximum M-wave (M-Max)

M-Max or the peak-to-peak amplitude of the maximum

M-wave elicited from the right FDI following stimulation

of the ulnar nerve at the wrist was collected using a con-

stant current stimulator (Digitimer, DS7AH; Welwyn

Garden City, UK) and a bar electrode (cathode proximal).

Square wave pulses with a 200-lsec pulse width were

delivered, and stimulation intensity was increased by

1 mA until the M-wave ceased to increase for 3 consecu-

tive trials.

Transcranial magnetic stimulation (TMS)

TMS was delivered to M1 using a customized 50-mm-di-

ameter figure-of-eight branding coil connected to a Mag-

stim Plus stimulator (Magstim, Whitland, UK). The TMS

coil was positioned at a 45° angle with respect to the

sagittal place to induce a posterior–anterior current. Right
FDI motor hotspot was identified within the left hemi-

sphere M1 as the cortical location that elicited the great-

est and most consistent MEPs in the muscle at rest.

Motor hotspot was then marked using Brainsight Neu-

ronavigation (Rogue Research, Montreal, Canada). Rest-

ing motor threshold (RMT) and AMT for FDI were

determined at the motor hotspot using the maximum-

likelihood parameter estimation by the sequential testing

(ML-PEST) method (Ah Sen et al. 2017). The freeware

for ML-PEST (TMS Motor Threshold Assessment Tool,

MTAT 2.0) was obtained online (http://www.clinicalresea

rcher.org/software.html), and the assessment without a

priori information option was used. The ML-PEST algo-

rithm was stopped after 20 stimuli (Ah Sen et al. 2017).

During AMT acquisition, the horizontal target line on the

oscilloscope provided a visual feedback to participants

while they maintained a contraction with their right FDI

of 10% MVC. MEP recruitment curves (RCs) were

obtained in the FDI both at rest and while maintaining a

contraction by delivering eight TMS pulses at intensities

of 90%, 100%, 110%, 120%, 130%, 140%, 150%, 160%,

170%, 180%, 190%, 200% RMT or AMT in a randomized

order (Lulic et al. 2017). For MEP RCs, the mean peak-

to-peak MEP amplitude at each TMS intensity between

90 and 150% RMT or AMT was calculated by averaging

Figure 2. High-Intensity interval training protocol (HIIT). A 3-min

warm-up at 50 W was followed by five 1-min high-intensity bouts

at ~105–135% of participants’ peak power output (Wpeak) with

1.5-min recovery at 30% Wpeak between bouts and a 2-min cool-

down at 50 W to end. Each HIIT session was supervised, lasted

17.5 min, and was carried out on a stationary cycle ergometer.
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the eight trials. Subsequently, the area under the recruit-

ment curve (AUC) was obtained by trapezoidal integra-

tion of the resting and active RCs and normalized to M-

Max (i.e., AUCRest and AUCActive). ICF and SICI were

assessed using paired-pulse TMS paradigms as described

in Lulic et al. (2017) with minor modifications. The con-

ditioning stimulus (CS) was set to a TMS intensity of

90% AMT, while the test stimulus (TS) was set to evoke

MEPs with peak-to-peak amplitudes of 1 mV in the rest-

ing FDI. CS and TS were separated by an interstimulus

interval (ISI) of 10 msec (ICF) or 2 msec (SICI). For each

circuit, 15 unconditioned (MEPTS) and conditioned

(MEPCS-TS) trials were randomly delivered. SICI and ICF

were assessed by calculating the peak-to-peak amplitude

of the unconditioned (MEPTS) and conditioned (MEPCS-

TS) MEP and then by computing the ratio of conditioned

over unconditioned MEP (MEPCS-TS/MEPTS). All single-

and paired-pulse TMS measures were collected both

before (baseline) and after (6 weeks) the 6-week HIIT

training (Fig. 1).

BDNF, IGF-1, total Cathepsin B (CTSB), and
pro-CTSB ELISAs

Blood was drawn from 12-h fasted participants in the

morning into BD Vacutainer 10-mL increased silica act

clot activator, silicone-coated tube (BD, Franklin Lakes,

NJ, USA) before (baseline), and after (6 weeks) HIIT

training (Fig. 1). Both blood draws (at baseline and after

6 weeks of HIIT) were “resting,” that is, they took place

before exercise was performed. Upon collection, blood

samples were allowed to clot by leaving them undisturbed

at room temperature for ~45 min and then centrifuged at

3488g for 10 min at 4°C. Serum was aliquoted and stored

at �80°C prior to use. Serum levels of BDNF, IGF-1,

total CTSB, and pro-CTSB were measured using human

BDNF DuoSet ELISA kit (DY248), human IGF-I/IGF-1

Quantikine ELISA kit (DG100), human total Cathepsin B

DuoSet ELISA (DY2176) and human pro-Cathepsin B

DuoSet ELISA (DY953) (R&D Systems, Minneapolis,

MN) according to manufacturers’ protocols. A standard

curve of recombinant BDNF, IGF-1, total CTSB, and pro-

CTSB was run on each plate. Samples and standards were

run in duplicate.

Genotyping

A 2-mL saliva sample was collected from each participant

using a DNA collection kit (Oragene•DNA OG-500, Gen-

otek, Ottawa, Ontario, Canada). Samples were then sent

to GenoFIND Genomic Services (Norcross, Georgia) for

processing. Only the region that surrounds the single-nu-

cleotide polymorphism (SNP) Val66Met (rs6265) on the

BDNF gene was examined using a TaqMan� Single Tube

Assay. The genotyping results revealed that ten partici-

pants were Val/Val carriers, six Val/Met, and 2 Met/Met.

Statistical analysis

Normality was assessed using the Shapiro–Wilks test.

Data that were not normally distributed were square root

transformed to meet the assumption of normality and

then analyzed using parametric statistics. Data that were

square root transformed are indicated in Table 1. Depen-

dent measures included VO2peak, AUCRest, AUCActive, ICF,

SICI, BDNF, IGF-1, total CTSB, pro-CTSB, and OSPAN

absolute score and were assessed using two-tailed paired

Student’s t-tests. Effect sizes were calculated using

Cohen’s d. Hierarchical linear regression analysis was used

to determine whether the percent change in CRF

(VO2peak %D) was associated with the percent change in

each dependent measure and whether there was an inter-

action between VO2peak %D and BDNF Vl66Met poly-

morphism (Brown et al. 2014). The first regression model

(model 1) was corrected for age and included only the

independent continuous term VO2peak %D. The second

regression model (model 2) included an interaction term

between VO2peak %D and the categorical term BDNF

genotype (Val/Val, Val/Met). Significant interactions were

further analyzed by stratifying participants by BDNF

genotype (Val/Val, Val/Met) and by rerunning model 1

on each cohort (Val/Val, Val/Met) separately. Due to

their low sample size (n = 2), Met/Met carriers were not

included in the hierarchical linear regression analysis.

Outliers, defined as values above or below 1.59 the

interquartile range (IQR), were removed. Statistical signif-

icance was set at P < 0.05.

Results

All participants successfully completed the experiment.

Group means and statistical analyses are reported in

Table 1.

The supervised, 6-week, 5-by-1-min HIIT protocol

resulted in an overall robust increase (~12%) in partici-

pants’ CRF (VO2peak) (Fig. 3, Table 1). All participants

experienced an increase in fitness ranging from ~3% to

~29%.

For rest and active MEP RCs, paired t-tests revealed no

significant differences in AUCs before versus after 6 weeks

of HIIT (Table 1), suggesting that the exercise protocol,

despite inducing gains in aerobic fitness, did not lead to

changes in corticospinal excitability in sedentary males.

ICF was significantly reduced (Fig. 4, Table 1), while

SICI showed no change (Table 1) following the 6-week

HIIT intervention.
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No significant changes in serum BDNF, IGF-1, total

CTSB, or pro-CTSB were observed in sedentary males

(Table 1).

In summary, these data revealed that 6 weeks of 5-by-

1-min HIIT significantly increased aerobic capacity in

sedentary males. Further, gains in fitness were accompa-

nied by a reduction in ICF but did not influence corti-

cospinal excitability, SICI or serum levels of BDNF, IGF-

1, total CTSB, and pro-CTSB.

Model 1 of the hierarchical linear regression analysis

showed a relationship between VO2peak %D and percent

changes in serum levels of total CTSB (b = �0.976,

P = 0.051; Fig. 5A, Table 2) and pro-CTSB (b = �1.136,

P = 0.047; Fig. 5B, Table 2) such that larger gains in aer-

obic capacity were associated with decreases in peripheral

total and pro-CTSB. No relationship between VO2peak %

D and percent changes in AUCRest %D, AUCActive %D,
ICF %D, SICI %D, BDNF %D, IGF-1%D, and OSPAN %

D was found (Table 2).

Model 2 revealed a significant VO2peak %D X BDNF

Val66Met interaction (b=4.050, P = 0.010; Table 2) for

SICI %D. Subsequent post hoc analyses indicated that

only Val/Val carriers demonstrated a significant relation-

ship between changes in VO2peak and changes in SICI

(b = �4.250, P = 0.049; Fig. 6) such that greater gains in

CRF were associated with larger increases in SICI (i.e.,

greater GABAA-mediated intracortical inhibition). No

interaction was found between VO2peak %D X BDNF

Val66Met for AUCRest %D, AUCActive %D, ICF %D,
BDNF %D, IGF-1%D, total CTSB %D, pro-CTSB %D,
and OSPAN %D (Table 2).

Discussion

While there is evidence that demonstrates changes in M1

excitability following a single bout of aerobic exercise

(Takahashi et al. 2011; Singh et al. 2014a,b; Lulic et al.

2017), there are no reports of the effects of long-term

exercise interventions on corticospinal output and

Table 1. Group-averaged means (with SD) of measures

Measures Baseline (n = 18) 6 Weeks (n = 18) Paired t-test and effect size

VO2peak 34.9 � 4.6 39.3 � 5.0 P < 0.001, d = 0.894

AUCRest Sqrt Transform 2.19 � 0.51 2.11 � 0.60 P = 0.541, d = 0.144

AUCActive 8.54 � 3.46 8.59 � 2.77 P = 0.933, d = 0.016

ICF 1.30 � 0.27 1.15 � 0.19 P = 0.048, d = 0.656

SICI 0.52 � 0.25 0.50 � 0.20 P = 0.752, d = 0.088

BDNF Sqrt Transform 4.21 � 1.06 4.37 � 0.95 P = 0.549, d = 0.159

IGF-1 160.90 � 41.15 154.50 � 35.10 P = 0.198, d = 0.167

Total CTSB 30.32 � 12.17 31.77 � 11.85 P = 0.133, d = 0.121

Pro-CTSB 15.39 � 6.45 15.93 � 6.72 P = 0.391, d = 0.082

OSPAN 49.67 � 13.51 53.11 � 11.57 P = 0.142, d = 0.274

AUC, area under the curve; BDNF, brain-derived neurotrophic factor; CTSB, cathepsin B; ICF, intracortical facilitation; IGF-1, insulin-like growth

factor 1; OSPAN, operation span task; SICI, short-interval intracortical inhibition; VO2peak, peak oxygen uptake. Bold font indicates statistical

significance.

Figure 3. Cardiorespiratory fitness. Group-averaged VO2peak (with

standard error) for all participants (n = 18), showing that low-

volume 5-by-1 HIIT significantly increased aerobic capacity in

sedentary males after 6 weeks. * indicates significance of P < 0.05.

Figure 4. Intracortical facilitation. Group-averaged intracortical

facilitation (ICF) (with standard error) for all participants (n = 18),

displaying significantly decreased ICF in sedentary males after

6 weeks of 5-by-1-min HIIT. * indicates significance of P < 0.05.
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intracortical circuitry. In the present study, we examined

whether increases in CRF following a 6-week HIIT proto-

col at work-loads of ~105–135% VO2peak were accompa-

nied by changes in corticospinal excitability, TMS-evoked

circuits, and WM in sedentary, healthy males. Further, we

investigated whether serum levels of BDNF, IGF-1, and

CTSB, which are thought to contribute to exercise-in-

duced changes in brain plasticity and memory, were ele-

vated after this exercise protocol. We found that the HIIT

intervention resulted in a robust gain in CRF after

6 weeks. We also demonstrated that the increase in fitness

was not paralleled by changes in AUCRest, AUCActive, SICI,

serum levels of BDNF, IGF-1, total CTSB, pro-CTSB, or

WM capacity. However, we observed a reduction in ICF

following the exercise intervention. Further, we deter-

mined an association between fitness gains and total and

pro-CTSB such that greater improvements in aerobic

capacity were associated with decreases in total and pro-

CTSB. Lastly, we found that only in Val/Val carriers

greater fitness gains were associated with larger increases

in SICI.

In line with Phillips et al. (2017), we showed that five

high-intensity, 1-min bouts of exercise were effective in

increasing aerobic capacity in sedentary males after

6 weeks, confirming that this time-efficient exercise pro-

tocol is efficacious in yielding improvements in fitness

and could be an alternative to high-volume training in

rehabilitative settings.

Previous studies have demonstrated that a single ses-

sion of aerobic exercise modulates M1 excitability, sug-

gesting that acute exercise might promote short-term

plasticity within M1 (Takahashi et al. 2011; Singh et al.

2014a,b; Lulic et al. 2017). We report that 6 weeks of

HIIT, contrary to a single bout, was not accompanied by

changes in corticospinal excitability or the TMS-evoked

circuit SICI, indicating that the propensity for long-term

M1 plasticity was unaltered after the HIIT intervention.

Interestingly, we further observed that Val/Val carriers

who experienced greater gains in fitness showed larger

increases in SICI, suggesting that the BDNF Val/Val

genotype might moderate the relationship between CRF

and GABAA-mediated intracortical inhibition. This is

consistent with previous studies reporting that physical

activity is correlated with greater hippocampal and tem-

poral lobe volumes and better episodic memory only in

Val/Val individuals (Brown et al. 2014; Canivet et al.

2015). Further, Nascimento et al. (2015) found that only

Val/Val homozygotes displayed increased plasma BDNF

after a 16-week multimodal exercise program, while

Keyan and Bryant (2017) showed that only Val/Val carri-

ers had strong emotional memory formation following

10 min of intense exercise. These findings suggest that the

Val/Val genotype might be involved in modulating the

effects of exercise on brain plasticity, structure, and func-

tion and that individualized programs might be impor-

tant to maximize the beneficial effects of exercise.

The present work also investigated intracortical excita-

tion within M1 and showed that, similar to acute exercise

(Lulic et al. 2017), ICF was reduced after 6 weeks of HIIT

in sedentary males. Our finding suggests that acute and

chronic exercise might have comparable effects on ICF

modulation. However, Singh et al. (2014a,b) reported

both an increase and no change in ICF following a single

bout of moderate-intensity lower-limb exercise. Presently,

it cannot be ruled out whether long-term and acute exer-

cise protocols have a similar influence on cortical excita-

tion. ICF is thought to reflect activation of glutamatergic

interneurons and N-methylD-aspartate (NMDA) receptors

(Liepert et al. 1997; Ziemann et al. 1998). Suppression of

ICF following long-term exercise might help maintain

excitability within a physiological range and prime the

release of GABAergic inhibition (i.e., decrease in SICI)

immediately after a single bout of exercise (Singh et al.

2014a,b; Smith et al. 2014; Lulic et al. 2017). The acute

reduction in SICI might promote neuroplasticity such as

early acquisition and consolidation of motor skills facili-

tating motor learning. This can lead to improved perfor-

mance and recovery in rehabilitative settings as supported

by poststroke studies (Stinear et al. 2008; Blicher et al.

2009).

Figure 5. Hierarchical linear regression analysis model 1. A negative relationship between percent change in VO2peak and percent changes in

serum levels of total CTSB (A) and pro-CTSB (B) was found. Results indicate that larger VO2peak gains are associated with decreases in total and

pro-CTSB.

ª 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
The Physiological Society and the American Physiological Society.
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Table 2. Hierarchical linear regressions

Dependent Measures b SE P-value 95% CI R2 Adjusted R2 DR2

AUCRest Model 1 0.094 �0.027

Age 4.026 3.349 0.248 97.5

VO2peak �0.884 1.753 0.621 2.5

Model 2 0.161 �0.049 �0.067

Age 4.075 3.858 0.312 97.5

VO2peak 0.626 2.441 0.802 2.5

VO2peak 9 BDNF Val66Met �2.019 1.897 0.308

AUCActive Model 1 0.000 �0.142

Age �0.142 1.834 0.940 97.5

VO2peak �0.012 0.960 0.990 2.5

Model 2 0.022 �0.245 �0.022

Age 0.705 2.340 0.769 97.5

VO2peak �0.551 1.718 0.754 2.5

VO2peak 9 BDNF Val66Met 0.363 1.375 0.797

ICF Model 1 0.105 �0.022

Age �0.922 1.169 0.444 97.5

VO2peak �0.735 0.744 0.340 2.5

Model 2 0.174 �0.051 �0.069

Age �0.317 1.313 0.814 97.5

VO2peak 0.475 0.862 0.592 2.5

VO2peak 9 BDNF Val66Met �0.608 0.671 0.385

SICI Model 1 0.012 �0.129

Age 1.374 3.473 0.698 97.5

VO2peak 0.090 1.821 0.961 2.5

Model 2 0.535 0.408 �0.523

Age 3.833 2.597 0.168 97.5

VO2peak �3.446 1.649 0.061 2.5

VO2peak 9 BDNF Val66Met 4.050 1.299 0.010

BDNF Model 1 0.198 0.091

Age 2.095 4.020 0.610 97.5

VO2peak �4.015 2.104 0.076 2.5

Model 2 0.215 0.018 �0.017

Age 0.712 4.852 0.886 97.5

VO2peak �5.339 3.070 0.108 2.5

VO2peak 9 BDNF Val66Met 1.910 2.386 0.439

IGF-1 Model 1 0.071 �0.053

Age 0.485 0.742 0.524 97.5

VO2peak �0.362 0.388 0.367 2.5

Model 2 0.142 �0.072 �0.072

Age 0.851 0.894 0.360 97.5

VO2peak �0.634 0.566 0.284 2.5

VO2peak 9 BDNF Val66Met 0.230 0.440 0.610

Total CTSB Model 1 0.248 0.140

Age 0.226 0.954 0.816 97.5

VO2peak �0.976 0.457 0.051 2.5

Model 2 0.273 0.092 �0.026

Age 0.093 1.030 0.930 97.5

VO2peak �1.210 0.652 0.088 2.5

VO2peak 9 BDNF Vall66Met 0.256 0.506 0.622

Pro-CTSB Model 1 0.254 0.154

Age 0.963 1.003 0.352 97.5

VO2peak �1.136 0.525 0.047 2.5

Model 2 0.269 0.086 �0.015

Age 0.237 1.130 0.837 97.5

VO2peak �0.986 0.715 0.193 2.5

VO2peak 9 BDNF Val66Met �0.134 0.556 0.813

(Continued)
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BDNF and IGF-1 are among the factors that have been

shown to modulate exercise-induced brain plasticity,

resulting in improvements in cognition and memory

(Carro et al. 2000; Trejo et al. 2001; G�omez-Pinilla et al.

2002; Ding et al. 2006; Stranahan et al. 2009; Bechara and

Kelly 2013). Increases in peripheral BDNF have been

repeatedly reported after a single bout of aerobic exercise

(Gold et al. 2003; Ferris et al. 2007; Tang et al. 2008; Bos

et al. 2011; Griffin et al. 2011; Cho et al. 2012; Nofuji

et al. 2012; Schmolesky et al. 2013; Mang et al. 2014;

Skriver et al. 2014). However, no changes in serum BDNF

or IGF-1 have been observed following long-term aerobic

exercise (Voss et al. 2013; Maass et al. 2016; Heisz et al.

2017; Gourgouvelis et al. 2018). Consistently, we demon-

strated that 6 weeks of HIIT induced gains in aerobic

capacity but left serum levels of BDNF and IGF-1 in

sedentary males unaltered. As shown by Leckie et al.

(2014), it is possible that long-term exercise protocols

induce significant changes in peripheral BDNF only in

older individuals (≥65 years). Further, although 6 weeks

of HIIT did not change serum levels of BDNF and IGF-1,

it might facilitate increases in peripheral BDNF and IGF-

1 immediately after a single exercise bout.

In the present study, we also assessed serum levels of

the lysosomal cysteine protease, cathepsin B. Moon et al.

(2016) reported that plasma levels of CTSB were elevated

in young adults after 4 months of aerobic exercise and

that CTSB increases were associated with gains in CRF

and hippocampal-dependent memory. Contrary to Moon

et al. (2016) but similar to Gourgouvelis et al. (2018),

who assessed plasma CTSB in sedentary young adults

after 8 weeks of moderate to vigorous aerobic exercise,

we found no changes in serum total or pro-CTSB levels

following 6 weeks of HIIT. However, we observed that

larger gains in aerobic capacity were associated with

decreases in serum levels of total and pro-CTSB. It is pos-

sible that the decreases in serum CTSB associated with

the greatest fitness gains might reflect a higher demand of

enzymatically active CTSB (mature form) in response to

exercise requiring increased cleavage of the inactive CTSB

precursor (pro-CTSB) into the active, mature CTSB

(Mach et al. 1994; Mort and Buttle 1997; Hook et al.

2015). Interestingly, Moon et al. (2016) proposed that,

following exercise, CTSB is secreted by skeletal muscles

and, being able to cross the blood–brain barrier, increases

BDNF which in turn promotes brain plasticity, ultimately

improving cognition and memory function.

Exercise has beneficial effects on memory and executive

function (Cotman and Berchtold 2002; Colcombe and

Kramer 2003; Hillman et al. 2003; Chang et al. 2014).

WM is an important aspect of executive function

involved in temporarily storing, maintaining, and updat-

ing information for the execution of high-order cognitive

processes such as learning and reasoning (Engle 2002;

Baddeley 2003). Few studies have investigated whether

exercise influences WM, and results are inconsistent.

Coles and Tomporowski (2008) as well as Li et al. (2014)

observed no effect of aerobic exercise on WM. Con-

versely, McMorris et al. (2011) found that acute,

Table 2. Continued.

Dependent Measures b SE P-value 95% CI R2 Adjusted R2 DR2

OSPAN Model 1 0.028 �0.148

Age �0.483 0.901 0.603 97.5

VO2peak 0.097 0.482 0.844 2.5

Model 2 0.198 �0.103 �0.169

Age �0.598 1.106 0.604 97.5

VO2peak 0.641 0.687 0.378 2.5

VO2peak 9 BDNF Val66Met �0.632 0.522 0.260

AUC, area under the curve; BDNF, brain-derived neurotrophic factor; CI, confidence interval; CTSB: cathepsin B; ICF, intracortical facilitation;

IGF-1, insulin-like growth factor 1; OSPAN, operation span task; SE, standard error; SICI, short-interval intracortical inhibition; VO2peak, peak

oxygen uptake.

Figure 6. Relationship between percent change in VO2peak and

percent change in SICI. A significant interaction between percent

change in VO2peak and BDNF Val66Met polymorphism was revealed

for SICI. Only Val/Val carriers showed a significant relationship

between percent change in VO2peak and percent change in SICI

such that greater gains in VO2peak were associated with greater

increases in the depth of SICI.

ª 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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moderate-intensity exercise improves speed but not accu-

racy in WM, while Sibley and Beilock (2007) showed that

acute exercise benefits WM only in individuals with poor

WM. Further, both Pontifex et al. (2009) and Martins

et al. (2013) reported that acute aerobic exercise, but not

resistance exercise (Pontifex et al. 2009), positively influ-

ences WM. Lastly, Gourgouvelis et al. (2018), who

assessed executive function, learning and memory using

the Cambridge Neuropsychological Test Automated Bat-

tery (CANTAB), showed that 8 weeks of moderate-to-vig-

orous aerobic exercise did not change cognitive

performance in sedentary, young adults. In the current

work, we showed that WM capacity was unaltered after

6 weeks of HIIT in sedentary males. It is possible, as sug-

gested by Li et al. (2014), that, even though the HIIT

intervention did not have a measurable effect on OSPAN

performance, it might have nonetheless had an impact on

the activity of the brain regions involved in modulating

WM.

It is interesting to note the similarities in outcome

between Gourgouvelis et al. (2018), who also tested

sedentary individuals, and the present work. Indeed, nei-

ther study demonstrated an effect of exercise training on

BDNF, CTSB, or WM. Gourgouvelis et al. (2018) used a

combination of resistance and moderate-to-vigorous-in-

tensity aerobic training for 8 weeks, while we used a 5-

by-1-min HIIT protocol for 6 weeks. Taken together,

these studies suggest a resistance to change in response to

exercise in sedentary individuals. It remains unknown

whether this is a characteristic of sedentary individuals or

whether longer and more intense training interventions

are needed to alter neurophysiological and biochemical

measures in sedentary individuals.

Limitations

Despite our finding of reduced ICF following the HIIT

intervention, we cannot conclude that ICF is a mediator

of exercise-induced neuroplasticity. This should be inves-

tigated in future research using a two-armed design with

a control group not experiencing HIIT. Since peripheral

BDNF levels fluctuate during the menstrual cycle (e.g.,

higher in the luteal vs. the follicular phase) (Begliuomini

et al. 2007; Pluchino et al. 2009; Cubeddu et al. 2011),

we did not examine females in this study. There is evi-

dence that females and males respond differently to exer-

cise, for example, females show lower total carbohydrate

oxidation and serum leptin than males after the same

training protocol (Tarnopolsky et al. 1990, 1995; Hickey

et al. 1997; Friedlander et al. 1998). Thus, it should be

addressed in future research whether 6 weeks of HIIT

influence TMS and serum measures in sedentary females.

Further, we did not examine whether short-term (i.e.,

immediately after a single exercise session) neuroplasticity

is increased following six consecutive weeks of HIIT. It is

also possible that extending the duration of the exercise

protocol (e.g., 1 year) might lead to significant changes in

corticospinal excitability, SICI and serum factors as well

as increases in WM capacity. In addition, only young

adults were tested here, and thus, it remains to be estab-

lished whether 6 weeks of HIIT have a higher impact on

facilitating motor cortex excitability and on priming neu-

roplasticity in older adults than in younger adults. Lastly,

due to our limited sample size (n = 2, Met/Met), we were

not able to determine whether the Met allele constitutes a

disadvantage for achieving exercise-induced benefits.

Conclusions

Our findings confirm that the time-efficient HIIT proto-

col robustly increases CRF and demonstrate that this

increase is not accompanied by changes in corticospinal

excitability, serum biochemical markers, and WM. Under-

standing how aerobic exercise modulates neural activity

within M1 has implications for the use of exercise as an

intervention to modify M1 neural activity, for example,

following neurological injury. The literature thus far sug-

gests that exercise does not influence BDNF, CTSB, or

WM in sedentary individuals.
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