
RESEARCH ARTICLE

Molecular evolutionary analysis of a gender-

limited MID ortholog from the homothallic

species Volvox africanus with male and

monoecious spheroids

Kayoko Yamamoto1, Hiroko Kawai-Toyooka1, Takashi Hamaji1, Yuki Tsuchikane2,

Toshiyuki Mori3, Fumio Takahashi4, Hiroyuki Sekimoto2, Patrick J. Ferris5,

Hisayoshi Nozaki1*

1 Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku,

Tokyo, Japan, 2 Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s

University, Bunkyo-ku, Tokyo, Japan, 3 Department of Tropical Medicine and Parasitology, School of

Medicine, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan, 4 College of Life Sciences,

Ritsumeikan University, Kusatsu-shi, Shiga, Japan, 5 Department of Ecology and Evolutionary Biology,

University of Arizona, Tucson, Arizona, United States of America

* nozaki@bs.s.u-tokyo.ac.jp

Abstract

Volvox is a very interesting oogamous organism that exhibits various types of sexuality and/

or sexual spheroids depending upon species or strains. However, molecular bases of such

sexual reproduction characteristics have not been studied in this genus. In the model spe-

cies V. carteri, an ortholog of the minus mating type-determining or minus dominance gene

(MID) of isogamous Chlamydomonas reinhardtii is male-specific and determines the sperm

formation. Male and female genders are genetically determined (heterothallism) in V. car-

teri, whereas in several other species of Volvox both male and female gametes (sperm and

eggs) are formed within the same clonal culture (homothallism). To resolve the molecular

basis of the evolution of Volvox species with monoecious spheroids, we here describe a

MID ortholog in the homothallic species V. africanus that produces both monoecious and

male spheroids within a single clonal culture. Comparison of synonymous and nonsynon-

ymous nucleotide substitutions in MID genes between V. africanus and heterothallic volvo-

cacean species suggests that the MID gene of V. africanus evolved under the same degree

of functional constraint as those of the heterothallic species. Based on semi quantitative

reverse transcription polymerase chain reaction analyses using the asexual, male and mon-

oecious spheroids isolated from a sexually induced V. africanus culture, the MID mRNA

level was significantly upregulated in the male spheroids, but suppressed in the monoecious

spheroids. These results suggest that the monoecious spheroid-specific down regulation of

gene expression of the MID homolog correlates with the formation of both eggs and sperm

in the same spheroid in V. africanus.
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Introduction

Volvox is a genus of spheroidal, multicellular green algae with a surface layer of hundreds to

thousands of biflagellated somatic cells, and a much smaller number of non-flagellated germ

cells (gonidia) that develop into asexual progeny. Life cycles of all Volvox species are faculta-

tively sexual with haploid asexual phase; typically many rounds of asexual reproduction occur

between rounds of sexual reproduction in which thick-walled diploid zygotes are formed and

meiosis occurs during zygote germination to produce haploid progeny (Fig 1). During sexual

reproduction, spheroids that contain eggs or sperm packets (bundles of male gametes or

sperm) or both are produced. This genus exhibits various types of sexuality and/or sexual

spheroids that have been used to define separate taxa within Volvox [1–3]. For example,

whether the sexual spheroids are dioecious or monoecious is an important criterion for distin-

guishing species of Volvox; several monoecious species are recognized in Volvox [1–3].

Starr [4] recognized four types of sexuality in several strains identified as Volvox africanus
originating from locations around the world (S1 Fig); 1) heterothallic, dioecious type: male

spheroids (containing sperm packets) or female spheroids (containing eggs) are formed in the

male or female strain, respectively; 2) homothallic, dioecious type: separate male and female

spheroids are formed in the same strain; 3) homothallic, monoecious type: monoecious spher-

oids (containing both eggs and sperm packets) are formed; and 4) homothallic, monoecious

with males type: monoecious spheroids and male spheroids are both formed in the same strain.

Coleman [5] resolved a small clade composed of these four sexual types of V. africanus based

on the internal transcribed spacer-2 (ITS-2) of nuclear ribosomal DNA (rDNA) sequences.

Thus, these related strains may be very useful for studying the diversity and evolution of mo-

noecy and/or homothallism in Volvox. However, further studies of sexuality in these strains

have been lacking except for the heterothallic, dioecious type [6], since strains exhibiting the

three types of homothallic sexuality are not available [3]. Recently, new Japanese strains of two

V. africanus-like species were isolated from water samples collected in Lake Biwa, Japan [3].

One that corresponds to sexual type 1 (heterothallic, dioecious type) by Starr [4] was renamed

as a new species, V. reticuliferus (Fig 1A, S2D and S2E Fig). The other was re-identified as V.

africanus, and produces both monoecious and male spheroids in a single strain (sexual type 4

of Starr [4], Fig 1B and S2 Fig).

In the heterothallic isogamous species Chlamydomonas reinhardtii, two sexes or mating

types are determined by the presence or absence of the mating type-specific minus dominance

gene (MID) [7]. In anisogamous volvocine Pleodorina starrii and oogamous Volvox carteri, a

MID ortholog is present only in male strains [8,9]. Although MID is the master gene deter-

mining mating type minus of C. reinhardtii [7], the MID ortholog in V. carteri (VcMID) was

recently reported as regulating formation of sperm packets, but not formation of male-specific

sexual spheroids [8–10]. The MID ortholog is present in only one of the two heterothallic mat-

ing types in the isogamous volvocine Gonium, but it is present in a homothallic strain of

Gonium multicoccum [11].

In the male strain of heterothallic V. carteri, experimental knock-down of VcMID results in

sexual spheroids with eggs and sperm packets (similar to monoecious spheroids in wild mon-

oecious species) or female-like sexual spheroids (with eggs and no sperm packets), depending

upon the degree of suppression of VcMID expression [10]. This implies MID gene expression

may be important for formation of monoecious spheroids in homothallic wild species of Vol-
vox. However, MID orthologs in wild homothallic Volvox species with monoecious spheroids,

like sexual type 3 or 4 of Starr [4], have not been previously reported.

To understand the evolution and development of monoecious spheroids in wild Volvox
species, comparative analysis of their MID genes with those of closely related heterothallic
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Fig 1. Life cycle diagrams for two related species of Volvox. Based on Nozaki et al.[3]. (A) V. reticuliferus

(heterothallic, dioecious type). Germination of a diploid zygote yields a single meiotic product: either a female

or a male depending on which MT locus is inherited. The algae reproduce asexually and can undergo sexual

induction to produce sperm packets (in male lineages) or eggs (in female lineages). (B) V. africanus

(homothallic, monoecious with males type). Germination of a diploid zygote yields a single meiotic product

that reproduces asexually. Upon sexual induction, a clonal population can produce both spheroids containing

sperm packets only (male spheroids) and spheroids containing both eggs and sperm packets (monoecious

spheroids).

https://doi.org/10.1371/journal.pone.0180313.g001

Molecular evolutionary analysis of MID ortholog from the homothallic species Volvox africanus

PLOS ONE | https://doi.org/10.1371/journal.pone.0180313 June 30, 2017 3 / 16

https://doi.org/10.1371/journal.pone.0180313.g001
https://doi.org/10.1371/journal.pone.0180313


dioecious species should be fruitful. In the present study, we examined MID homologs from

two closely related species of Volvox sect. Merrillosphaera: V. africanus and V. reticuliferus,
identified by Nozaki et al.[3]. Since these two species are heterothallic, dioecious type and

homothallic, monoecious with males type (sexual types 1 and 4 by Starr [4], respectively), com-

parative analyses of MID orthologs from these two species will lead to a greater understanding

of the evolution of monoecy or homothallism in Volvox. In addition, in order to elucidate gen-

eral MID characteristics of monoecious spheroids, the MID homolog from V. ferrisii which

produces only monoecious sexual spheroids [2] was also studied. V. ferrisii is belongs to Volvox
sect. Volvox that is phylogenetically separated from Volvox sect. Merrillosphaera [3].

Materials and methods

Strains and culture conditions

Volvox africanus and V. reticuliferus. Volvox africanus strain 2013-0703-VO4 (= NIES-

3780) and six strains of V. reticuliferus (Table 1) were used in the present study. The cultures

were maintained in screw-cap tubes (18 × 150 mm) containing 10 ml AF-6/3 medium [3] at

20˚C on a 14-h light: 10-h dark schedule or at 25˚C on a 12-h light:12-h dark schedule under

cool-white fluorescent lamps at an intensity of 55–80 μmol�m–2�s–1.

To induce sexual reproduction, about 0.5 ml of growing cultures were transferred into 10 ml of

USVT medium diluted one to two with distilled water [3] and grown at 25˚C on a 12-h light:12-h

dark schedule under cool-white fluorescent lamps at an intensity of 160–180 μmol�m–2�s–1. Sexual

spheroids developed after 4~5 days (V. africanus) or 7~10 days (V. reticuliferus).
Volvox ferrisii. Volvox ferrisii strain 2011-929-Vx2-F2-9 (= NIES-3986) was cultured in

screw-cap tubes containing 10 ml AF-6 medium [12,13] at 20˚C on a 14-h light: 10-h dark

schedule under cool-white fluorescent lamps at an intensity of 55–80 μmol�m–2�s–1.

To induce sexual reproduction, about 0.5 ml of growing cultures were transferred into 10

ml of VTAC medium [13,14] and grown at 25˚C on a 12-h light:12-h dark schedule under

cool-white fluorescent lamps at an intensity of 160–180 μmol�m–2�s–1. After 7~10 days sexual

spheroids developed abundantly.

Table 1. Strains of the three Volvox species used in the present study.

Species Strain

designation

Origin Sex Reference

V. africanus 2013-0703-VO4 Lake Biwa, Japan Monoecious with

males

Nozaki et al.

[3](= NIES-3780)

V.

reticuliferus

2013-0703-VO2 Lake Biwa, Japan Female Nozaki et al.

[3](= NIES-3782)

2013-0703-VO3 Lake Biwa, Japan Male Nozaki et al.

[3](= NIES-3783)

VO123-F1-6 F1 progeny strain of 2013-0703-VO1 x VO2 x VO3 Female Nozaki et al.

[3](= NIES-3785)

VO123-F1-7 F1 progeny strain of 2013-0703-VO1 x VO2 x VO3 Male Nozaki et al.

[3](= NIES-3786)

VO123-F1-9 F1 progeny strain of 2013-0703-VO1 x VO2 x VO3 (sibling strain of NIES-3785

and NIES-3786)

Female Nozaki et al.

[3](= NIES-4110)

VO123-F1-10 F1 progeny strain of 2013-0703-VO1 x VO2 x VO3 (sibling strain of NIES-3785

and NIES-3786)

Male Nozaki et al.

[3](= NIES-4111)

V. ferrisii 2011-929-Vx2-F2-

9

F2 progeny of NIES-2737 Monoecious Isaka et al. [2]

(= NIES-3986)

https://doi.org/10.1371/journal.pone.0180313.t001
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Identification of MID orthologs

V. africanus. A full-length sequence of the V. africanus MID (VaMID) mRNA was deter-

mined from total RNA using RT-PCR with degenerate primers (S1 Table) as described previ-

ously [9,15]. Total RNA was isolated from cultures in which sexual reproduction had been

induced as described above, using the RNeasy Mini Kit (Qiagen, Hilden, Germany) after the

cells had been homogenized with ceramic beads and a wash brush [9,15]. Production of cDNA

was carried out with Superscript III reverse transcriptase (Thermo Fisher Scientific, MA, USA)

using 3’-RACE CDS Primer A from the SMARTer™ RACE cDNA Amplification Kit (Clontech

Laboratories, Inc., CA, USA). Nested PCR using this cDNA as template with degenerate MID-

gene primers (S1 Table) yielded a partial fragment of VaMID. The primers used in in the first

PCR were dMT-dF3 [16] (S1 Table) and Nested Universal Primer A (Clontech Laboratories);

the primers used in the second PCR were dMT-dF3 and SMID-R6. The PCR reactions were

carried out using rTaq polymerase (TAKARA, Shiga, Japan) and the cycling conditions

described previously [17]. The resulting fragments were TA subcloned using the TOPO TA

Cloning Kit (Thermo Fisher Scientific), and the plasmid insert sequenced on an ABI PRISM

3100 Genetic Analyzer (Thermo Fisher Scientific) using the BigDye Terminator Cycle

Sequencing Ready Reaction Kit v. 3.1 (Thermo Fisher Scientific) as described previously [9].

To determine the 3’-terminus sequence of VaMID, 3’-RACE was performed with Nested

Universal Primer A and gene specific primers VaMID_F1, VaMID_F2 and VaMID_F3 (S2

Table). The resulting fragments were TA subcloned using the TOPO TA Cloning kit, and

sequenced as described above. The 5’-terminus sequence was determined using the GeneRacer

kit (Thermo Fisher Scientific) according to the manufacturer’s protocol; the antisense gene

specific primer was VaMID_5’R1 (S2 Table). Nested PCR was performed with GeneRacer 5’

Primer and gene specific primers VaMID5’R1, VaMID5’R2 and VaMID5’R3 (S2 Table). The

resulting fragments were TA subcloned and sequenced as described above.

To determine the intron-exon structure of VaMID, genomic PCR using total DNA ex-

tracted as described previously [18] was performed, followed by DNA sequencing of the prod-

uct. The PCR reaction used KOD FX Neo DNA polymerase (TOYOBO, Osaka, Japan) and

VaMID-specific primers (VaMID_AR and VaMID_ValR2; S2 Table) with cycling conditions 2

min at 94˚C, followed by 35 cycles of 10 sec at 98˚C and 30 sec at 68˚C.

V. ferrisii. A partial sequence of V. ferrisii MID (VfMID) mRNA was obtained by PCR

amplification and sequencing as described for VaMID except for the primers used for the

nested PCR and determination of 3’ and 5’ termini (S2 Table). Degenerate primers SMID-F1

and SMID-R5 were used for the first PCR, and SMID-F1 and SMID-R4 for the second PCR

(S1 Table). To determine the 3’-terminus sequence of VfMID, 3’-RACE was performed with

Nested Universal Primer A and VfMID-specific primers VfMID_F1, VfMID_F2, VfMID_F3,

VfMID_F4, VfMID_F5 and VfMID_F6 (S2 Table). Specific primers VfMID_R1 and

VfMID5’R (S2 Table) were used for amplifying the 5’-terminus sequence.

The intron-exon structure of VfMID was determined using genomic PCR as described

above for VaMID but using VfMID-specific primers (VfMID_Af and VfMID_AR; S2 Table).

V. reticuliferus. Polyadenylated mRNA was isolated from sexually induced cultures using

Dynabeads Oligo (dT)25 (Thermo Fisher Scientific) and reverse transcribed with Superscript

III reverse transcriptase (Thermo Fisher Scientific).

We performed 5’- and 3’-RACE with the GeneRacer kit and V. reticuliferus MID (VrMID)

specific primers based on the partial MID sequences of V. reticuliferus strain UTEX 1890 [3,6].

5’ nested PCR was performed with Gene Racer 5’ Primer and gene specific primers F1-

7MID_R1 and F1-7MIDR2 (S2 Table). 3’ PCR were performed using the Gene Racer 3’ Primer

and a gene specific primer, F1-7MID_3’F1 (S2 Table).
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The intron-exon structure of VrMID was determined using genomic PCR as described above

for VaMID but using VrMID-specific primers (F1-7MID_AF and F1-7MID_AR; S2 Table).

Yamagishiella unicocca and Eudorina sp.. Full-length MID genes of Y. unicocca strain

NIES-1859 and Eudorina sp. strain NIES-2735 (S3 Table) were determined as described previ-

ously [9,16].

Availability of sequence data. The new sequence data of MID orthologs have been depos-

ited to DDBJ/EMBL/GenBank (accession numbers: LC274875-LC274882; S3 Table).

Phylogenetic analysis of MID orthologs

Phylogenetic analyses were performed using MUSCLE [19]–aligned full-length protein sequences

of sixteen Volvocales MID orthologs (S3 Table). The maximum likelihood (ML) method (based

on LG model [20] selected by MEGA 6.0 [21]) and the neighbor joining (NJ) method (using JTT

model [22]) by MEGA 6.0) were carried out with bootstrap values from 1000 replications.

A molecular evolutionary analysis of nonsynonymous and synonymous substitutions was

performed between the MID ortholog of G. pectorale and those of seven other Volvocales by

MEGA 6.0, using a modified Nei-Gojobori model [23,24] (assumed transition/transversion

bias = 1.55).

Detection of VrMID based on genomic PCR of V. reticuliferus

Genomic PCR was performed in six strains of V. reticuliferus (Table 1) using total DNA

extracted as described previously [18], KOD FX Neo DNA polymerase and a pair of VrMID
specific primers (F1-7MID_AF and F1-7MID_AR; S2 Table). The ITS2 sequence was ampli-

fied as a control, using an ITS2-specific primer pair designed based on the ITS2 sequence of

2013-0703-VO2 (S2 Table). PCR cycles were 2 min at 94˚C, followed by 30 (ITS2) and 35

(VrMID) cycles of 10 sec at 98˚C and 30 sec at 68˚C.

Southern blot analysis

Genomic DNA of V. africanus strain 2013-0703-VO4, V. reticuliferus strains VO123-F1-6 (fe-

male) and VO123-F1-7 (male) (Table 1) was prepared by the “miniprep” method [25]. Restric-

tion enzyme digests of genomic DNA (2 μg) were separated by 1.0% agarose gel electrophoresis

and transferred onto a Hybond-N+ nylon membrane (GE Healthcare, UK). A hybridization

probe containing part of the VrMID gene (Fig 2) labeled with digoxigenin-11-dUTP was pre-

pared by PCR using a plasmid clone of the VrMID gene as template and the primer pair F1-7_

southMID_F and F1-7_MID_R1 (S2 Table) using PCR DIG Probe Synthesis Kit (Roche Diag-

nostics, Germany), and hybridized at 42˚C. A hybridization probe containing part of the V. reti-
culiferus elongation factor 1-like gene (EF1-like) labeled with digoxigenin-11-dUTP was prepared

by PCR using a plasmid clone of the EF1-like gene as template and the primer pair (CV_EF1A1-

R2 and GpEF1A-INT3-R [16]; S2 Table) using KOD FX Neo DNA Polymerase, and hybridized

at 42˚C. The signals were detected using DIG-High Prime DNA Labeling and Detection Starter

Kit II (Roche Diagnostics) and Chemidoc XRS (Bio-Rad, Hercules, CA, USA). The resulting

image was processed with a median filter (diameter: 1 pixel) in ImageJ (National Institutes of

Health, Bethesda, MD, USA) to remove random noise produced by long exposure (2 hr).

Estimation of genome sizes of Volvox africanus and V. reticuliferus

To estimate relative genome size of V. africanus and V. reticuliferus, 4’,6-diamidine-2-pheny-

lindole (DAPI)-staining was performed using somatic cells of V. africanus, male and female

strains of V. reticuliferus (2013-0703-VO2 and 2013-0703-VO3, respectively), and V. carteri
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strain EVE (control). One ml of each vegetative sample was fixed with 0.25% glutaraldehyde,

followed by postfixation in 100% methanol for reducing autofluorescence, and washed with

phosphate-buffered saline. Fixed samples were stained with 0.1μg/μl DAPI overnight. DAPI-

stained somatic cells of V. africanus and V. reticuliferus male and female were mixed separately

with DAPI-stained V. carteri strain EVE and mounted in the same slide. The images were

obtained using a BX-60 Microscope and DP Controller 1. 2. 1108 (Olympus, Tokyo, Japan).

The image analyses were performed using ImageJ, measuring the mean gray value of 10 nuclei

for each exposure time (0.50, 0.67, 1.0, 1.5, 2.0 and 2.5 s).

Semi-quantitative reverse transcription (RT)-PCR analyses

EF1-like genes were used as internal controls. To obtain sequences of EF1-like genes from the

three Volvox species, PCR amplifications were performed with full-length cDNA of each Vol-
vox and the primer pair, CV_EF1A1-R2 and GpEF1A-INT3-R [16]. From direct sequencing of

PCR-products, we designed EF1-like-specific primer pairs for each of the three Volvox species

(S2 Table) for semi-quantitative RT-PCR analyses.

For V. africanus, 30 asexual, male or monoecious spheroids were collected by a micropi-

pette from cultures that were sexually induced or not. Polyadenylated mRNAs were isolated

separately from these three sets of spheroids and reverse transcribed as described for V. reticu-
liferus MID determination. Likewise, cDNAs of the other two Volvox species were obtained by

reverse transcription using mRNAs isolated from 30 asexual (in cultures that were sexually

induced or not), male or female spheroids in V. reticuliferus, as well as from 30 asexual (in cul-

tures that were sexually induced or not), or monoecious spheroids in V. ferrisii.
PCR analyses were performed using KOD FX Neo DNA polymerase. PCR cycles and

primer pairs are described in S4 Table. The amplified products were electrophoresed on 2%

Fig 2. Exon-intron structures of three MID orthologs: VaMID (Volvox africanus), VrMID (V.

reticuliferus), and VfMID (V. ferrisii). Gray bar represents the VrMID probe for Southern blotting (S5 Fig).

https://doi.org/10.1371/journal.pone.0180313.g002
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(wt/vol) agarose gels and stained with ethidium bromide. The gel images were captured using

a ChemiDoc XRS (Bio-Rad), level adjusted and gradation inverted with Adobe Photoshop CS6

(Adobe Systems Inc., San Jose, CA).

Results

Identification and characterization of MID orthologs

We identified full-length cDNA sequences and intron-exon structures of VaMID, VrMID and

VfMID (Fig 2). The genomic sequences of the three genes determined in this study covered the

entire DNA sequences of the genes and demonstrated that all three genes contained introns at

the same four positions. The deduced protein sequences of the three genes were composed of

163–167 amino acids that contained the DNA binding RWP-RK domain near the C-terminus.

RWP-RK domains of seven volvocine MID proteins were highly conserved even among

homothallic and heterothallic volvocine species (S3 Fig).

Based on the phylogenetic analysis of 14 colonial volvocine MID proteins, a large clade

composed of seven genes of the Volvocaceae was resolved with 83–85% bootstrap values in

ML and NJ methods (Fig 3). However, phylogenetic relationships of Gonium MID proteins

were not well resolved. Within the volvocacean clade, MID proteins from V. carteri, V. reticuli-
ferus, V. africanus, Pleodorina starrii and Eudorina sp. formed a robust monophyletic group

(with 98–99% bootstrap values in both analyses) from which Yamagishiella unicocca and V. fer-
risii MID proteins were separated. These results were consistent with the phylogenetic rela-

tionships of the colonial volvocine algae based on chloroplast genes [26].

A molecular evolutionary analysis of the volvocacean MID genes demonstrated that non-

synonymous and synonymous substitutions of the genes from two homothallic species of Vol-
vox (V. africanus and V. ferrisii) fell within the range of those of heterothallic species (Fig 4).

Fig 3. Maximum-likelihood (ML) tree (based on LG model) of 16 full-length MID proteins from colonial

volvocine species and two species of Chlamydomonas. Branch lengths are proportional to the estimated

amino acid substitutions, which are indicated by the scale bar above the tree. Numbers above and below

branch points indicate bootstrap values (50% or more) of the ML and neighbor-joining (based on the JTT

model), analyses, respectively. The sequences of MID orthologs with asterisks (*) were determined in this

study; filled circles (●) indicate homothallic strains.

https://doi.org/10.1371/journal.pone.0180313.g003
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Genomic PCR and Southern blot analysis of MID genes of Volvox

africanus and V. reticuliferus

Results of genomic PCR using VrMID-specific primers (S2 Table) for strains of V. reticuliferus
(Table 1) are shown in S4 Fig. All three male strains of V. reticuliferus demonstrated the pres-

ence of VrMID based on a single band whereas all three female V. reticuliferus strains lacked

the gene. Four of the V. reticuliferus strains are F1 progeny in which the MID gene band is

found only in phenotypically male strains. This is consistent with the expectation that a MID
gene containing MT locus is the genetic determiner of sex, although more progeny are needed

to be definitive. In the homothallic species V. africanus, a single band of VaMID was detected

(not shown).

Southern blot analysis of V. reticuliferus demonstrated the presence of a single copy of the

VrMID gene in the male genome and the complete absence of the gene in the female (S5A

Fig). The genome of the homothallic species V. africanus was shown to encode two possible

copies of VaMID based on the blot analysis (S5A Fig). However, only a single copy of EF1-like
gene was detected in each strain of V. africanus and V. reticuliferus (S5B Fig).

Estimation of genome sizes of Volvox africanus and V. reticuliferus

based on epifluorescence microscopy of DAPI-stained somatic cells.

Since V. africanus or V. reticuliferus might have originated from their common ancestor by

duplication of the whole genome, relative genome sizes of these two species were measured

based on the degree of fluorescence of DAPI-stained nuclei in somatic cells using epifluores-

cence microscopy. By using the fluorescence value of nuclei of V. carteri EVE somatic cells as a

Fig 4. Synonymous (dS) and nonsynonymous (dN) substitutions of MID genes in the Volvocaceae of

volvocine algae (Fig 2). Analyses were conducted with the outgroup Gonium pectorale MID gene

(AB353340) using the modified Nei-Gojobori (assumed transition/transversion bias = 1.55) model ([23,24] by

MEGA6[21]. All positions containing gaps and missing data were eliminated. There were a total of 162

positions in the final dataset. Filled circles (●) indicate the homothallic strain.

https://doi.org/10.1371/journal.pone.0180313.g004
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control, both V. africanus and V. reticuliferus genome sizes could be considered to be 0.9–1.1

times the genome size of V. carteri EVE (S6 Fig).

Semi-quantitative RT-PCR analyses of expression of MID genes

Results of semi-quantitative RT-PCR analyses of expression of MID genes in the V. africanus
homothallic strain, V. reticuliferus male strain and V. ferrisii homothallic strain are shown in

Fig 5. In a sexually induced V. africanus culture, VaMID expression was extremely high in

male spheroids, whereas the expression was low in monoecious and asexual spheroids (Fig 5A

and 5D). The VaMID expression of asexual spheroids in a sexually uninduced culture was

slightly higher than that in a sexually induced culture (Fig 5A). In heterothallic V. reticuliferus,
the VrMID level was highly upregulated in male spheroids when compared to that of asexual

spheroids in the same culture (Fig 5B and 5E). Three alternative splicing variants of VaMID
were also identified. All these variants were identified as due to intron retention [27] (S7 Fig).

No alternative splicing variants were identified in VrMID and VfMID. In contrast to V. africa-
nus, VrMID expression of asexual spheroids in a sexually induced culture was slightly higher

than that in a sexually uninduced culture (Fig 5E). No alternative splicing variants were

detected in VrMID expression.

In contrast to V. africanus, the VfMID level in monoecious spheroids of V. ferrisii was

higher than that of asexual spheroids in sexually induced and sexually uninduced cultures. The

VfMID transcription level in monoecious spheroids was more than 2.5 times higher than that

of asexual spheroids from either culture condition.

Discussion

MID orthologs in homothallic species of Volvox with monoecious

spheroids

The present study demonstrated that two homothallic species of Volvox with monoecious

spheroids, V. africanus and V. ferrisii, have MID orthologs (Figs 2 and 3). The MID orthologs

(VaMID and VfMID) of these two homothallic species are essentially consistent with those

of heterothallic colonial or multicellular volvocacean species [8,9] in containing 5 exons, 4

introns, and a DNA binding RWP-RK domain at the C-terminus. Phylogenetic relationships

of MID orthologs within the Volvocaceae (Fig 3) were consistent with those based on chloro-

plast genes [2,3]. Moreover, comparison of synonymous and nonsynonymous substitutions of

MID genes between homothallic and heterothallic volvocacean species suggested that the MID
genes of the two homothallic species have evolved under the same degree of functional con-

straint as those of the heterothallic species. Thus, no signs of altered selection on MID could be

detected in the monoecious species. Nozaki et al. [9] reported that MID protein expression is

strong in nuclei of the gametes of the male strain of P. starrii. Geng et al. [10] demonstrated

that the MID ortholog (VcMID) of the heterothallic species Volvox carteri controls sperm

packet formation by sexual reproductive cells (androgonidia). The present study showed that

expression of VaMID in homothallic V. africanus is very high in male spheroids (Fig 5A and

5D). Therefore, the MID orthologs of the two homothallic species of Volvox may control

sperm packet formation as in the heterothallic species.

VaMID transcription in monoecious and male spheroids

The number of sperm packets in a monoecious spheroid is very small, 1–4 in V. africanus [3]

or 3–5 sperm packets in V. ferrisii. [2]. In contrast, the male spheroid of V. africanus contains

100–260 androgonidia that divide to form sperm packets. The semi-quantitative RT-PCR data
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Fig 5. Semi-quantitative RT-PCR of MID orthologs in three species of Volvox (V.). (A-C) The products of RT-PCR reactions

are resolved by agarose gel electrophoresis. The loading volume for each lane was normalized to the quantity of EF1-like (internal
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showed down-regulation of MID expression in monoecious spheroids and extremely high

upregulation in male spheroids in V. africanus, suggesting that VaMID transcriptional level is

correlated with the quantity of sperm packets in monoecious or male spheroids. It indicates

that V. africanus has spheroid type-specific regulation of VaMID. In heterothallic V. carteri,
VcMID protein is localized in the sperm nucleus and controls formation of sperm packets

[10]. As discussed above, VaMID may also control formation of sperm packets. Thus, V. africa-
nus may determine the fate of reproductive cells in monoecious spheroids by differentially

controlling VaMID expression between eggs and androgonidia. Further analyses of the locali-

zation of VaMID in the monoecious spheroid at the cellular level is required to confirm this

hypothesis.

VfMID transcription in monoecious spheroids

In V. africanus, expression of VaMID in monoecious spheroids is lower than that of asexual

spheroids (Fig 5A and 5D). By contrast, VfMID expression in monoecious spheroids is higher

than that of asexual spheroids (Fig 5C and 5F). This difference of MID expression in monoe-

cious spheroids may be related to the phylogenetic positions of V. africanus and V. ferrisii. V.

ferrisii belongs to Volvox sect. Volvox that is clearly separated from the large monophyletic

group (Eudorina group) composed of the other three Volvox sections (including V. africanus,
V. reticuliferus and V. carteri), Eudorina and Pleodorina [2,3,27]. The phylogenetic positions

suggest that monoecious spheroids might have been acquired independently in the evolutions

of Volvox sect. Volvox and the Eudorina group. Further studies of VfMID expression at the cel-

lular level are needed to understand the role of VfMID in the monoecious species V. ferrisii.

Conclusions

Sexual differentiation in heterothallic species of the unicellular and colonial/multicellular vol-

vocine algae is controlled by a sex-determining or mating type locus (MT) containing MID in

the minus or male strain [8, 28, 29]. Comparative analyses of MT loci in volvocine algae are

important to elucidate the molecular and genomic basis of evolution of sexual differentiation

[8, 29]. However, there is, as yet, no genome information from homothallic species in the chro-

mosomal region homologous to the MT locus of their heterothallic relatives, except for the

MID genes that we described here in two homothallic species, V. africanus and V. ferrisii.
A homothallic euascomycete fungus, Neosartorya fischeri, has duplicated MT loci, (MAT1

and MAT2) possibly originating from the MT loci of the complementary sexes of the hetero-

thallic ancestral species [30]. In C. reinhardtii, diploid heterozygotes (mt+/mt-) sometimes skip

meiosis and produce diploid vegetative cells under experimental conditions [31]. The present

study showed that the genome size in homothallic V. africanus is almost the same as that of its

heterothallic relative V. reticuliferus (S6 Fig). Thus, the origin of the homothallic V. africanus
cannot be explained simply by whole genome duplication via lack of meiosis of a diploid

zygote of a possible heterothallic ancestor, although partial duplication of only the male and

female MT loci cannot be ruled out based on the present genome measurement (S6 Fig).

Homothallic V. africanus has an ortholog of the male-limited gene MID found in hetero-

thallic species. In addition, androgonidia (male reproductive cells) in the heterothallic, male

strain of V. carteri may function as eggs by experimental suppression of VcMID expression

[10]. The present study demonstrated monoecious spheroid-specific down regulation of gene

control) product. The number of PCR cycles are indicated separately for MID and EF1-like. (D-F) Gel band quantification analyses

by ImageJ. Bars show means and standard deviations of three individual experiments.

https://doi.org/10.1371/journal.pone.0180313.g005
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expression of the MID ortholog in V. africanus (Fig 5). Therefore, the homothallic species V.

africanus might have evolved directly from a male strain of the heterothallic ancestor by modi-

fication of the regulation system of MID expressions in sexual spheroids. In any case, compara-

tive analyses of the whole genomes of V. africanus and V. reticuliferus would be indispensable

for further understanding the molecular and genome bases of evolution of both species.

The present study suggested that the male-specific transcription factor MID is functional in

two homothallic Volvox species that produce both eggs and sperm packets in a single sexual

spheroid. As discussed above, MID in homothallic species of Volvox may also be a key gene

that controls formation of sperm packets. Thus, other unknown factors controlling MID may

be crucial for differentiating monoecious or male spheroids in Volvox. Further studies of

molecular mechanisms controlling MID in various sexual types of Volvox will improve our

understanding of the evolution of monoecious spheroids in Volvox.
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27. Kianianmomeni A, Ong CS, Rätsch G, Hallmann A. Genome-wide analysis of alternative splicing in Vol-

vox carteri. BMC Genomics 2014; 15: 1117. https://doi.org/10.1186/1471-2164-15-1117 PMID:

25516378

28. Ferris PJ, Goodenough UW. The mating-type locus of Chlamydomonas reinhardtii contains highly rear-

ranged DNA sequences. Cell 1994; 76: 1135–1145. https://doi.org/10.1016/0092-8674(94)90389-1

PMID: 8137428

29. Hamaji T, Mogi Y, Ferris PJ, Mori T, Miyagishima S, Kabeya Y, et al. Sequence of the Gonium pectorale

mating locus reveals a complex and dynamic history of changes in volvocine algal mating haplotypes.

G3 (Bethesda) 2016; 6: 1179–1189. https://doi.org/10.1534/g3.115.026229 PMID: 26921294

30. Rydholm C, Dyer PS, Lutzoni F. DNA Sequence characterization and molecular evolution of MAT1 and

MAT2 Mating-Type Loci of the self-compatible ascomycete mold Neosartorya fischeri. Eukaryot. Cell

2007; 6: 868–874. https://doi.org/10.1128/EC.00319-06 PMID: 17384199

31. Ebersold WT. Chlamydomonas reinhardi: heterozygous diploid strains. Science 1967; 157: 447–449

PMID: 6028032

Molecular evolutionary analysis of MID ortholog from the homothallic species Volvox africanus

PLOS ONE | https://doi.org/10.1371/journal.pone.0180313 June 30, 2017 16 / 16

https://doi.org/10.1186/1471-2148-14-37
https://doi.org/10.1186/1471-2148-14-37
http://www.ncbi.nlm.nih.gov/pubmed/24589311
https://doi.org/10.1186/1471-2164-15-1117
http://www.ncbi.nlm.nih.gov/pubmed/25516378
https://doi.org/10.1016/0092-8674(94)90389-1
http://www.ncbi.nlm.nih.gov/pubmed/8137428
https://doi.org/10.1534/g3.115.026229
http://www.ncbi.nlm.nih.gov/pubmed/26921294
https://doi.org/10.1128/EC.00319-06
http://www.ncbi.nlm.nih.gov/pubmed/17384199
http://www.ncbi.nlm.nih.gov/pubmed/6028032
https://doi.org/10.1371/journal.pone.0180313

