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A B S T R A C T

SOD1 is commonly known for its ROS scavenging activity, but recent work has uncovered additional roles in
modulating metabolism, maintaining redox balance, and regulating transcription. This new paradigm of ex-
panded SOD1 function raises questions regarding the regulation of SOD1 and the cellular partitioning of its
biological roles. Despite decades of research on SOD1, much of which focuses on its pathogenic role in amyo-
trophic lateral sclerosis, relatively little is known about its regulation by post-translational modifications (PTMs).
However, over the last decade, advancements in mass spectrometry have led to a boom in PTM discovery across
the proteome, which has also revealed new mechanisms of SOD1 regulation by PTMs and an array of SOD1 PTMs
with high likelihood of biological function. In this review, we address emerging mechanisms of SOD1 regulation
by post-translational modifications, many of which begin to shed light on how the various functions of SOD1 are
regulated within the cell.

1. Introduction

The enzymatic function of Cu/Zn Superoxide Dismutase (SOD1),
previously known as hemocuprein, was first characterized in 1969 [1].
Decades of research that followed revealed several key aspects of SOD1
biology, including the structure of SOD1 as an active dimer, its essential
metal cofactors (copper and zinc), and its ability to convert superoxide
radicals into molecular oxygen and hydrogen peroxide—referred to as
dismutation. In disease contexts, SOD1 is best-known for its role in a
familial form of amyotrophic lateral sclerosis (fALS) [2], in which a
wide variety of SOD1 mutations increase the propensity of SOD1 to
aggregate, which is thought to ultimately induce motor neuron death.
In addition, SOD1 is overexpressed in numerous cancer types, including
lung adenocarcinoma [3], non-small-cell lung cancer [4], and 70% of
primary breast cancers [5]. SOD1 overexpression in cancer likely con-
fers a growth advantage by providing protection against oxidative da-
mage [6]. In support of this idea, genomic deletion of SOD1 in mam-
malian cells induces cell death due to the buildup of oxidative stress
[7].

Studies in the model eukaryote Saccharomyces cerevisiae (Baker's
yeast) suggest that the vast majority of the total SOD1 pool, estimated
to represent nearly 1% of total protein in some cells [8], is dispensable
for protection of cells from oxidative stress [9–11]. Although SOD1 is
abundant in the cytosol, the pro-survival effect of SOD1 appears to be
most critical within the intermembrane space (IMS) of mitochondria, as
an IMS-targeted SOD1 is sufficient to protect cells from oxidative stress

[11]. These findings suggest that the large majority of SOD1 (> 99%)
may be required for functions outside its canonical role in dismutating
superoxide. Indeed, SOD1 is reported to function in cellular zinc [12]
and copper buffering [13], as a nuclear transcription factor to control
the expression of antioxidant genes [14,15] and for peroxide-mediated
redox signaling [11].

In addition, SOD1 was shown to be a metabolic focal point in yeast
for integrating nutrient availability to regulate a switch between re-
spiration and fermentation [9]. This mechanism of SOD1-mediated
control of metabolism involves a glucose- and O2-dependent signal that
triggers SOD1-mediated stabilization of two yeast casein kinase 1-
gamma (CK1γ) isoforms, which, in turn, suppresses mitochondrial re-
spiration. In addition, our recent work in mammalian cells demon-
strated a similar role for SOD1 in suppressing mitochondrial metabo-
lism, potentially via suppression of complex I of the electron transport
chain (ETC) [16]. Furthermore, mutants of SOD1 that are defective in
suppressing respiration, but capable of dismutation, do not fully rescue
cell survival in SOD1-null cells, suggesting that this metabolic function
of SOD1 may represent an additional facet of SOD1-mediated anti-
oxidant defense—potentially via suppression of ROS formation at the
ETC [16]. Thus, this new complexity of SOD1 function provides fresh
context in which we can examine how PTMs may control the various
roles of SOD1.

In this review, we compile a comprehensive list of SOD1 PTMs and
draw from recent literature to discuss how these PTMs regulate the
canonical ROS-scavenging function of SOD1, in addition to emerging
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SOD1 functions and SOD1 aggregation. Furthermore, we examine SOD1
PTMs that are predicted to impact SOD1 function and merit future
study.

2. Phosphorylation

At least 12 phosphorylation sites have been discovered
(phosphosite.org) on SOD1 and a few have been implicated in reg-
ulating the role of SOD1 in ROS-scavenging, possible cytoskeletal
maintenance and transcription (Fig. 1 and Table 1) [14,17,18]. Early
mass spectrometry work on SOD1 identified a granulocyte-colony sti-
mulating factor (GCSF)-induced phosphorylated species of SOD1 [19].
Although at the time, no specific site of phosphorylation was dis-
covered, the authors suspected the phosphorylation may control SOD1
degradation based on their observation that GCSF treatment triggered a
decrease in SOD1 protein levels that correlated with increased phos-
phorylation. Hjornevik et al. [17] later found that treatment of primary
hepatocytes with nodularin, a Ser/Thr phosphatase inhibitor, increased
SOD1 phosphorylation levels (detected by two-dimensional gel elec-
trophoresis—no specific sites detected) and disrupted SOD1 colocali-
zation with the cytoskeleton without any change in SOD1 ROS
scavenging activity—suggesting that SOD1 phosphorylation may alter
the subcellular localization of SOD1. They posited that the increased
phosphorylation and loss of colocalization may contribute to cytoske-
letal rearrangement in the early stages of apoptotic budding after no-
dularin treatment [17]. While these early studies hinted at some in-
teresting modes of SOD1 regulation by phosphorylation, the absence of
identified sites makes it impossible to rule out other mechanisms of
SOD1 regulation that have contributed to their observations.

Phosphorylations at Thr2 and either Thr58 or Ser59 were initially
identified in human erythrocytes, but neither showed any evidence of
regulating canonical SOD1 enzymatic activity [20]. Rather, Thr2 was
linked to a possible rescue phenotype for an fALS mutant of SOD1.
Indeed, Fay et al. [21] found that a phospho-mimicking aspartic acid
substitution at Thr2, which sits at the SOD1 dimer interface, stabilizes
the SOD1 dimer even when combined with the fALS-linked, SOD1-de-
stabilizing A4V mutation. However, the mechanism by which Thr2
phosphorylation is regulated and stabilizes SOD1 is still unknown.

In yeast, phosphorylations at Ser59* and Ser98* are proposed to
regulate a non-canonical function of SOD1 in transcription. Tsang et al.
[14] found that in response to toxic levels of oxidative stress
(0.4 mMH2O2), SOD1 translocates to the nucleus to transcriptionally
upregulate antioxidant genes. In addition, this new nuclear function of
SOD1 was recently shown to involve direct SOD1-DNA interactions
with specific DNA sequence preferences [15]. The nuclear translocation

Fig. 1. SOD1 sites of phosphorylation. Crystal structure of mouse SOD1 (PDB:
3GTV) with known human SOD1 sites of phosphorylation highlighted in red
(sites compiled from papers discussed in this review and from www.
phosphosite.org). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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of SOD1 is dependent on activation of ATM/Mec1 by ROS, which
promotes SOD1 binding to the Chk2-related kinase, Dun1. Dun1 then
phosphorylates SOD1 at Ser59 and Ser98 and promotes its translocation
to the nucleus to maintain genomic stability. Mutation of these serine
residues to alanine abrogates SOD1 nuclear localization, suggesting that
they may play a role in mediating SOD1 interactions with nuclear
transport machinery [14]. These data raise a number of questions, in-
cluding whether SOD1 functions as a nuclear transcription factor in
response to chemotherapeutics or other means of activating the DNA
damage response via ATM. Furthermore, Dun1-mediated phosphor-
ylation of SOD1 was observed with apoptosis-inducing levels of oxi-
dative stress, so whether these phosphorylations are involved in normal
homeostatic SOD1 signaling or only under extreme oxidative stress or
DNA damage is unknown.

Interestingly, an analysis of all known SOD1 PTMs by SAPH-ire, a
machine learning approach aimed at predicting functional PTMs,
scored Ser98 as the most likely SOD1 PTM for biological function
[16,22,23]. Indeed, unmodified Ser98 may play a role in maintaining
the structural integrity of SOD1 by H-bonding with adjacent residues, as
demonstrated in crystal structures of apo-SOD1 [24]. Thus, the sphere
of negative charge conferred by phosphorylation at Ser98 would likely
impose structural change on SOD1, potentially leading to changes in
interacting partners (e.g., nuclear chaperones) or enzymatic activity,
which could begin to explain the observation that the S98A SOD1
mutant fails to move to the nucleus during oxidative stress [14].

Leitch et al. first studied a phosphorylation on yeast SOD1 at Ser38*
[25], which sits at the entry site of a positively charged tunnel within
the SOD1 structure that is thought to guide negatively charged super-
oxide to the active site for dismutation [26]. Recent evidence suggests
that phosphorylation at Ser38 (Thr39 in humans) may act as a TORC1/
mTORC1-governed switch to control SOD1 activity in yeast and mam-
malian cells. Specifically, Tsang et al. [18] found that under full glucose
conditions in yeast, TORC1 directly phosphorylates SOD1 at Ser38,
which results in suppression of SOD1 enzymatic activity. Conversely,
inhibition of TORC1, by incubation of cells in glycerol or the TOR in-
hibitor rapamycin, resulted in dephosphorylation of SOD1 and in-
creased ROS scavenging activity. In human cells, Thr39 was similarly
regulated by mTORC1. Furthermore, tumor cells expressing the SOD1
T39E phospho-mimic were impaired for survival and tumor growth,
whereas the phospho-null SOD1 Thr39A showed the opposite—in-
creased survival and tumor growth in mouse xenograft models [18].

Previous work in yeast suggested that Ser38 phosphorylation in-
creases dramatically under low oxygen conditions, in which mTORC1 is
presumably less active. Leitch also found that Ser38 phosphorylation
correlates strongly with a decrease in SOD1 activity during hypoxia
[25]. These results raise the possibility that other kinases may target
this site to inhibit SOD1 activity in hypoxia. Ser38 sits adjacent to a
proline (AGNpSPNA), which makes it a candidate substrate for MAPKs
and other proline-directed kinases. Thus, p38 MAPK, or hypoxia-

activated proline-directed kinases may target Ser38 to suppress SOD1
activity. Furthermore, the hypoxia-induced phosphorylation of Ser38
may help explain why hypoxic conditions result in a loss of antioxidant
defense, which returns promptly when cells/tissues are returned to full-
oxygen conditions [27].

3. Lysine modifications

Acylation. Lysine acylation is a reversible modification that can
vary in carbon length, with two of the most frequently observed acy-
lations being acetylation (1 carbon) and succinylation (2 carbons).
Acylation is typically regulated by lysine acyl transferases (KATs) and
lysine deacylases (KDACs), but can also be added and removed non-
enzymatically [28–30]. Acylation is thought to impact protein function
by changing the net charge of lysine from +1 to 0 (acetylation) or −1
(succinylation). High throughput mass spectrometry studies have
identified a variety of acetylation and succinylation sites on SOD1, but
only a few have been investigated for their impact on SOD1 function.

SOD1 was initially identified as a substrate of the Sirtuin family
deacylase, SIRT1, in Xenopus egg extracts [31]. Later work revealed
that SIRT1 regulates an acetylation at Lys70* [32], which sits within a
solvent-exposed flexible loop in the SOD1 structure (Fig. 2). Acetylation
at Lys70 is proposed to inactivate SOD1 activity by disrupting SOD1
binding to the copper chaperone for superoxide dismutase (CCS) and, in
turn, inhibiting the formation of SOD1 homodimers [32].

Given that Sirtuins are linked to metabolism by their dependence on
NAD+ for catalytic activity, these data suggest that SOD1 activity, in
turn, may rise and fall with NAD+ levels. Furthermore, SIRT1 is pri-
marily considered a nuclear deacetylase. Thus, SIRT1 may serve to
maintain nuclear SOD1 in an active, deacetylated state via Lys70 dea-
cetylation, thereby promoting the previously reported antioxidant and
transcriptional functions of SOD1 [14]. In support of this idea, high
levels of Lys70 acetylation are correlated with sensitivity to genotoxic
agents [32].

Another Sirtuin-governed acylation on SOD1 with known function
occurs at Lys122*, which is both acetylated and succinylated [33–38].
Lys122 sits within the electrostatic loop, a region thought to participate
in shuttling superoxide radicals toward the SOD1 active site [26,39].
Lin et al. reported that the lysine desuccinylase SIRT5 interacts with
SOD1 and desuccinylates Lys122 and that SIRT5 depletion reduces
SOD1 enzymatic activity [40]. However, we found that neither acet-
ylation nor succinylation-mimicking mutations (Gln (Q) and Glu (E),
respectively) at Lys122 affect the ROS scavenging activity of SOD1
[16]. In an effort to investigate other functions of SOD1 that may be
impacted by Lys122 acylation, we found that SOD1 K122Q or E mutants
were unable to suppress mitochondrial respiration [16], a recently re-
ported SOD1 function [9]. Depletion of SIRT5 increased SOD1 succi-
nylation at Lys122 , which, in turn, suppressed SOD1-mediated in-
hibition of complex I of the electron transport chain (ETC), resulting in
an increase in mitochondrial respiration. Importantly, the increase in
respiration in SIRT5-depleted cells was rescued to near-normal levels by
expressing an acylation-refractory K122R mutant of SOD1, which sug-
gests that SIRT5 controls mitochondrial respiration by maintaining
SOD1 in a desuccinylated state, capable of suppressing respiration.

The precise mechanism by which acylation at Lys122 inhibits the
ability of SOD1 to suppress respiration remains an open question. In
yeast, Reddi et al. found that SOD1 suppresses respiration by inter-
acting with and stabilizing two casein kinase 1-gamma (CK1γ) isoforms,
which, in turn, inhibits mitochondrial respiration [9]. This suggests that
acylation of Lys122 may disrupt the SOD1-CK1γ interaction. However,
it is not yet clear whether mammalian SOD1 acts through the same
mechanism. Furthermore, Lys122 is only conserved in higher eu-
karyotes, which suggests that the ability to toggle SOD1-mediated
suppression of respiration on or off via acylation may only be critical in
the context of more complex multicellular organisms [16].

The evolutionary conservation of SOD1-mediated suppression of

Fig. 2. SOD1 sites of lysine modification. Crystal structure of mouse SOD1
(PDB: 3GTV) with known human SOD1 sites of lysine-modifications highlighted
in magenta (sites compiled from papers discussed in this review and from www.
phosphosite.org).
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respiration from yeast to human and its link to Sirtuin activity beg the
question of its biological significance. Could suppression of respiration
be an additional part of the expanding antioxidant program governed
by SOD1? In support of this idea, the K122E mutant of SOD1, which is
enzymatically active but defective in suppressing respiration, is unable
to fully rescue SOD1 KO cells from oxidative stress-induced death [16],
suggesting that the inhibition of respiration contributes to SOD1-
mediated antioxidant defense. Exactly how this occurs is still unclear.
Decades of research have shown that e− leakage from the ETC, gen-
erally attributed to complex III, is a major source of ROS in the cell
[41,42]. Thus, SOD1-mediated inhibition of respiration may directly
inhibit ROS formation by suppressing e− flux through the ETC. In
support of this idea, genetic inhibition of respiration partially rescues
the loss of viability caused by SOD1 deletion in yeast (known to be
caused by excessive oxidative stress) [43]. Furthermore, metformin,
which, like SOD1, inhibits complex I, reduces ROS formation via in-
hibition of ETC activity [44–46].

In vitro studies of SOD1 aggregation have also revealed a role for
lysine acylation in controlling SOD1 aggregation and the prion-like self-
propagation of SOD1 oligomers. Abdolvahabi et al. [47] found that
aspirin-induced acetylation on lysines of purified SOD1 impeded amy-
loidogenesis caused by the fALS-linked A4V mutation. This effect does
not appear to be specific to any particular lysine position and can be
accomplished with as few as three acylated lysines, suggesting that
simply increasing the net negative charge of SOD1 effectively brings it
back from the tipping point of aggregation [48]. Therefore, the devel-
opment of small molecules that selectively increase the net negative
charge of SOD1 may be a promising therapeutic avenue for SOD1-
driven ALS [48].

Sumoylation and ubiquitination. SOD1 lysines are also modified
by SUMO-1 at Lys9 and Lys75 [49,50]. SUMO-1 modification at Lys75
increases the aggregation propensity of fALS-linked SOD1 mutants and
increases in sumoylation are also observed in SOD1 aggregates [49].
Niikura et al. confirmed this site of sumoylation and found that Lys75
could also be modified by SUMO-2/3 [50]. Similar to the effect of
SUMO-1 modification, they observed that the addition of SUMO-3 to
Lys75 increases the stabilization of an fALS-SOD1 mutant and accel-
erates its aggregation. It is unclear whether SOD1 sumoylation directly
causes aggregation by changing physical properties of the protein, or is
simply blocking the proteasomal degradation of SOD1, thereby pro-
moting aggregation by increasing SOD1 concentration.

SOD1 aggregates can be degraded through proteasomal or lyso-
somal (autophagy) degradation pathways, both of which are thought to
contribute substantially to reducing the SOD1 aggregate burden [51].
Clinical fALS patient samples, as well as G85R and G93A SOD1 trans-
genic mice, show colocalization of ubiquitin with SOD1 [52–54], which
could reflect the cell's failed attempt at degrading SOD1 through a
ubiquitin-dependent mechanism. Further, in an A4V SOD1 mutant fALS
cell model, the distribution and homeostasis of ubiquitination was al-
tered [55]. The ubiquitination of SOD1 depends on several ubiquitin
ligases, including Dorfin, NEDL1, and MITOL [56–58], and can occur at
Lys136 [59], as well as other lysines identified in high throughput
studies (see phosphosite.org). Biosensor imaging [60] of intact single
neuronal cells demonstrated that mutant SOD1, G93A and G85R, have
increased ubiquitination and chaperone interaction (Hsp70) over WT
SOD1, but do not cause general proteasomal dysfunction. This suggests
the possibility that fALS-linked SOD1 mutants exceed the cell's cha-
perone capacity (i.e., chaperone depletion). In support of this idea,
other studies have observed an inhibition of chaperone activity caused
by mutant SOD1 expression [61,62].

Glycation. Glycation of erythrocyte SOD1 has been shown to in-
activate SOD1 enzymatic activity in vitro [63]. The sites of glycation
were lysines 3, 9, 30, 36, 122, and 128, although glycation at Lys122
and Lys128 appeared to be the most critical for enzymatic deactivation
of SOD1 [63]. The effect of glycation on mutant SOD1 in fALS has been
reviewed in Ref. [64]. However, more recently, Sirangelo et al. [65]

suggested that glycation of SOD1 does not promote amyloid formation
in fALS, but may cause cytotoxicity through a yet undetermined
pathway. The known SOD1 lysine modification sites are summarized in
Table 2 and are indicated in the SOD1 crystal structure in Fig. 2 (human
sites only).

4. Redox modifications

Oxidation and glutathionylation. Oxidation may be the best un-
derstood SOD1 PTM to date. When WT SOD1 is oxidized to sulfonic
acid at Cys111, it obtains similar properties to fALS mutants of
SOD1—a propensity to misfold and inhibit kinesin-based fast axonal
transport [66]. This draws a striking connection between fALS and
sporadic forms of ALS (sALS) and may explain at least a subset of sALS
cases, in which aggregates of WT SOD1 are found. Interestingly, Xu
et al. found that pathological concentrations of H2O2 cause sulfenic acid
modifications at C111 and fibrillization of SOD1, which self-propagates
in a prion-like manner [67]. In comparing the cerebrospinal fluid of
patients with or without sALS, sulfenic acid modified SOD1 was sig-
nificantly increased in disease-positive patients. To further support the
idea that SOD1 oxidation may lead to sporadic forms of ALS, Martins
et al. [68] found that SOD1 oxidation at Cys146, His71, and His120 was
enriched in high molecular weight, aggregated forms of yeast SOD1,
raising the possibility that oxidation of SOD1 leads to its misfolding and
aggregation. Trp32 can also be oxidized and has been shown to cause
aggregation of human SOD1 [69].

Another form of redox modification that occurs during oxidative
stress is glutathionylation, which occurs on SOD1 at Cys111, a residue
that is critical for maintaining SOD1 stability. Glutathionylation at
Cys111 destabilizes SOD1 and promotes monomer formation, which is
the initiating step for SOD1 aggregation [20]. Therefore, among PTMs
associated with SOD1 stability, oxidation of SOD1 is a relatively well-
established PTM with potential links to SOD1 misfolding in ALS
[70–72]. The sites of oxidation and glutathionylation are summarized
in Table 3 and their positions in the SOD1 crystal structure are shown in
Fig. 3 (human sites only).

Cysteinylation. In support of the idea that oxidation may cause WT
SOD1 to aggregate, cysteinylation at Cys111 protects SOD1 from oxi-
dation and aggregation. Auclair et al. [73] observed cysteinylation and
oxidation modifications on SOD1 from post-mortem human nervous
tissue. In vitro cysteinylation offered almost full protection against
peroxide-induced oxidation of other regions of SOD1. Thus, SOD1 may
use cysteinylation as a defense mechanism against the destabilizing
effects of oxidation. The crystal structure of cysteinylated SOD1, while
very similar to native SOD1, shows a slight conformational change at
the dimer interface (loop VI) and the electrostatic loop (loop VII) [74].
Based on data collected previously for a crystal structure of 2-mercap-
toethanol-modified SOD1 [75,76], which also showed conformational
changes when Cys111 was modified, Auclair et al. [74] predict that
loops VI and VII are important for SOD1 stability. The cysteinylation
site is shown in Fig. 3 and summarized in Table 3.

5. S-acylation

Another reversible PTM that occurs on cysteine side chains is S-
acylation, in which a lipid is attached via a thioester bond. Taking
advantage of acyl-biotin exchange (ABE), click chemistry, and a mass
spectrometry approach, Marin et al. and Antinone et al. discovered that
SOD1 is S-acylated via palmitoylation [77,78]. This modification
commonly serves as a means to target and anchor proteins to cellular
membranes [78].

The first studies on SOD1 palmitoylation discovered the modifica-
tion at Cys6 and subsequent mutation of this cysteine to serine (C6S)
reduced enzymatic activity (~30%), and impaired SOD1 nuclear loca-
lization [77]. An analysis of SOD1 by resin-assistant capture (acyl-RAC)
suggested palmitoylation of SOD1 at Cys111, Cys57, and/or Cys146, as
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well [79]. Antinone et al. found fALS mutants of SOD1 in cell culture
and in transgenic mice spinal cords displayed increased palmitoylation
over WT SOD1 [78]. Furthermore, the authors suggested that SOD1 is
palmitoylated prior to full maturation, the modification decreases with
overexpression of CCS, and palmitoylation may play a role in SOD1
maturation by anchoring SOD1 and/or CCS to cell membranes [78,79].
The palmitoylation sites are shown in Fig. 3 and summarized in Table 4.

6. Nitration

Similar to ROS, reactive nitrogen species (RNS) play a role in de-
generative diseases associated with oxidative stress [80,81]. Nitration
of SOD1, specifically, has been reviewed elsewhere [80]. In brief, bo-
vine SOD1 has been shown to contain 3-nitrotyrosine residues after
reaction with peroxynitrite (a reactive nitrogen species), but this
modification appears to have no effect on SOD1 enzymatic activity
[81]. Human SOD1 does not contain any tyrosine residues but has the
potential to be nitrated at Trp32 to 6-nitrotryptophan which demon-
strates a partial loss of dismutase activity [82,83]. In another study,
peroxynitrite reaction with human SOD1 led to inactivation of its en-
zymatic activity, but also histidinyl radical formation [84]. Further,
substitution of Trp32 with a phenylalanine decreased the cytotoxicity
and aggregation propensity of a fALS mutant of SOD1 [85]. As men-
tioned earlier, Trp32 can also be oxidized and has been shown to cause
aggregation of SOD1 [69]. The known SOD1 nitration sites are shown
in Fig. 3 (human sites only) and summarized in Table 4.

7. Exploring SOD1 PTMS of unknown function

To prioritize SOD1 PTMs for future study, we used the tool SAPH-
ire, which was developed by the Torres laboratory to predict which
domains and residues on SOD1 would most likely contain biologically
relevant PTMs [16,22,23]. SAPH-ire is a machine learning approach
that takes into account a variety of predictive elements around ex-
perimentally-identified PTMs, ultimately ranking PTMs in order of
likelihood for biological function [22,23,86]. SAPH-ire gives each
modified amino acid a FPx score that indicates its predicted likelihood
for affecting protein function. We discovered that a relatively small
region of SOD1, encompassing 31 amino acids between Ser98 and
Lys128, included the seven PTM sites with the highest FPx scores
(highlighted in Fig. 4; described in more detail in Ref. [16]).

Furthermore, this region contains part of the dimer interface (loop
VI; residues 102–115) [76] and the electrostatic loop (loop VII; residues
122–143) [87]. The importance of part of the electrostatic loop is
supported by recent work from Mojumdar et al., in which they used
optical tweezers to measure transition states during SOD1 folding andTa
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Fig. 3. SOD1 sites of redox, palmitoylation, and nitration modifications. Crystal
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unfolding [88]. They discovered that SOD1 maturation starts with a
stable-core and misfolding is mainly centered around loops IV and VII.
Additionally, they proposed that strand 8 (part of the dimer interface)
and the electrostatic loop are the first to unfold and the last to refold.
Thus, the electrostatic loop and dimer interface likely form last around
the stable core [88]. Interestingly, loop VI encompasses Cys111, which
as discussed earlier is critical for preserving the dimer interface and
SOD1 stability [73,74]. Destabilization of the dimer interface and the
electrostatic loop have been implicated in fALS [71,89–91]. Thus, even
small charge perturbations in this region may alter SOD1 structure/
function and stability [74]. The residues in this region that were
highlighted by SAPH-ire are shown with their respective FPx ranking in
Table 5.

8. Conclusion

At least 75 of the 154 amino acids that comprise SOD1 are sites of
point mutations in patients with ALS, and many of these mutations
cause SOD1 destabilization and amyloidogenesis [92]. Accordingly, the
bulk of research on post-translational mechanisms of SOD regulation
focuses on the effect of PTMs on SOD1 destabilization and aggregation
propensity [70–72,93,94]. Work from Shaw et al. and others supports
the idea that SOD1 sits on a precipice of aggregation, upon which even
small increases in net charge can push SOD1 toward aggregation
[47,48]. Conversely, relatively small decreases in net charge—caused
by acetylation of lysine or serine, for example—reduce SOD1 ag-
gregation and the prion-like propagation of SOD1 fibrils [47]. Fur-
thermore, there appears to be a variety of SOD1 intermediates, re-
presenting different folding states, all separated by small energy
barriers [88]. Thus, it is not surprising that many net charge-altering
SOD1 PTMs, including acetylation and redox-regulated PTMs (see
above), alter the tendency of SOD1 to aggregate. Future therapeutic
efforts may take advantage of this charge-dependency of SOD1 by de-
signing therapeutics that either boost the stoichiometry of PTM-mod-
ified SOD1 (e.g., by targeting the cellular machinery that regulates a
particular PTM) or target SOD1 directly to decrease its net charge [47].

In recent years, our understanding of SOD1 has expanded beyond its
enzymatic ROS scavenging activity to new roles for SOD1 in the reg-
ulation of transcriptional pathways and mitochondrial metabolism.
Furthermore, the essential role of SOD1 in promoting tumor cell sur-
vival has marked SOD1 as a potential therapeutic target in cancer
[4,6,16,95]. In parallel to these discoveries, advancements in mass
spectrometry-based PTM discovery revealed new complexity across the
PTM landscape, which is also reflected in the array of PTMs now known
to occur on SOD1. These include around 38 SOD1 PTMs catalogued on
phosphosite.org (e.g., phosphorylation, ubiquitination and acylation),
in addition to known sites of lipidation, nitration, cysteinylation,Ta
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glutathionylation, and glycation, as discussed above.
The SOD1 PTMs presented here provide a hint of the complexity of

SOD1 regulation and are beginning to reveal how the various functions
of SOD1, including its non-canonical roles, are regulated within the cell.
For example, a Dun1 (yeast homolog of CHK2)-mediated phosphor-
ylation at Ser59 and Ser98 in yeast promotes translocation of SOD1 to
the nucleus where it upregulates genes that combat oxidative stress
[14]. Acylation of Lys122 inhibits SOD1-mediated suppression of mi-
tochondrial respiration and links SOD1 to NAD+ levels via Sirtuin ac-
tivity [16]. In addition, a TOR-mediated phosphorylation at Ser38 in
yeast (Thr39 in humans) suppresses SOD1 enzymatic activity, which
suggests a mechanism whereby SOD1 ROS scavenging is linked to nu-
trient levels via the mTORC1 complex [18]. Some of these PTM-driven
mechanisms of SOD1 regulation are highlighted in Fig. 5. These new
data place SOD1 at the center of a stress-responsive nexus with inputs
from DNA damage, amino acid starvation, and general metabolic fit-
ness, all of which may tune SOD1 activity (via PTMs) to fit the needs of
the cell (Fig. 5).

PTMs often occur at low stoichiometry, on just a fraction of the total
protein, which presents challenges to understanding PTM function.
Given the complexity of SOD1 biology and the multiple signaling inputs
that regulate SOD1 function, future work should carefully dissect the
subcellular compartments where SOD1 PTMs occur and make use of
improved tools—specific PTM probes, biochemical fractionation, and
high-resolution imaging. In addition, a historical reliance on over-
expression studies has likely led to misinterpretation of some PTM-null/
mimic mutant phenotypes. Thus, we hope future PTM studies will rely
more heavily on manipulation of endogenous SOD1 via CRISPR/Cas9
knock-in mutagenesis or knock-out and stable reconstitution ap-
proaches.

The SAPH-ire data presented in Table 5 provide a potential starting
point for work on the numerous SOD1 PTMs of unknown function. We
were surprised to find that the top seven SAPH-ire-predicted PTMs were
within a small region of SOD1 between Ser98 and Lys128 [16]. This
region is particularly interesting because it contains part of the dimer
interface, Cys111, and the electrostatic loop—all of which have been
implicated in maintaining SOD1 stability [71,73,74,76,87,89–91]. Al-
though functions for a few of these PTMs are beginning to emerge, most
are still uncharacterized in the literature. For example, a notable cluster
of phosphorylations at Ser105, Ser107 and Ser111 (mouse numbering)
has, to our knowledge, no known function. Future studies that reveal
the impact and regulation of these and other SOD1 PTMs will expand
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Fig. 5. PTM-driven mechanisms of SOD1 regulation.
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the picture of SOD1 as a focal point for diverse stress signaling.

Note

Some studies include the start codon of SOD1 in residue numbering
and some do not. An asterisk indicates that the numbering of the re-
sidue from this study has been changed from the original publication to
make the numbering consistent across this manuscript (start codon not
included in numbering).
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