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A B S T R A C T

Background: ‘Non-parametric directionality’ (NPD) is a novel method for estimation of directed functional con-
nectivity (dFC) in neural data. The method has previously been verified in its ability to recover causal interactions
in simulated spiking networks in Halliday et al. (2015).
Methods: This work presents a validation of NPD in continuous neural recordings (e.g. local field potentials).
Specifically, we use autoregressive models to simulate time delayed correlations between neural signals. We then
test for the accurate recovery of networks in the face of several confounds typically encountered in empirical data.
We examine the effects of NPD under varying: a) signal-to-noise ratios, b) asymmetries in signal strength, c)
instantaneous mixing, d) common drive, e) data length, and f) parallel/convergent signal routing. We also apply
NPD to data from a patient who underwent simultaneous magnetoencephalography and deep brain recording.
Results: We demonstrate that NPD can accurately recover directed functional connectivity from simulations with
known patterns of connectivity. The performance of the NPD measure is compared with non-parametric esti-
mators of Granger causality (NPG), a well-established methodology for model-free estimation of dFC. A series of
simulations investigating synthetically imposed confounds demonstrate that NPD provides estimates of connec-
tivity that are equivalent to NPG, albeit with an increased sensitivity to data length. However, we provide evi-
dence that: i) NPD is less sensitive than NPG to degradation by noise; ii) NPD is more robust to the generation of
false positive identification of connectivity resulting from SNR asymmetries; iii) NPD is more robust to corruption
via moderate amounts of instantaneous signal mixing.
Conclusions: The results in this paper highlight that to be practically applied to neural data, connectivity metrics
should not only be accurate in their recovery of causal networks but also resistant to the confounding effects often
encountered in experimental recordings of multimodal data. Taken together, these findings position NPD at the
state-of-the-art with respect to the estimation of directed functional connectivity in neuroimaging.
1. Introduction

Questions regarding the causal relationships between anatomically
connected regions of the brain have become of fundamental importance
across many domains of neuroscience (Sporns, 2010; Swanson, 2012). A
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termed non-parametric directionality (NPD), has been recently described
in Halliday (2015). This method has been demonstrated to yield physi-
ological insights into the connectivity of the cortico-basal-ganglia
network when applied to (continuous) field recordings made in rodents
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Abbreviations

dFC Directed functional connectivity
EEG Electroencephalogram
LFP Local field potential
MEG Magnetoencephalogram
MVAR Multivariate autoregressive (model)
NPD Non-parametric directionality
(mv) NPG (multivariate) Non-parametric estimator of Granger

causality
SMA Supplementary motor area
SNR Signal-to-noise ratio
STN Subthalamic Nucleus
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recovering known patterns of connectivity in the face of several con-
founding factors and compare it with another popularly used measure –

the estimation of Granger causality.
Functional connectivity is based on a description of the statistical

dependencies between different neural signals and is typically estimated
through time or frequency domain correlations (Bastos and Schoffelen,
2016; Friston, 2011). Magnitude squared coherence, equivalent to a
frequency domain coefficient of correlation, has been widely adopted as
the estimator of choice for functional connectivity in the neuroimaging
community (Brillinger, 1975; Halliday et al., 1995). Undirectedmeasures
of functional connectivity (such as coherence) are symmetrical, giving no
indication of the temporal precedence of correlations, a property un-
derstood to be a necessary result of causation in time evolving systems
(Wiener, 1956), nor the predictability of one time series from that of the
other. dFC aims to estimate statistical asymmetries in the correlated ac-
tivity of a set of signals in order to infer the causal influence (or pre-
dictability) of one signal over another. Similar to the role played by
coherence in measuring undirected functional connectivity,
Wiener-Granger causality has emerged as a first-choice estimator of
directed connectivity due to its well established theoretical basis
(Bressler and Seth, 2011; Ding et al., 2006) and its successful application
to questions concerning causal networks inferred from large-scale neural
recordings (e.g. Brovelli et al., 2004; Richter et al., 2018).

Estimates of dFC are most frequently computed in the literature using
methods estimating Granger causality (Dhamala et al., 2008a; Geweke,
1982; Granger, 1969; Kami�nski et al., 2001). Granger causality is
expressed in terms of the capacity of the information in the past of one
signal, X, to predict the future of another signal, Y. Granger (1969)
introduced a straightforward method of estimation through the com-
parison of an autoregressive model by which the explained variance of Y
is compared between that of a ‘full’model (i.e. accounting for the past of
X and Y) with that of a restricted model (i.e. Y only). If a prediction of the
future of Y is aided by information from the past of X, then X is said to
‘Granger-cause’ Y. The method requires factoring out the autoregressive
component of the signal (i.e. the ‘restricted’ model) to avoid trivial cor-
relations that occur simply due to the periodicity in the signals.

Efforts to estimate Granger causality without resorting to autore-
gressive models have resulted in an extension of the method termed non-
parametric Granger causality (NPG), which avoids the estimation of
transfer functions from multivariate autoregressive (MVAR) coefficients
(Dhamala et al., 2008a). In NPG, transfer functions and noise covariances
are estimated through the spectral factorization of (non-parametrically
derived) Fourier coefficients rather fromMVARmodel parameters. Here,
we directly compare NPGwith NPD as an estimator of dFC. Both methods
share the property of being non-parametric (model-free) approaches
which can be derived from identical spectral transforms made either via
Fourier or wavelet techniques.

NPD is founded on the same principles of causality as Granger,
namely that temporally lagged dependencies indicate causal direction.
2

NPD works by decomposing the coherence into three temporally inde-
pendent components separated by the relative lag of the dependencies
between the signals: 1) forward lagged; 2) reverse lagged; and 3)
instantaneously correlated. Rather than using a naïve cross-correlation
estimator that is susceptible to spurious peaks resulting from the indi-
vidual signals’ autocorrelations, NPD takes an approach akin to the
factoring out of a ‘restricted’ model (i.e. of Y only) used in Granger. This
is achieved through a process of spectral pre-whitening which acts to
bring the individual signal’s spectra closer to white-noise but preserves
the correlations between them. In the original paper (Halliday, 2015),
the method was validated using a simple three node network with each
node’s dynamics simulated using a conductance model of a spiking
neurone in order to generate a series of discrete point processes. The
authors demonstrated that NPD was successful in recovering the con-
nectivity from a range of simulated architectures. Furthermore, the
method was applied to spike timings (a point process) recorded from
muscle spindle and shown to yield physiologically plausible estimations
of causality. Our recent work has extended the application of NPD to
continuous local field potential (LFP) recordings made from an in vivo
preparation of the cortico-basal ganglia system (West et al., 2018).

Estimation of empirical dFC in continuous neural recordings such as
the LFP or magneto/electroencephalogram (M/EEG) is complicated by a
number of factors. These include: low and possibly unequal signal-to-
noise ratios (SNRs), instantaneous volume conduction, common drive,
signal routing via parallel but disjoint paths, and the presence of cyclic
paths within a network. All pose potential confounds for the metrics
described here. The failure of Granger causality estimators in the pres-
ence of large amounts of measurement noise is a well-established
shortcoming (Newbold, 1978) which becomes particularly acute in
noisy electrophysiological recordings (Nalatore et al., 2007). Differences
in the recording gain between signals is also known to confound esti-
mation of Granger causality, with the most commonly used estimator
demonstrating bias towards favouring the strongest signal as the driver
(Bastos and Schoffelen, 2016; Haufe et al., 2012). This property is likely
to be a nuisance when investigating causation between multimodal
signal sets such as in experiments involving simultaneous measurements
of MEG and LFP where significant differences in recording gain are to be
expected (Litvak et al., 2011).

Instantaneous mixing of the electromagnetic signals generated by
distinct sources in the brain has long been known to make estimation of
functional connectivity based on recordings such as the EEG difficult
(Haufe et al., 2012; Nunez et al., 1997; Srinivasan et al., 2007). Common
presynaptic drive produces correlations in pairs of output spike trains
(Farmer et al., 1993), and in pairs of evoked potentials (Truccolo et al.,
2002). This problem can lead to spurious estimates of directed connec-
tivity if delays in the arrival of the common input induce lagged corre-
lations between unconnected neurons or neuronal populations. When the
common presynaptic input is measured, extensions of functional con-
nectivity metrics built upon partial regressions (so called conditioned or
partialized estimates) can be used to remove common input effects and,
subsequently, remove the possibility of spurious inference of directed
connectivity between neurones in receipt of lagged common input. Par-
tial regression can be used with both NPD and NPG to reduce the influ-
ence of common drive. In the case of NPD, the authors introduced a
multivariate extension that can be used to reduce the influence of com-
mon drive through partial regression of a third reference signal (Halliday
et al., 2016). This method relies upon the reference signal substantially
encapsulating the activity of the common drive. In the case that the re-
cordings are incomplete representations of the propagating neural ac-
tivity, the conditioning will only be partially effective. NPD and NPG
conditioned on a third signal can also be used to infer connectivity pat-
terns where two signals are correlated through interaction with an
intermediary signal (West et al., 2018).

Statistical aspects of coherence estimation have been widely studied.
Carter et al. (1973a) highlight that a coherence estimate constructed
from averaging over n independent segments has an asymptotic standard
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deviation proportional to n�0:5, suggesting that a large number of seg-
ments are required to obtain reliable estimates. Carter et al. (1973b)
suggest a reasonable range for n is 32–64 segments. The directional
decomposition in NPD is based on the use of time lag in a correlation or
partial correlation function. As the number of lags is related to the
segment length, using shorter segments may impact on the reliability of
directional estimates as fewer time lags are available to infer directional
information.

In this paper we will assess the performance of NPD’s ability to
recover the connectomes from several simulated architectures and in the
presence of the previously stated confounds. We compare the accuracy of
connectivity estimation with NPD and NPG under these different con-
ditions. Furthermore, we also test the efficacy of a multivariate extension
of NPD, the conditioned NPD, as a means of testing for the effects of
common drive and its ability to discriminate between parallel signal
routing. The amount of data required for accurate estimation of con-
nectivity will also be assessed. Finally, we bring the presented methods to
the analysis of empirically recorded data from patients with Parkinson’s
disease. Using an example recording, we examine how artificially
imposed changes in the signals’ SNR and linear mixing can change the
estimate of dFC made between signals recorded from the human cortex
and basal-ganglia. Our primary goal is to verify the utility of the proposed
measure in application to real-world neuroimaging data.

2. Methods

2.1. Approach

In this study we utilize spectral coherence for estimates of undirected
FC, and NPD/NPG for estimates of dFC. We set up models of continuous
neural signals with known connectivity architectures parameterized in
MVAR coefficients. Confounds such as signal-to-noise and instantaneous
mixing are then introduced following simulation of the MVAR process
using an observation model. The analyses presented here start with the
assumption that any exploratory analyses of the data are complete,
including any artefact rejection and/or preprocessing and that one or
more significant coherence estimates have been identified as a prereq-
uisite for directional decomposition using NPD. Using coherence, we first
establish the existence of coherent frequencies within the modelled data
sets. Patterns of connectivity in the models are then recovered using the
two dFC metrics (NPD and NPG). As connectivity in the models is known
(by design) we analyse how the metrics perform at accurately recovering
the known connectivity profiles. Finally, we look at the methods’ appli-
cation to empirical data when used to estimate the directed functional
connectivity between the basal ganglia and motor cortex in recordings
made from a patient with Parkinson’s disease (PD).

2.2. Analysis software and data availability

Data were analysed using a set of custom scripts written in MATLAB
R2017a (The MathWorks, Natick, MA, USA). Non-parametric direction-
ality was implemented using the Neurospec toolbox (http://www.neuro
spec.org/). MVAR models were implemented using the BSMART toolbox
(Cui et al., 2008). NPG calculations and spectral estimates were imple-
mented in FieldTrip (Oostenveld et al., 2011b). All scripts for the ana-
lyses presented here can be found in a GitHub repository (https://gith
ub.com/twestWTCN/NPD_Validate). A full list of script dependencies,
toolboxes used, their authors, and links to their original source code can
be found in Appendix I. The example patient data used in this paper is
anonymised and available upon request.

2.3. Functional connectivity

2.3.1. Spectra and coherence
Spectral estimates were made using periodogram estimates utilizing

Hanning tapers. Unless otherwise stated (see section 3.6 in which we
3

investigate the role of data availability), data were divided into segments
28 samples in length (~1.3 s at 200 Hz). We computed the magnitude-
squared coherence via:

jRYXðωÞj2 ¼ jfYXðωÞj2
fXXðωÞfYYðωÞ (1)

where fXX ; fYY ; fYX are the X and Y autospectra and XY cross-spectrum
respectively.

2.3.2. Non-parametric directionality
Non-parametric directionality provides a model-free estimate of

directional correlations within a system through the decomposition of
the coherence into components separated by their lags yielding separate
instantaneous, forward-lagging, and reverse-lagging spectra (Halliday,
2015). This is achieved using pre-whitening of the Fourier transforms.
This acts to bring the spectral content of a signal closer to that of white
noise, in this case using optimal pre-whitening with minimum mean
squared error to compute the whitening filter. This procedure is equiv-
alent to generating two new random processes which have spectra equal
to 1 at all frequencies:

f wXXðωÞ¼ 1; f wYYðωÞ ¼ 1 (2)

The prewhitening step effectively eliminates the autocorrelation
structure of the respective signals but retains bivariate correlations be-
tween them. The pre-whitening brings the denominator of the coherence,
the product of the autospectra (a normalization factor) equal to 1. Thus,
the coherence can be reduced to the magnitude squared of the minimum
mean square error (MMSE) pre-whitened cross spectrum:

jRYXðωÞj2 ¼
��f wYXðωÞ ��2: (3)

The overall scalar measure of dependence between X and Y, denoted
as R2

YX , is defined as the integral over the coherence in equation (1). In
line with the previous literature, the notation here uses as R2

YX to indicate
a scalar measure of overall dependence and jRYXðωÞj2 to indicate coher-
ence, a function of frequency. As the coherence loses all terms in the
denominator, the equivalent cross-spectrum can then be transformed to
the time domain to yield the time-domain correlation function:

ρYXðτÞ¼
1
2π

Z þπ

�π
f wYXðωÞeiωτdω: (4)

This measure can be decomposed (in the time domain) via Parseval’s
theorem for any desired lag. We choose to separate into reverse,
instantaneous, and forward components:

R2
YX ¼

Z 0

τ<0
jρYXðτÞj2dτ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
X←Y

þ jρYXð0Þj2|fflfflfflfflffl{zfflfflfflfflffl}
X↔ Y

þ
Z τ>0

0
jρYXðτÞj2dτ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
X→Y

: (5)

These components may be abbreviated to:

R2
YX ¼R2

YX;� þ R2
YX;0 þ R2

YX;þ (6)

where component R2
YX;� yields correlations in which X lags Y, R2

YX;0

instantaneous correlations, and R2
YX;þ correlations in which Y lags X. To

create a set of frequency domain measures which decompose coherence
into three directional components, the three terms in equation (6) are
each Fourier transformed using the lag ranges in equation (5). This cre-
ates three frequency domain measures that capture reverse, zero-lag and
forward directionality, respectively. Coherence is decomposed by direc-
tion using a ratio of the relative magnitude-squared values at each fre-
quency as:

jRYXðωÞj2 ¼
��R’YX;�ðωÞ��2 þ ��R’YX;0ðωÞ��2 þ ��R’YX;þðωÞ��2: (7)

http://www.neurospec.org/
http://www.neurospec.org/
https://github.com/twestWTCN/NPD_Validate
https://github.com/twestWTCN/NPD_Validate
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The prime symbol on the RHS of equation (7) is used to indicate that
these are not formal coherence measures, but represent one of three
directional contributions (reverse, instantaneous and forward) to the
coherence. Thus, from each component we can assess spectrally resolved
directional interaction whilst accounting for the signals’ autocorrelation
structure. For a full derivation of the NPD method and details of its
algorithmic implementation please refer to Halliday et al. (2016).

2.3.3. A multivariate extension – conditioned non-parametric directionality
In addition to bivariate NPD, we used a multivariate extension that

allows the directional components of coherence to be conditioned upon a
third signal (Halliday et al., 2016). The conditionalization of NPD is
achieved through a partial regression of X and Y conditioned on Z. This
analysis decomposes the partial coherence into the same three direc-
tional components: forward, reverse, and zero-lag. It can indicate if in-
formation in the bivariate interaction shares variance common to signals
in other parts of the network. For example, the partial correlation be-
tween X and Y with Z as predictor can be used to determine if the flow of
information from X → Y is independent of area Z, or whether the flow of
information is X→ Z→ Y, in which case the partial coherence between X
and Y with Z as predictor should be zero. The partial coherence can also
be used to investigate if the flow of information is Z→ X and Z→ Y, or if it
is X→ Y→ Z or Z→ X→ Y, or in the case of common input Z→ X and Y, in
which cases the partial coherence, and any directional components,
should be zero.

The relationship between the squared coherence function jRXY ðωÞj2
and the squared correlation coefficient was the starting point for the
derivation of the non-parametric directionality method in Halliday
(2015). The correlation coefficient is given by:

R2
YX ¼

σ2Y � σ2Y jX
σ2Y

(8)

where the conditioned variance, σ2YjX is the variance of the error process

following a linear regression of Y on X. It then follows that the correlation
coefficient may be conditioned to account for any common effect that a
process Z may have on both X and Y by also estimating the residuals
following regression with Z:

R2
YXjZ ¼

σ2Y jZ � σ2Y jX;Z
σ2Y jZ

(9)

in which the processes X and Y are both conditioned (regressed) against
the third process Z. Partial regression is often useful in situations in
which it is believed that the tertiary signal Z can account for some or all
of the original association between X and Y. Thus, the objective is to
distinguish whether there is a genuine correlation R2

YX that is distinct
from the apparent one induced by Z: R2

YXjZ . In the same manner by which

the correlation coefficient may be conditioned to account for any com-
mon effect that a process Z may have on both X and Y, we can condition
the estimated coherence jRYXðωÞj2 on Z:

��RYXjZ
�
ω
���2 ¼

���fYXjZ�ω����2
fXXjZ

�
ω
�
fYYjZ

�
ω
� (10)

In this way we can form a so called ‘partial’ coherence to determine
the association of the coherence between X and Y with predictor Z. By
using this form of the coherence as the starting step we can continue with
the same decomposition as was made before for bivariate NPD, in order
to attain an estimate of the NPD between X and Y but conditioned on Z. In
practice we achieve conditioning of the respective autospectra fXXjZðωÞ
and fYY jZðωÞ using the approach set out in Brillinger (1988). This method
has been used successfully in LFP recordings to recover known
4

anatomical pathways in the basal-ganglia (West et al., 2018). For full
details of the derivation and implementation of conditioned NPD, see
Halliday et al. (2016).

Increased levels of additive noise can impact on partial coherence
estimates but should not distort any temporal precedence present in the
triplets of signals (Baccal�a and Sameshima, 2006). Conditioned NPD uses
decomposition by time lag to infer directionality so should be robust to
increased levels of additive noise in the predictor. We explore the extent
to which this is true in simulations of triadic networks in results section
3.8.

2.3.4. Non-parametric Granger Causality and its relation to NPD
Granger causality is based on the premise that if a signal X causes a

signal Y, then the past values of X can be used to predict the state of Y
beyond that of the information contained in the past of Y alone (Granger,
1969). This has conventionally been tested in the context of multivariate
autoregressive models fit to the data, and in which the explained variance
of Y via a ‘restricted’ model based on Y alone is compared to that of a
‘full’ model using information of both the past of X and Y (Geweke,
1982). Frequency domain extensions of Granger have been developed
(Geweke, 1982; Kami�nski et al., 2001) and applied widely across many
domains of neuroscience (e.g. Brovelli et al., 2004).

The requirement to fit multiple MVAR models can cause several dif-
ficulties in analyses, namely: i) the requirement of large model orders to
capture complex spectral features; ii) computational cost of model
inversion; and iii) assumptions as to the correlation structure of the data
in order to capture the signal as an MVAR process. In order to avoid the
requirement for the estimation of MVAR models, Dhamala et al. (2008b)
proposed a non-parametric estimator of Granger Causality. This esti-
mator can be derived from widely used Fourier or wavelet based spectral
estimation methods which do not suffer from these complications. The
method hinges on the derivation of a spectral matrix directly from the
spectral transforms of the data (i.e. Fourier or wavelet) instead of the full
transfer and noise covariance matrices specified in an inverted MVAR
model. Subsequently, the spectral matrix is factorized to derive the
transfer function and noise covariance matrices of the set of signals
(Sayed and Kailath, 2001). Via this technique it is possible to decompose
the total power spectrum of Y between its intrinsic power and the causal
contribution from X. The first term refers to the intrinsic power of Y, the
second term to a causal contribution to the power of Y from X. For a full
derivation and details of its implementation please refer to Dhamala et al.
(2008b).

The difference between the way NPG and NPD determine causal or
directional components is that NPG uses a decomposition of the signal
power into intrinsic and extrinsic components, whereas NPD decomposes
a normalised correlation coefficient according to time lag. Both NPG and
NPD use a frequency domain approach. The frequency approach in NPG
uses the formulation in Geweke (1982) in combination with factorization
of the spectral matrix (Wilson, 1972), see Dhamala et al. (2008a, Dha-
mala et al., 2008 for details. NPD is based on the approach of Pierce
(1979) to decompose the product moment correlation coefficient and
coherence summatively into directional components. The starting point
is the spectral matrix (as in NPG). The decomposition is achieved by
generating an MMSE pre-whitened spectral matrix, Fw; as:

Fw ¼
�

1 fYXðfXX fYYÞ�0:5

fXY ðfXXfYYÞ�0:5 1

	
; (11)

where fYY and fXX are the autospectra, and fYX and fXY are the cross
spectra, with frequency argument omitted. The effect of this pre-
whitening allows coherence to be calculated directly from the cross-
spectra. NPD thus decomposes coherence according to time lag in the
normalised correlation whereas NPG decomposes the spectrum into
intrinsic and extrinsic factors, the presence of non-zero intrinsic factors is
taken as indicative of a causal effect in NPG.
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2.3.5. Pairwise versus multivariate applications of metrics
Both NPD and NPG can be used in either a bivariate (pairwise) or a

full multivariate (i.e. considering greater than two signals) framework.
As pairwise analyses of dFC are by far the most common approach used in
the current literature we primarily make a comparison of bivariate NPD
and NPG computed between two signals only. However, when investi-
gating issues such as common drive and the influence of tertiary signals
we utilize the multivariate extension of NPG (mvNPG; Wen et al., 2013)
and compare it with conditioned NPD. mvNPG extends Geweke’s
formulation of Granger beyond pairwise analyses using spectral matrix
factorization. In combination with Dhamala’s approach to obtain spectral
matrices from Fourier transforms of data this yields a method by which it
is possible to create a non-parametric estimator of causality in high
dimensional data. mvNPG used here is implemented in Fieldtrip (Oos-
tenveld et al., 2011a).

Conditioned NPD is indicated by the use of brackets to signify the
conditioning signal (e.g. NPD(x) signifies NPD conditioned on signal X).
This approach is used exclusively in section 3.1 (common drive) and 3.8
(incomplete signals for conditioning).

2.4. Generation of synthetic data

2.4.1. Multivariate autoregressive modelling
In order to simulate data that describes a lagged propagation between

simple periodic systems we used an MVAR modelling framework. MVAR
models are an extension to 1-dimensional autoregressive models in
which a model variable can be expressed as a linear combination of its
previous values plus some stochastic error term. A Pth order MVARmodel
with N number of states is given by:

Xt ¼ cþ
XP
i¼1

AiXt�i þ ϵt (12)

where Xt is a ½N�1� vector of values at time t, and Xt�i are the values at
time ðt � iÞ. A1;…;AP are ½N�N� matrices of autoregressive coefficients
at lag i, c is a vector of constants, and εt is innovation noise (Gaussian)
with zero mean and covariance R. An ARmodel of order P describes theN
values at time, Xt , as a linear combination of P previous values, Xt�i, a set
of constants, c, and a vector of additional noise values, εt . The Pmatrices
Ai ði ¼ 1;…;P) specify the linear dependencies in the model at time lag i.
Simple periodic signals may be engineered in the MVAR formulation by
setting of alternating signed coefficients at different lags. For example, to
obtain a lag two periodicity of the system variable X we set A1;2 ¼ ½1 �
1�. The alternating signs of the coefficients set up the signal to oscillate
with a period equal to the difference in lags. In order to introduce cor-
relations between variables we introduced non-zero coefficients off the
diagonal. In this way we simulate lagged connectivity by setting positive
coefficients between nodes at lags greater than 1. For the parameters of
the simulated MVAR models please see appendix II. Simulations were
made using the BSMART toolbox. All simulations were run with sample
length T, where T ¼ 5 x 104 data samples (except in sets of simulations
investigating data availability and benchmarking; see below). In order to
set a time scale of the simulations we chose an arbitrary sampling fre-
quency of 200 Hz which places simulations around the frequencies
typically observed in neural data. This yields total simulation time of
250s (unless otherwise stated). The model architecture for each set of
figures is outlined using a ball and stick diagram next to the main results.
All MVAR models used were tested for asymptotic stability by deter-
mining that the absolute value of the eigenvalues of a model’s companion
matrix were less than 1 (as per Lütkepohl, 2005).

2.4.2. Observation modelling
To introduce the effects of changes in SNR and instantaneous mixing

of signals that can arise due to the practical aspects of experimental re-
cordings of neural signals, we construct an observation model on top of
the model of the dynamics that maps from the hidden internal variables X
5

onto the externally observed variables Y. This function adds observation
noise to the MVAR signal and then applies an instantaneous linear
combination of the internal variables:

Y ¼ zðLXÞ þ λγ (13)

where Y is a vector of observations created using the vector of internal
variables, X, combined with a vector of additive observation noise (i.i.d,
zero-mean, unit-variance, white noise) γ weighted by scalar factor λ
which determines the effective SNR of the observed variables. The
function zð �Þ indicates z-standardization to zero mean and unit variance.
A ½N�N�mixing matrix L is used to introduce dependencies between the
observed signals. There is a constraint on the diagonal of L such that
Li¼j ¼ 1, i ¼ 1;…; N such that the gain of the signals themselves was
unaltered. Thus, we specify the mixing between signals by specifying the
off-diagonal entries of matrix L. When applied to z-normalised, uncor-
related data, the mixing matrix introduces shared variance equal to the
square-root of the off-diagonal coefficients of L (Halliday et al., 2016).

We compute the decibel SNR as the log ratio of signal variances i.e.
1:1 SNR is equivalent to 0 dB. In some simulations we investigate the role
of asymmetric SNR and so report the difference of SNRs between signals:
ΔSNRXY ¼ SNRXðdBÞ � SNRYðdBÞ. Assuming one signal is held constant
then a difference in SNRs of 10 dB is equivalent to 10 times increase in
the noise in the other signal, 20 dB equivalent to 100 times increase, etc.
SNR calculations are computed from the ratios of the mean narrowband
power within the range of the peak frequency of activities �5 Hz with
that of the background noise, providing good coverage over the example
signals used here. In empirical neuroimaging data where multiple sour-
ces of noise exist, this is a much harder quantity to estimate (Parkkonen,
2010). We however use þ12 dB as the level for the weakest signal,
equivalent to a good quality EEG recording (Goldenholz et al., 2009).

2.5. Benchmarking the metrics: data length, number of connections, and
combined confounders

To determine the quantity of data required to use either NPD or NPG
for the accurate estimation of dFC, we setup a benchmark test and then
examine how the score of this benchmark changes with the amount of
available data and number of connections in a given network. We also
use this benchmark to assess how a combination of confounding effects
can influence network estimation. First, we randomly simulate three sets
of 24 random directed graphs with a fixed number of vertices (n¼ 3) and
including either one, two, or three edges in total. These graphs are then
simulated as MVAR models (as detailed above) by placing non-zero
autoregressive coefficients with a random lag uniformly distributed in
the interval [1 3]. The simulated data is then analysed with NPD and
NPG. By using a non-parametric permutation test to form confidence
intervals (see section 2.7.1 below) for each measure we determine the
detection of a directed connection if 10% of the spectra for the given pair
of nodes is over the 99.99% confidence limit to yield a predicted adja-
cency matrix bM . For every element of bM that is equal to that in the actual
adjacency matrix M (i.e. a true positive or negative) the score is þ1; for
every non-equal element (i.e. false positive or negative) the score is �1.
Thus, the maximum score in a three-node network is þ6 (all correct) and
the minimum is �6. We report scores as percentages of the maximum
from �100% to 100%.

In the first set of benchmarks we investigate both the role of data
availability and the number of connections in a graph. We perform the
benchmark with the 24 random graphs using: i) a fixed amount of data
(500s), but variable trial length (23 to 210) (such as is the case when
deciding how to epoch data from a ‘steady-state’); and ii) a variable
amount of data but a fixed number of trials (n ¼ 100) (such is the case
when analysing an event related study with a set number of repetitions).

In the second set of benchmarks we investigate how the combination
of asymmetric SNR and signal mixing effects act to confound connectivity
estimation. We make a 12 x 12 design, adding noise to the target node to
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achieve a range of narrowband (50–60 Hz) ΔSNR1;2 of �45 dB–0 dB and
then adding signal mixing to achieve 0%–100% shared variance. The
weakest signal is again clamped to 12 dB. Note that the adjustment of
SNR is done before signal mixing. The benchmark is then applied for data
simulated from the 24 random graphs described above.

2.6. Experimental data

2.6.1. Experimental protocol
In the final experiment of this paper, we investigate how the two dFC

metrics (NPD and NPG) perform when estimating the dFC between the
cerebral cortex (supplementary motor area; SMA) and the subthalamic
nucleus (STN). This connection has been reported to be predominantly
cortically leading in patients with Parkinsonism (as estimated with NPG
in Litvak et al., 2011, 2012). In this paper we use an example recording in
which NPG reveals a clear directed component from SMA → STN. This
recording was taken from a cohort of patients with PD who have un-
dergone surgery for deep brain stimulation (DBS). The experimental data
contains recordings made using whole head MEG and simultaneous LFP
recordings from DBS electrodes implanted into the STN. The recordings
were made for approximately 3 min with the patient quietly at rest with
their eyes open. Experiments investigated the differences in MEG and LFP
activity and connectivity when patients were withdrawn from their usual
dose of L-DOPA (OFF) versus the L-DOPA treated state (ON). Patients
were not undergoing stimulation with DBS at the time of the recording.
The two-time series analysed were 183s in duration with MEG from a
right SMA virtual sensor recorded simultaneously with an LFP from the
right STN in a PD patient in the OFF state at rest. All experiments were
conducted in a study approved by the joint ethics committee of the Na-
tional Hospital of Neurology and Neurosurgery and the University Col-
lege London Institute of Neurology. The patient gave their written
informed consent. For full details of the surgery, implantation, recording,
and experimental paradigm please see Litvak et al., (2011).

2.6.2. Preprocessing
The MEG and LFP signals were first down-sampled to 200 Hz. They

were then preprocessed using a high-pass filter (passband at 4 Hz, finite
impulse response, two-pass, filter order optimized for data length). Re-
cordings were truncated 1s at either end to remove border artefacts
arising due to movement and equipment initialization. Finally, data were
visually inspected to determine the presence of large abnormalities and
high amplitude transients. In the case of the example data used here,
none were found.

We performed estimation of the empirical SNR of the signals as
detailed in section 2.4.2. The empirical data was first standardized to unit
variance and then spectral peaks in the 14–31 Hz were compared with
that of a white noise surrogate also with unit variance. The ratio between
the peaks is reported as the estimated empirical SNR, equivalent to the
difference of the spectral peak (in beta band) with that of the noise floor.

Changes to the SNR, asymmetric SNR, and linear mixing of the
empirically derived signals were introduced using the same process as
listed in section 2.4.2. This treatment ignores the fact that the data by
necessity of empirical recording have already undergone observation
with a transform similar in form to that in equation (13) but with un-
known parameters regarding the lead-field (mixing matrix) and obser-
vation noise. Instead we take the empirical recordings as a ground-truth
and investigate subsequent changes following artificially induced
confounds.

2.7. Statistics

2.7.1. Permutation confidence intervals
In order to form confidence intervals for the connectivity metrics we

make no assumptions as to the form of their distributions but instead
form permutation distributions of the metrics estimated from surrogate
data and computed using a non-parametric rank order significance
6

threshold (Theiler et al., 1992). We adopt a phase randomization
approach to generate surrogates (Breakspear and Terry, 2002; Lancaster
et al., 2018) which acts to preserve the magnitudes of the spectral esti-
mates whilst scrambling the phase and hence disrupting any interaction
between signals. For details and a discussion of the algorithm please see
appendix I as well as Lancaster et al. (2018). For each test we generated
1000 realizations of the surrogate process. We obtain the P ¼ 0.001
confidence limit by taking the 99.9th percentile of the resulting distri-
bution. Limits are plot in figures as a dashed line with arrows on the side
of the axis to indicate their values.

2.7.2. Least-squares regression
In the case of some confounds the response profiles were found to be

sigmoidal functions with a maximum response, midpoint x0; and steep-
ness κ. We used a least-squares regression to fit the logistic function. All
reported fits exceeded R2 > 0.95 and we report the estimated parameters
of the curves as summary statistics of the connectivity metrics’ modula-
tion by a confound.

3. Results

3.1. Organization of the results

In the following section the effects of common drive, degradation of
SNR, asymmetric SNR, instantaneous signal mixing, data availability,
and simultaneous confounders upon estimation of dFC using NPD and
NPG are investigated. In Figs. 1–4 examples of the impact of these indi-
vidual confounding factors upon the power and connectivity spectra are
presented. In order to summarise the effects of the confounds across a
much larger range of scales, in Fig. 5 the effects of SNR, unequal SNR, and
signal mixing are visualized as a plot of the relevant statistic of the
connectivity (i.e. strength or asymmetry) against a scale of values of the
confounding factor. In each of the following sections (3.2–3.5) we inspect
first the example spectra displayed in Figs. 1–4, and then go on to
establish the total effect over the full range of the confound using the data
illustrated in Fig. 5. Figs. 6 and 7 use a benchmarking approach to
quantify the accuracy of recovery given differing data lengths and mixed
confounds. In the final section and Fig. 9 we look at application of the
metrics to empirically recorded data.

3.2. Effects of lagged dependencies and common drive

We first demonstrate the efficacy of the metrics at recovering simple
hierarchical architectures and establish how common input can act to
confound them. To this end we present results from a simple 3-state, 3rd
order MVAR model with no signal mixing and zero observation noise.
The MVAR model is imbued with periodic dynamics that are identical at
each node and are driven by noise with fixed covariance structure. Non-
zero (off-diagonal) matrix coefficients are all fixed at 0.5 and the full
MVAR parameters can be seen in table 1 of appendix II. We design the
MVAR model (Fig. 1A) such that all edges originate at node X and cor-
relations are lagged such that an input arriving at node Z lags that at node
Y (δ1 < δ2). This introduces a deliberate confound as dFC methods esti-
mating causality in a way dependent upon temporal lag will assign
spurious causality from Y to Z, due to the difference in arrival times of
input from X. An example time series of the process is shown in Fig. 1B
and the resulting analyses of the functional connectivity are shown in
Fig. 1C.

This model generates rhythmic activity at ~55 Hz as indicated by the
peaked autospectrum for each node. Functional connectivity as measured
using standard coherence shows significant connectivity (>0.5) between
all nodes, albeit reduced for the connection between Y and Z. We next
estimate directed connectivity using NPD. NPD shows that all connec-
tions are in the forward direction for X → Y and X → Z. As the full
coherence is equal to the sum of the directional components, the overlap
of the forward NPD (spectra in the top-right panel of the figure) with the
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Fig. 1. Three -node simulation of MVAR model to compare functional connectivity measures. (A) A simple three state, 3rd order MVAR model was used to
simulate coupling of autonomous periodic signals. Connectivity was simulated using non-zero coefficients at lag 2 for node X→ Y, and lag 3 for X→ Z. Correlations are
lagged such that the time delays are unequal (i.e. δ1 < δ2). (B) Example 5-s realization of the simulated MVAR processes. (C) Connectivity matrix of the coupled
signals. Autospectra are shown on the diagonal (black). Undirected functional connectivity (coherence) is shown in blue. Estimates of directed connectivity are shown
for multivariate non-parametric Granger causality (mvNPG; red); Non-parametric Directionality (NPD; green); and NPD conditioned on signal X (NPD(X); orange).
NPD identifies spurious directional connectivity between Y and Z due to the lagged correlations of X → Y relative to X → Z. Spurious connectivity is removed par-
tializing the NPD estimate upon the signal at the common source at node X (NPD(X)) which acts to remove all spurious connectivity. Permutation confidence intervals
(P ¼ 0.001) are shown for NPD and mvNPG by the green and red dashed lines and arrows respectively.
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coherence shows that they are equivalent in this case. The shorter lag in
transmission from node X → Y compared to X → Z, results in a spurious
estimate of coupling from Y → Z when estimated with NPD. However,
when we condition the NPD upon the signal that both node X and Z
receive common input from (NPD conditioned on node X; NPD(X)), we
see that the Y→ Z correlation is abolished.

When pairwise Granger (NPG) was applied to the simulated data, the
connectivity from X to Z and Y was very similar in form to the uncon-
ditioned NPD (data not shown). However, as the multivariate estimator
of Granger (mvNPG) considers the full covariance across all nodes, its
application acted to remove the spurious Y→ Z correlation that arose due
to the common drive. This limitation of pairwise NPD is readily overcome
using the multivariate extension that allows for the conditioning of the
common input. In this way the results between mvNPG and NPD
conditioned upon the common input (NPD(X)) are comparable. Both
NPD(X) and mvNPG give estimates of Y→ Z that are below the P¼ 0.001
confidence interval indicating the absence of any significant directed
connectivity between X and Y.

3.3. Effects of low signal-to-noise ratios

Recordings of field activity in the brain are made in the presence of
both endogenous neural background activity as well as observer noise
originating from recording equipment and other sources outside the
brain. In Fig. 2 we simulate the effects of signal-to-noise ratio (SNR) upon
estimates of functional connectivity. The variance of the MVAR process
was standardized and so was equal in all simulations. We used additive
Gaussian noise in the observation model to simulate an SNR of 1:0 (þ∞
dB), 4:3 (þ5.3 dB), and 1:3 (- 1.0 dB). All functional connectivity metrics
were resistant up to moderate amount of additive noise (SNRdB ¼ þ 5.3
dB), but all estimates were heavily attenuated for the greatest noise
tested in Fig. 2 i.e. SNR¼ �1.0 dB. When looking across a wider range of
7

SNRs (Fig. 5A), both NPD and NPG approached 0 when the data became
almost entirely noise i.e. SNR approached 0:1 (- ∞ dB). Responses were
sigmoidal for all three metrics measured with half maximum suppression
around 50% signal loss. Non-linear least-squares fitting yielded param-
eter estimates of the logistic rise for each FC estimator (midpoint x0 and
steepness κ): coherence xCoh0 ¼ 1.12 dB, κcoh ¼ 0.12; NPD xNPD0 ¼ 1.47 dB,
κNPD ¼ 0.11; and NPG xNPG0 ¼þ 7.1 dB, κNPG ¼ 0.07. From these estimates
and the curves shown in Fig. 5A, it is clear that coherence and NPD
effectively share the same response profile to SNR. NPG is more sensitive
to noise with estimates becoming degraded at higher SNRs
(xNPG0 > xNPD0 ). Overall the two metrics have a difference in the mid-
points of the calibration curves of ~8 dB, with NPG being more sensitive
to noise by almost an order of magnitude greater than NPD. However, the
differences between the NPG estimator and NPD result in different SNR
thresholds required to detect statistically significant connectivity (i.e.
greater than the P ¼ 0.001 confidence threshold) and so the measures
reach significance at different SNR levels: for NPG at �7 dB (SNR ¼ 1:5),
and for NPD at �11.5 dB (SNR ¼ 1:14).
3.4. Effects of differences in signal-to-noise ratios between signals

Asymmetries in the SNR of different signals are known to distort the
estimation of dFC when using methods based upon Granger causality
(Bastos and Schoffelen, 2016; Nolte et al., 2008). We next tested whether
this was true for NPD. We simplified the model to contain just 2 nodes
that were reciprocally connected with the same lag. Again, the output of
the MVAR model was standardized to have unit variance. We then
modified the SNR of the first node (X) via the same process as for the
previous set of simulations but fixing the variance of the noise of the
second (Y) node to yield an SNR of þ13 dB. Signals were constructed
with a difference of SNRs between X and Y (ΔSNRXY ) equal to �17 dB,
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�7 dB, and 0 dB and calculated with respect to the SNR of Y which was
held constant. The results of the simulations are shown in Figs. 3 and 5B.
In Fig. 3 we plot the difference in the estimates of the directed connection
(i.e. X→ Y minus Y→ X; ΔFCXY ) to explore any deviation away from the
symmetry in functional connectivity expected from the MVAR model
(ΔFCXY�0).

Our simulations confirm that NPG is biased by differences in SNR
between signals, showing that even at moderate asymmetries (i.e. at
ΔSNRXY ¼ �7 dB) the weaker signal is estimated to be driven by the
stronger i.e. Y→ X. NPD suffers far less from this confound and maintains
estimation of the difference in coupling as close to zero for all conditions
tested. Analysis with NPD shows far less deviation from the ground truth
of symmetrical coupling when the SNRs are unequal. When looking
across a range of SNR asymmetries the response of each measure is
apparent (Fig. 5B). NPG spuriously identifies directed coupling, with the
bias for Y leading when ΔSNRXY is in the range �10 dB to �50 dB and
peaking around �35 dB (zone II of Fig. 5B). In contrast, the bias for X
leading is when X has a stronger SNR and ΔSNRXY is in range of þ10 db
to þ50 dB, and peaking around ΔSNRXY ¼ þ35 dB (zone IV). At very
large (positive) or very small (negative) ΔSNRXY the bias in coupling is
diminished and there is a return to symmetrical estimate of connectivity
as both NPD and NPG approach 0 for both directions (zones I and V).
However, whilst NPD exhibits a much weaker bias than NPG it does still
demonstrate an above significant difference in connectivity. However,
deviations in estimation of symmetrical coupling arising due to unequal
8

SNR are roughly an order of magnitude smaller than NPG with a
maximum ΔNPDXY of �0.045 versus ΔNPGXY of �0.42. In terms of de-
viation from the difference in measures when ΔSNRXY ¼ 0 dB, NPD
shows a maximum of 1.5 times inflation in asymmetry. For NPG this bias
is a maximum of 20 times larger indicating its increased susceptibility to
unbalanced SNRs.

3.5. Effects of instantaneous signal mixing

Neurophysiologically recorded signals such as MEG, EEG, and LFPs
are subject to instantaneous mixing of the underlying dipole currents as a
result of field spread effects. We next simulate these effects by multipli-
cation of the simulated MVAR process with a linear mixing matrix and
investigate the influence of mixing coefficients upon estimates of dFC.
We use an identical model to that in section 3.2 (3 state, 3rd orderMVAR)
but with the addition of the observer model to model signal mixing at a
range of values of λ to yield simulations with 0%, 20%, and 60% shared
variance. There is no observation noise added. The results of the analysis
are shown in Fig. 4.

The confounding effect of instantaneous mixing was established by
first estimating the degree to which it may influence the symmetrical
zero-lag component of the NPD. As expected, it was found that the zero-
lag NPD is increased by mixing (data not shown), particularly at fre-
quencies outside of the periodic component of the signal. This occurs as
in the case of the unmixed signals, correlation between processes is
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dictated by off diagonal MVAR coefficients at lags greater than zero.
When mixing is introduced, common noise from outside the main fre-
quency band of interaction more readily overcomes the intrinsic noise at
each node (which is weaker in power than activity at the interaction
frequency) and so results in the largest zero-lag correlations outside of
the main periodic component of the signals.

When using NPD to estimate dFC we found that it accurately re-
constructs the designed connectivity up to a moderate degree of signal
mixing (45% shared variance), albeit with a reduction of the estimated
magnitude of connectivity (e.g. 0.6 to 0.4 for X → Y). At the highest
degree of mixing (90% shared variance) the spurious connectivity be-
tween nodes Y and Z (introduced by the lagged common drive from node
X) becomes increasingly symmetrical with an increase in the connectivity
in the reverse direction (i.e. Y → X) despite the absence of these con-
nections in the model arising either by design or by lagged common
input. Overall, with increased signal mixing, the estimate of NPD is
weakened equally across all connections. Analysis with NPG however
shows that mixing has the effect of introducing spurious connectivity
between Y and Z, exhibiting a small but significant reversal connectivity
at Z→ Y at even moderate mixing (45% shared variance). At the greatest
degree of mixing, NPG determines statistically significant connections
(i.e. above the P ¼ 0.001 permutation confidence interval) for Y→ X and
Z → X, neither of which are in the underlying model. Unlike NPD, which
shows a uniform reduction in magnitude with increased mixing, the
magnitude of NPG estimates depends upon the initial SNR of the nodes.
In this instance the X → Z connection is weakened whilst the X → Y is
strengthened. This effect is due to the process explored in section 3.4, by
which unequal SNR biases the NPG estimator.

When testing across a wider range of degrees of signal mixing
(Fig. 5C) the difference in the response of NPD and NPG is apparent.
When using NPG to estimate dFC the magnitude of the estimate of X→ Y
increases to a maximum at around 50% shared variance and then quickly
9

collapses at very high mixing as instantaneous correlations begin to
predominate. This result is related to the findings of section 3.4 in which
it was shown that signal leakage acts to modify the effective SNR of the
signals such that leakage from one signal can act to bias causality esti-
mates towards another signal at evenmoderate amounts of instantaneous
mixing. This effect is apparent when looking at the trace of the standard
(symmetrical) coherence (in blue) which drops to a minimum at ~30%
shared variance but then increases as zero-lag correlations take over. As
the NPD explicitly ignores the zero-lag component, it displays simpler
behaviour, and reduces in amplitude with increased mixing. This occurs
because zero-lag coherence predominates, and the lagged components
become increasingly small.

3.6. Effects of data availability upon benchmarks of the metrics’ accuracy

Application of functional connectivity metrics to real world data are
often limited by the amount of data that is available to estimate them. In
the next series of analyses, we quantify the dependency of accurate
estimation upon the sufficiency of the given data. We use the bench-
marking approach laid out in the methods and examine the role of data
availability in two ways: 1) data which is continuous but of fixed total
length (500s) data which is variable in length but with a fixed trial
length. The results of this are shown in Fig. 6. In Fig. 6A and B we
compare NPD with mvNPG in the accurate recovery of known patterns of
connectivity using a benchmark score of accuracy (see method section
2.5) when using a fixed amount of data. We observe a common trend that
the overall accuracy of recovery increases with trial length, reaching a
maximum at the highest trial length tested at 210 samples (equivalent to
39 trials each ~5s in duration assuming a 200 Hz sampling rate). The
recovery of denser models required longer trial lengths and overall were
estimated less accurately. This effect occurs due to the introduction of
common drive effects inducing false-positive detection of connections.
Sparser networks including just one single connection reached maximum
accuracy with trial lengths as short as 25 samples (equivalent to 1250
trials each ~0.16s in duration). With a fixed data length, it was found
that NPD required shorter trials than mvNPG to reach similar degrees of
accuracy (Fig. 6A versus 6B). Accuracy of recovery falls off with longer
duration trials as the reduced number of repetitions hinders accurate
estimation.

In Fig. 6C and D, the total data availability (i.e. 100 trials of variable
duration) upon estimator accuracy was investigated. Again, both metrics
displayed improved accuracy with increasing trials lengths. However,
with longer trial lengths, mvNPG was able to accurately recover con-
nectivity of models with denser connectivity than for NPD: in the case of
networks with three random connections, and with a long trial length of
210, mvNPG reached ~85% benchmark score versus 65% for NPD.
Sparser models with just one or two connections showed an optimal trial
length around 25 (0.16 s at 200 Hz) for mvNPG versus 26 (0.32 s at 200
Hz) for NPD.

3.7. Effects of combined confounds: instantaneous mixing and asymmetric
signal-to-noise ratios

Empirically recorded signals are subject to several simultaneous
confounding effects. In Fig. 7 we present results from a benchmarking
analysis in which we confound simulated signals by introducing both
asymmetric signal to noise, as well as instantaneous mixing of sources to
a range of combined degrees. In Fig. 7A and B we compare the perfor-
mance of mvNPG and NPD in the estimation of connectivity in MVAR
models with one random connection. We vary instantaneous mixing from
0 to 100% shared variance; and asymmetric SNR at �45 dB–0 dB. These
simulations show that when estimating connectivity using NPD in sparse
networks with just a single connection there is a highly accurate recovery
(>95% benchmark scores) unaffected by asymmetric SNR, and only with
high shared variance (>50%) is there any significant drop in accuracy. A
combination of strong asymmetry (�30 dB) and high mixing can



Fig. 4. Analysis of the effects of instantaneous mixing upon estimates of directed functional connectivity (dFC). The confounding effects of volume conduction
were simulated by multiplication of signals with a mixing matrix with off-diagonal coefficients λ. The unmixed signals were first generated with a three state, 3rd order
MVAR model (identical to that used in Figs. 1 and 2). We simulate three mixing conditions: λ ¼ 0 (zero mixing; bold line), λ ¼ 0.45 (45% shared variance; —), and λ ¼
1.2 (90% shared variance; ⋅⋅⋅). dFC is estimated using the lagged components of the NPD (green) or non-parametric Granger (NPG) (red). Permutation confidence
intervals (P ¼ 0.001) are shown for NPD and NPG by the green and red dashed lines and arrows respectively.
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however reduce benchmark scores to 30%. In comparison, mvNPG
demonstrates poor accuracy across a much wider area of the conditions
tested - with the benchmark reduced from 100% to 20% in the presence
of negative asymmetric SNR greater than �20 dB (i.e. source node is
weakest) and at all degrees of mixing above 20%. Benchmark scores are
weakened further by the coincidence of strong instantaneous mixing of
the signals.

In Fig. 7C and D we vary instantaneous mixing from 0 to 100% shared
variance; and asymmetric SNR at �45 dB–0 dB. These tests show that
mvNPG is more readily corrupted by both confounds with scores ranging
from 80% to 50% along the asymmetric SNR axis, and from 80% to
�10% along the axis in which instantaneous mixing is varied. Further-
more, the estimation of denser connectivity with NPD is hindered by
asymmetric SNR but is less susceptible to combined signal mixing.
Whereas the negative benchmark scores for mvNPG indicate common
detection of false positives, scores for NPD do not drop below 40% for
any of the combined confounds tested.
10
3.8. Confounds for conditioned directed connectivity arising from
incomplete measurement of signals

We next investigate the properties of the multivariate extension to
NPD which we term conditioned NPD. Conditioned dFC provides a more
powerful method with which to explore network functional connectivity;
however, in empirical cases, conditioning with a tertiary signal Z may not
produce complete attenuation of the spuriously inferred directed
connection between X and Y arising from the common input Z. This may
arise as a result of: i) incomplete capture of the activity occurring at Z;
and/or ii) difference in the routing of signals; and/or iii) because there
are other sources of the spuriously inferred connection than Z alone. In
cases where structural connectivity is well understood, and the condi-
tioned signal Z is not expected to interconnect the path between nodes X
and Y, any attenuation when conditioning can be assumed to arise in
information propagated forward in the network (feedforward). On the
other hand, if anatomical connectivity is unclear the effect of
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directionality remaining close to zero across the range examined. (C) The effect of instantaneous signal mixing was examined across a range of mixing coefficients (λ)
to yield a range of 0%–100% shared variance. Coherence is shown to increase as zero-lag correlations predominate with increasing valued λ. The lagged NPD shrinks
to zero as instantaneous component of coherence dominates. NPG increases to a maximum at around 65% signal mixing and then sharply falls to zero. Permutation
confidence intervals (P ¼ 0.001) are shown for NPD and NPG by the green and red dashed lines and arrows respectively.
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conditioning upon directed connectivity may also be explained by con-
ventional serial routing (i.e. X → Z→ Y) but with incompleteness of
observed signals at Z resulting in only partial attenuation of the X → Y
estimate. In the next set of tests, we ask whether there are any differences
in how the measures of dFC behave in the face of incomplete signal
observation.

For this set of simulations, we use a three state, 3rd order MVAR
model, with all nodes generating identical autonomous dynamics and
identical cross-node coefficients at equal model lags. We test three model
connectivities to compare three types of signal propagation: a) serial (i.e.
X→ Z→ Y); b) feedforward (i.e. X→ Y→ Z); or c) recurrent (i.e. X→ Y→
Z → X). We simulate incomplete observation of Z by modifying the SNR
as was done in section 3.2. The model architectures and results of sim-
ulations are shown in Fig. 8. We demonstrate that in the simplest case of a
serial path, the NPD conditioned on signal Z (NPD(Z)) behaves as ex-
pected: the estimate of connectivity X → Y is attenuated as all informa-
tion between them is routed via Z. With decreasing SNR of the
observation of Z we show that conditioning has less and less effect and
converges to the estimate yielded by the unconditioned NPD. Pairwise
NPD remains constant at all SNRs tested as it does not account for any of
the activity at Z. In these simulations, multivariate NPG (mvNPG) was
also applied as a way to estimate directed connectivity that accounts for
all signals in the model. We find that mvNPG shows a small decrease
(~0.025) in the estimate of X→ Y with increased SNR of Z. This weak
attenuation demonstrates that mvNPG can detect serial routing, yet it is
not as suited for discriminating direct connectivity (i.e. X→ Y) fromwhen
there is relay via a secondary node (X → Z → Y).

We next looked at a feedforward network, where X propagates
directly to Y, but is then relayed on to Z. Because some of the information
passed X → Y is contained in Z, we expect conditioning to attenuate the
directed connection. Again, we find that NPD(Z) behaves as expected,
although the attenuation is weaker than in (A) when Z mediated the
routing entirely. In this way the difference in values between the NPD
and NPD(Z) yields a measure of how much information of X is fed for-
ward from Y→ Z. Thus, decreasing SNR of the observation of Z decreases
the attenuating effect of the conditioned NPD. mvNPG remains at a
constant magnitude for all SNRs tested. This demonstrates that the
multivariate estimator of Granger causality is not sensitive to feedfor-
ward configurations whereby the estimation of connectivity between X
11
and Y is not influenced by activity at the terminal (receiving) node.
For the third test, we investigated the combination of recurrent loops

in the network and incomplete signal observation-two features likely to
occur in real recordings from neural systems. We find that with complete
signal observation (i.e. SNR → ∞) the metrics behave similarly to the
feedforward model. A notable difference is the increased NPD of X → Y
compared to the feedforward case, as correlations are reinforced by
signals resonating across the loop. NPD(Z) behaves in a similar way as
before, showing attenuation of the conditioned estimate at low noise
levels, but converging back to the unconditioned NPD as the reference
signal is obscured by noise and estimation of its confounding influence is
lost. The mvNPG estimate of the connection X→ Y decreases by 0.1 as the
observation noise of Z is reduced. This finding indicates that in the case of
recurrent connectivity, mvNPG is sensitive to the quality of the signal
recorded at the routing node. In the case of recurrent configurations, this
finding shows that mvNPG can readily discriminate between direct X→ Y
connectivity and cyclical routing via a secondary signal recorded at Z.
3.9. Example of estimation of directed functional connectivity in
confounded empirical data: cortico-subthalamic connectivity

Using the example dataset described in section 2.6 we examine how
changes in the overall SNR, differences in SNR between signals, and
instantaneous signal mixing may act to confound the estimation of dFC in
empirical data recorded from simultaneous MEG and LFP in patients with
Parkinson’s disease. We first analyse the original empirical data and then
subsequently introduce synthetic confounding effects as described in the
methods section that outlined observation modelling. The results of this
analysis are presented in Fig. 9.

We demonstrate in the original data that there is a clear asymmetry in
coupling with both NPD and NPG indicating a clear dFC from SMA →
STN. The zero-lag component (top row Fig. 9) of the NPD is negligible in
the original data. In contrast, the instantaneous component of NPG shows
above significance level connectivity at 20–30 Hz. The empirical SNR of
the data was estimated using the method described in section 2.6.2. We
use activity in the beta band (14–30 Hz) to define the signal and then
compare with the noise floor. SNR estimates of the MEG virtual electrode
and LFP were þ1.9 dB (SNRSMA � 3:2) and þ4.0 dB (SNRSTN � 5:2)
respectively. This yields an empirical ΔSNR of �2.1 dB with the LFP
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Fig. 6. Investigating the role of data availability upon the accuracy of connectivity recovery when using non-parametric directionality (NPD; blue), and
non-parametric Granger causality (NPG; red). The two estimators were benchmarked against three sets of 24 MVAR models with random connectivity comprising
either one, two, or three connections respectively. Different amounts of data were simulated for each model and the accuracy of the recovery was scored using the
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measured at the STN having the largest SNR.
In the first set of experiments we reduced the SNR of both signals

equally (Fig. 9A–C). We added noise to the original signals to yield a
range of SNRs: þ∞ dB, þ 4.1 dB, and �1.9 dB. These analyses show that
both NPG and NPD estimates of connectivity respond to a uniform
reduction in SNR in a simple and predictable way by reducing their
overall magnitude approaching zero as the signals become mostly noise.

Subsequently, the effect of changing the SNR of only one of the signals
upon dFC estimates was also investigated (Fig. 9D–F). Signals were
constructed to have a range of ΔSNR: 3 dB; þ16 dB; and þ26 dB. We
reduced the SNR of the strongest signal only (STN; SNRSTN

dB ), in an attempt
to bias the directionality estimates in the reverse direction (i.e. increase
the strength of STN → SMA). However, it was found for both NPD and
NPG that this had a similar effect to reducing the SNR symmetrically (i.e.
when SMA→ STN is weakened). This result suggests that for this dataset,
it may not be possible to induce a strong bias in the inferred dFC by
making one signal weaker than the other (i.e. SNRSMA

dB ≫ SNRSTN
dB ) as there

is no anatomical STN→SMA feedback (a situation in contrast with sim-
ulations investigating asymmetric SNR in section 3.4.).

In the final column of Fig. 9 (panels G–I) the effect of signal mixing
was measured. We simulated several degrees of signal mixing: λ ¼ 0 (0%
12
shared variance); λ ¼ 0.075 (7.5% shared variance); and λ ¼ 0.15 (15%
shared variance). Again, it was found that the instantaneous component
of the NPD behaves as expected, increasing in magnitude with increased
signal mixing. This is most apparent in the frequencies outside the main
oscillatory bands of activity. When using the instantaneous part of NPG,
we found that there was generally an increase, yet the frequencies around
the main component (of the peak in the lagged connectivity) were
negative and uninterpretable. Furthermore, we show that even moderate
increases in the signal mixing (7.5%) corrupt the dFC estimation when
using NPG. This is especially apparent at highmixing levels (15%), where
a wide band reverse component (STN→SMA) arises, as well as large
second peak in the SMA→STN at around 4–12 Hz. NPD estimates are
much more stable in comparison and only show a reduction in the
original peak with increased mixing, but no spurious peaks emerge
outside of this range at any of mixing degrees tested.

4. Discussion

The results presented in this paper further support the NPD meth-
odology as an accurate and robust method for the estimation of dFC in
continuous neural data. We first provided a face validation of NPD for
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Fig. 7. Investigating the role of combined data confounds (instantaneous mixing and asymmetric signal-to-noise ratio; ΔSNRXY) upon the accuracy of
connectivity estimation when using non-parametric directionality, and non-parametric multivariate Granger causality. The two measures were benchmarked
against two sets of 24 realizations of a 3-node MVAR models comprising either one (top row), or two (bottom row) randomly placed connections. For each simulation
200s of data was simulated and divided into epochs of 28 samples. Simulated data is sampled at 200 Hz. All data is represented as a contour plot when varying first
instantaneous mixing from 0% to 100% shared variance; and then adjusting the approximate asymmetric narrowband (45–55 Hz) SNR from �45 dB to 0 dB. (A)
Benchmarking of mvNPG with simulations containing one randomly placed connection on a three-node network. (B) Same as for (A) but using NPD. (C) Benchmarking
of mvNPG with simulations containing two randomly placed connections on a three-node network. (D) Same as for (C) but using NPD as the estimator.
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estimation of the directed interactions between MVAR processes. Sec-
ondly, we assessed the performance of the NPD measure in the presence
of several confounding factors that are likely to arise in experimental
recordings of neurophysiological networks, namely: volume conduction,
common drive, low SNR, unequal SNRs between signals, and recurrent
connectivity. Thirdly, we provided a direct comparison of NPD with a
well-established estimate of dFC based on Granger causality – NPG.
Finally, our results show that the additional information gained from
using a conditioned, multivariate extension of the NPDmethod allows for
some of the confounding influences of common drive, or non-trivial
signal routing, to be mitigated. The degree to which this is achieved is
dependent upon the extent to which the signal captures the neural ac-
tivity at the recording site.
4.1. A summary of effects of signal confounds

4.1.1. Effects of common drive
Common input to two parallel neural populations has long been

known to be a confounding factor when estimating functional connec-
tivity (Aertsen et al., 1989; Farmer et al., 1993; Horwitz, 2003). The
limitations of finite sampling over the brain means that no FC measure is
immune to this problem as there always remains the potential for an
unmeasured common input to the recorded populations from which an
FC estimate is made. Our simulations demonstrate this effect where both
13
pairwise NPD and NPG estimates indicate spurious causality in the case
of lagged common input. However, when using multivariate extensions
of the two methods, in which the common drive signal is factored out, it
is possible to avoid spurious estimation of connectivity between nodes
sharing a common drive. This is shown to be true when using the
multivariate NPG which accounts for the total covariance across the
network. On the other hand, NPD in its simplest form is measured in a
pairwise manner and cannot account for the action of a tertiary signal on
the naïve estimate. However, we demonstrate that this issue can be
remedied using the multivariate extension of NPD in which the influence
of a common drive may be regressed out in order to eliminate spurious
connectivity between the driven nodes. Whilst this is a solution when the
common drive is observed, there still remains the potential confound of
an unobserved common signal, to which NPD and NPG are equally sus-
ceptible. These issues can be addressed by model based estimators of
effective connectivity such as dynamic causal modelling which allow for
the inference of unobserved states in a causal network (Friston et al.,
2013).

4.1.2. Effects of A/symmetric signal-to-noise ratios
Functional connectivity estimates are subject to the limits of inference

implied by the SNR of the available recordings. We demonstrate (Fig. 5A)
that coherence, NPD, and NPG are degraded by poor SNR with similar
logistic decays. However, NPG exhibits a greater susceptibility to



Fig. 8. The effects of incomplete signal observation upon estimation of directed functional connectivity: non-parametric Granger causality (NPG); non-
parametric directionality (NPD); and NPD conditioned on reference signal Z (NPD(Z)). Simulations investigate the connectivity of X → Y and the influence
of propagation involving a tertiary node Z. We simulate incomplete sampling of Z by modifying its signal-to-noise ratio (SNR) via the addition of Gaussian white noise
and then standardizing the variance equal to 1. (A and D) Serial propagation – signals propagate from X → Z → Y. The results of changing the SNR of Z are shown in
panel D. Simulations demonstrate that dFC estimation with NPD/NPG are constant. At complete signal observation (SNR 1:0; þ∞ dB), conditioning removes the
estimate of dFC. With increasing SNR, the attenuation is diminished to the point where conditioning has no effect. (B and E) Feedforward connectivity – signals
propagate to feedforward to the tertiary node: X→ Y → Z. We find that conditioning has a weak effect (panel E), and the attenuation of NPD(Z) for estimation of X→ Y
is again reduced by decreasing SNR of Z. (C and F) Recurrent connectivity – a further connection is added to the model to complete a cyclic path in the network: X→
Z → Y→ X. Decreasing the SNR of Z results in an increased estimation of NPG in X→ Y (panel F). We again find that increased completeness of observation of Z results
in an increase in the efficacy of NPD(Z) in determining tertiary (non-direct) signal routing.
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degradation by noise than NPD. NPG magnitude are reduced at SNRs an
order of magnitude higher than those that would elicit an equal reduction
in NPD. Despite this, bothmeasures show a remarkable resistance to even
high levels of noise, with the range of SNRs at which both NPG and NPD
provide statistically significant estimates of connectivity (i.e. having a
magnitude exceeding the P ¼ 0.001 confidence interval) reaching as low
as SNR ¼ 1:30 (equivalent to �15 dB). This would suggest that both are
robust to the occurrence of false-negative errors as a result of poor SNR in
neural recordings. These findings can also explain the common empirical
finding of significant functional connectivity in the absence of obvious
peaks in the power spectra.

A number of authors have noted that estimation of Granger causality
is biased by the existence of unequal SNRs (Bastos and Schoffelen, 2016;
Haufe et al., 2013; Nolte et al., 2008). Our simulations reiterate this fact
and demonstrate that NPG is biased to estimate the driving node as the
strongest signal (section 3.4; Fig. 5B). This is an important problem as all
neurophysiological signals comprise some unknownmixture of the signal
of interest and background noise on a source by source basis. As a result,
it can rarely be assumed that the SNRs of two signals are balanced. We
find that when investigating the simultaneous effects of unequal SNR and
instantaneous mixing, that NPG is most easily corrupted by the asym-
metry in the signals, whereas NPD is most sensitive to mixing.

This is particularly important when looking at directed connectivity
between signals recorded from two different modalities (e.g. MEG and
LFP) where the estimate will be biased in favour of the higher gain
recording (to lead). For instance, in our data we show a difference in
empirical SNRs of 4.5 dB between the LFP and virtual channel signals.
14
This has led some authors to suggest the usage of time-reversed data as
surrogate comparison for dFC methods (Haufe et al., 2013) because if a
true causal effect is present then time reversal should flip the sign of the
directionality. Future validations should explore whether this approach
can reduce the susceptibility of the NPD method to so called weak” data
asymmetries. However, the simulations here demonstrate that estimates
made using NPD are far less subject to this confound than NPG. NPD is
still affected by decreased SNR (both asymmetric and symmetric) but
shows no bias, as directional estimates decrease uniformly as the SNR
goes down. This finding leads us to suggest that in future studies of dFC in
multimodal data or in other cases where the signals are likely to be of
differing SNR, the NPD method provides a more robust and readily
interpretable result over Granger based approaches.

4.1.3. Effects of simulated volume conduction through signal mixing
The extent to which signals recorded from the brain are subject to the

influence of volume conduction is generally more severe with decreasing
distance between the recording electrodes. Experiments have demon-
strated that LFPs measured from electrodes separated by a distance of 5
cm will typically show R2 values indicating approximately 50% shared
variance (Nunez et al., 1997) and so analyses of directed functional
connectivity are likely to be significantly affected by instantaneous
mixing at distances much closer than this (e.g. recordings made from
neighbouring contacts of the same intracranial electrodes). Instead, some
authors have shown that functional connectivity analyses are better
suited to source localized signals due to the reduced extent of signal
leakage (Schoffelen and Gross, 2009). This is likely to hold true for the
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Fig. 9. Testing for the confounding effects of symmetric and asymmetric SNR, and instantaneous signal mixing upon estimation of directed functional
connectivity in experimental data recorded in patients with Parkinson’s disease. Empirical data is comprised of local field potentials recorded from the STN and
a virtual electrode localized to the SMA, computed from whole-head magnetoencephalography. Signals were analysed for dFC using the instantaneous components
(first row); STN → SMA (second row); and SMA → STN (third row) parts of the NPD (green) and NPG (red). Empirical data is indicated by bold line; low by the dotted
(⋅⋅⋅); and high degrees by the dashed (—). (A–C) The effect of modulating the overall SNR of the signals equally. We used a range of narrowband (14–31 Hz) SNRs: 1:1
(þ∞ dB; bold); 4:3 (þ4.1 dB; —); and 1:3 (�1.9 dB; ⋅⋅⋅). (D–F) The effect of modulating the SNR of the strongest signal (STN) only. We used a range of ΔSNR: �3 dB
(bold); þ16 dB (—); and þ26 dB (⋅⋅⋅). (G–I) The effect of modulating the degree of instantaneous mixing between signals. We simulated a degree of signal mixing: λ ¼
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application of NPD analysis to whole brain recordings. It is difficult to
find a limit for when zero-lag effects will corrupt a method such as NPG as
this ultimately depends on the nature of the lagged connectivity present
in the data. In our simulations, we show that the bias on NPG induced by
mixing is dependent upon the original SNR of the signals as a result of
confounding by the mechanism of SNR asymmetry discussed in the
previous section.

In addition to the benefit of being less susceptible to corruption by
volume conduction, NPD provides explicit frequency resolved estimation
of the zero-lag component of coherence, making it possible to estimate
the extent to which coupling is influenced by instantaneous effects. This
characteristic affords NPD an advantage over corrected methods of FC
such as imaginary coherence or the phase locking index (Nolte et al.,
2004; Lachaux et al., 1999; Vinck et al., 2011) which are set up to ignore
zero-phase coherence. In this respect it is important to note that
zero-phase coherence can reflect synchronous physiological coupling
(Roelfsema et al., 1997). We also note that volume conduction is manifest
15
not only through the mixing of known sources of interest, but also hidden
sources (Bastos and Schoffelen, 2016). This introduces a confound like
that of limited signal observation (see below) in which the influence of a
node can only be estimated if it is directly observable.

4.1.4. Effects of data length on estimation accuracy
Estimation of connectivity in empirical data is limited by the avail-

ability of recorded data due either to experimental design or practical
limitations of storage and acquisition. In Fig. 6 we presented a set of tests
to determine the sensitivity of the two methods to data length. Overall,
we find that NPG is the most robust of the two and can make accurate
recovery at trial lengths two orders (to the power of 2) shorter than NPD.
As expected, this exact effect is dependent upon the complexity of the
model to be evaluated. In the case where more dense networks are to be
estimated, the required amount of data is larger than for simpler models
with one or two connections. These limitations are likely due to the
variance of the spectral estimators from which the two metrics are
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decomposed, with coherence known to be sensitive to having a larger
number of samples to restrict estimates.

It is well known that insufficient sampling will hinder parametric
estimators of Granger causality (Seth et al., 2015). Simulations here
suggest that with a good number of trial repetitions (>35) at a sampling
rate of 200 Hz, trial lengths from 0.5 to 1 s are required for accurate
estimation with NPD. For NPG, this requirement is reduced to a mini-
mum of 0.2 s, although these guidelines are likely to depend upon the
SNR, as well as frequency band of the interaction of interest in the ana-
lysed data.

4.1.5. Effects of limited signal observation
The argument that conditioned metrics of dFC such as conditioned

NPD provide an increased ability to infer the causal structure of real-
world neural networks hinges upon the assumption that a recorded
signal truly captures the complete dynamics of the underlying population
through which the signal is routed. In section 3.8 we provide an analysis
of how the incomplete observation of signals acts to confound the esti-
mates of dFC under several hypotheses of signal propagation: A) serial; B)
feedforward; and C) recurrent connectivity (Fig. 8). In the case of the
simplest architecture - serial propagation, the metrics behave as expected
– the more poorly the signal used to perform the conditioning captures
the underlying dynamics, the less the conditioning can inform accurate
estimation of directed connectivity. In the case of complete signal cap-
ture, the conditioning procedure (NPD(Z)) completely attenuates the
directed connection (X → Y), as there is no possibility that any of the
information contained in Y concerning node X is exclusive of Z. There-
fore, if the signal recorded at Z completely captures the dynamics of Y
then there is the potential to attenuate the X → Y connection entirely
using a conditioning on Z. In the case of feedforward propagation, con-
ditioning will also act to attenuate the estimate, but unlike serial pro-
cessing (where the reference node Z provides an intermediate node in the
chain of propagation between X and Y) the attenuation can never be
complete as the variance introduced at Z is not shared with X or Y. In case
C we show that the re-entrant connection acts to increase the overall
coherence due to cyclical passage of information in the circuit. Further-
more, conditioning acts to bring the NPD estimate closer to that of the
feedforward model (where the re-entrant connection is missing). In the
case of recurrent connectivity, the multivariate NPG also acts to discount
the reconnection via Z. When Z is completely captured (SNR is high) then
the NPG gives an estimated connectivity equivalent again to the feed-
forward model.

These observations make it clear that if conditioning removes the
inferred connectivity in its entirety then the conditioned node must be in
a relay like position (i.e. X → Z → Y). For instance, this was found to be
the case in West et al. (2018) where conditioning of NPD between the
striatum and subthalamic nucleus upon the external segment of the
globus pallidus removed connectivity almost entirely, leading to the
conclusion that information propagated serially in the network, a finding
in-line with known anatomical details of the indirect pathway of the
basal-ganglia. However, the findings described in the present paper
regarding the combination of circuit organization and SNR of condi-
tioned signals introduce ambiguity when interpreting the results of
conditioned or multivariate estimates of directed connectivity in empir-
ical data. For instance, incomplete attenuation of conditioning may arise
either from poor SNR of the reference signal in a serial network or may
indicate that the conditioned signal is placed in either a feedforward or
recurrent configuration. In this case it is necessary to combine evidence
from multiple conditioning steps (e.g. also conditioning X → Z on Y) in
order to determine the exact signal routing. Previous work has argued
that additive noise only impairs estimation rather than distorts temporal
structure of the signals (Baccal�a and Sameshima, 2006), here we show
that this disruption is dependent upon the exact routing of the signals.
Specifically, in networks containing a high degree of reciprocity, parti-
alized estimated of coherence (both directed and undirected) are likely to
be confounded. This finding could be used in principle to further specify
16
the role of a conditioned node by determining its effect upon directed
connectivity in response to additive noise.

4.2. Extensions and final conclusions

We have presented a validation of NPD, a novel tool for the assess-
ment of dFC, in continuous neural recordings such as that measured in
methods commonly used for human neuroimaging. We argue that in the
face of common practical issues arising from the physical limitations of
many experimental recording methods, as well as from the complex
biology of the systems that they aim to explore, NPD and its conditioned
extension provide a useful method that builds upon the founding prin-
ciples of the more established Granger causality. The NPD measure
(conditioned and unconditioned) has been recently demonstrated to
provide insights into the patterns of propagating neural activity in animal
electrophysiology in the basal-ganglia (West et al., 2018) and hippo-
campus (Halliday et al., 2016); as well as in human motor networks
(Halliday, 2015; Spedden et al., 2019). and is likely to have wide
application across other domains of clinical and experimental neurosci-
ence. The finding that NPD is robust to the confounding effects of SNR
asymmetry means that it may be readily applied to multi-modal neural
recordings without some of the concerns that may arise with
Granger-based methods.

The validation provided here is not extensive: there is a wide range of
other existing dFC metrics to which we have not made comparison, and
so it is possible that other metrics may perform better than NPG (for an
extensive comparison of many metrics, not including NPD, see Wang
et al., 2014). Granger causality-based methods have become a staple of
the dFC toolbox and form the statistical foundation for several methods
developed since including the directed transfer function (Kaminski and
Blinowska, 1991) and partial directed coherence (Baccal�a and Same-
shima, 2001). An adaptation of the directed transfer function aimed at
improving estimation of directed connectivity (i.e. X→ Y) introduced by
Korzeniewska et al., (2003) may perform better at recovering known
patterns of connectivity in the face of common drive than the metrics
presented here. Furthermore, the role of time reversal procedures (Haufe
et al., 2013) in alleviating some of these shortcomings in the metrics
should be the subject of future study. This is likely to be important when
investigating more complex networks or high dimensional data such as
that measured with magneto- or electroencephalographic recordings.
However, NPD shows broadly equivalent results to the Granger based
measure but exhibits more robust performance in the recovery of com-
plex network topologies in highly confounded data. The full extent to
which this is true either in networks of a greater size or density will need
to be tested.

We conclude that the NPD measure of directed functional connec-
tivity is inexpensive to compute, makes limited assumptions of the
properties of the data, is flexible to the form of the original spectral es-
timate and is conceptually simple to formulate. It eschews the compu-
tationally expensive estimation of model parameters required for
parametric estimates of Granger causality or directed transfer function
and doesn’t require iterative binning procedures such as that use in
information-based metrics like transfer entropy. Overall, NPD provides a
simple and compact statistical description of directed dependencies be-
tween signals and is readily interpretable, providing the basis for testable
hypotheses of causation in real neural systems.
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Table 1.1
Table of MVAR Coefficients

Simulating Common Drive, Signal-to-noise, instantaneous mixing (Figs. 1, 2 and 4, 5C)
Transfer Matrix

A1 ¼
2
4 0:5 0 0

0 0:5 0
0 0 0:5

3
5

A2 ¼
2
4�0:5 0 0

0:5 �0:5 0
0 0 �0:5

3
5

A3 ¼
2
4 0:5 0 0

0 0:5 0
0:5 0 0:5

3
5

Simulating Asymmetric Signal-to-noise (Figs. 3, 5A, 5B)
Transfer Matrix

A1 ¼


0:5 0
0 0:5

�

A2 ¼

�0:5 0:35
0:35 �0:5

�

A3 ¼


0:5 0
0 0:5

�
Simulating Incomplete Signals for Conditioning: Serial (Fig. 8A, D)
Transfer Matrix

A1 ¼
2
4 0:5 0 0

0 0:5 0
0 0 0:5

3
5

A2 ¼
2
4�0:5 0 0

0 �0:5 0
0 0 �0:5

3
5

A3 ¼
2
4 0 0 0
0:3 0 0
0 0:3 0

3
5

Simulating Incomplete Signals for Conditioning: Feedforward (Fig. 8B, E)
Transfer Matrix

A1 ¼
2
4 0:5 0 0

0 0:5 0
0 0 0:5

3
5

A2 ¼
2
4�0:5 0 0

0 �0:5 0
0 0 �0:5

3
5

A3 ¼
2
4 0:5 0 0

0 0:5 0
0:3 0 0:5

3
5

Simulating Incomplete Signals for Conditioning: Recurrent (Fig. 6C, F)
Transfer Matrix
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Appendices.
List of External Toolboxes Used in Analysis, Statistics, and Plotting

1. BSMART toolbox- Hualou Liang, Steven Bressler, Mingzhou Ding (Cui
et al., 2008): http://www.brain-smart.org/

2. Fieldtrip toolbox- Donders Insitute, Radboud University (Oostenveld
et al., 2011a): www.fieldtriptoolbox.org/

3. Linspecer - David Kun: https://github.com/davidkun/linspecer
4. Neurospec 2.11 toolbox- David Halliday, University of York: http://

www.neurospec.org/
5. SPM 12 toolbox- UCL, Wellcome Centre for Human Neuroscience:

https://www.fil.ion.ucl.ac.uk/spm/
Noise Covariance Matrix

ε ¼
2
4 0:3 0 0

0 0:3 0
0 0 0:3

3
5

Noise Covariance Matrix

ε ¼


0:3 0
0 0:3

�

Noise Covariance Matrix

ε ¼
2
4 0:3 0 0

0 0:3 0
0 0 0:3

3
5

Noise Covariance Matrix

ε ¼
2
4 0:3 0 0

0 0:3 0
0 0 0:3

3
5

Noise Covariance Matrix

(continued on next page)

http://www.brain-smart.org/
http://www.fieldtriptoolbox.org/
https://github.com/davidkun/linspecer
http://www.neurospec.org/
http://www.neurospec.org/
https://www.fil.ion.ucl.ac.uk/spm/


Table 1.1 (continued )

A1 ¼
2
4 0:5 0 0

0 0:5 0
0 0 0:5

3
5

A2 ¼
2
4�0:5 0 0

0 �0:5 0
0 0 �0:5

3
5

A3 ¼
2
4 0 0:3 0

0 0 0:3
0:3 0 0

3
5

ε ¼
2
4 0:3 0 0

0 0:3 0
0 0 0:3

3
5
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Permutation Testing for Significance Thresholds

Estimates of interactions between signals can give rise to non-zero
values in the absence of any interaction. To check whether an observed
value of an estimator is statistically significant, its value can be compared
against a distribution of the same index estimated from surrogate data
(Theiler et al., 1992). This surrogate data must preserve the statistics of
the individual signals whilst removing the property to be tested, namely
the interactions between them. Once a null distribution is obtained,
(rank-order) significance thresholds can be calculated from the corre-
sponding percentiles of the surrogate distribution (e.g. a P ¼ 0.01
threshold can be estimated from the 99th percentile).

Many possibilities exist for the generation of surrogates and methods
range from the very simple permutation of the time series samples, up to
increasingly complex surrogates that aim to maintain nonlinear features
of the individual signals (for reviews see: Lancaster et al., 2018; Pereda
et al., 2005). All methods will fall short at capturing all confounding
properties of the individual generators of the signals including the phase
randomization method (Zalesky and Breakspear, 2015).

In this work we use a phase randomization approach. We maintain
the original FFTs of the signals but randomize the phase of the individual
Fourier components. To do this we generate a vector of random phases Ψ
uniformly sampled on the interval [0 2π] for N/2 samples and multiply
the first half of the FFT by exp (iΨ). The remainder of the FFT is then the
horizontally flipped complex conjugate of the first half. This method
ensures that the overall expected value of the magnitude of the averaged
spectral estimate is equal to zero. See Lancaster et al. (2018) for a dis-
cussion of this method and Breakspear and Terry (2002) for application
to assessing interdependence of neurophysiological signals.
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