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Abstract: The determination of the surface energy balance fluxes (SEBFs) and evapotranspiration
(ET) is fundamental in environmental studies involving the effects of land use change on the water
requirement of crops. SEBFs and ET have been estimated by remote sensing techniques, but with
the operation of new sensors, some variables need to be parameterized to improve their accuracy.
Thus, the objective of this study is to evaluate the performance of algorithms used to calculate surface
albedo and surface temperature on the estimation of SEBFs and ET in the Cerrado-Pantanal transition
region of Mato Grosso, Brazil. Surface reflectance images of the Operational Land Imager (OLI) and
brightness temperature (Tb) of the Thermal Infrared Sensor (TIRS) of the Landsat 8, and surface
reflectance images of the MODIS MOD09A1 product from 2013 to 2016 were combined to estimate
SEBF and ET by the surface energy balance algorithm for land (SEBAL), which were validated
with measurements from two flux towers. The surface temperature (Ts) was recovered by different
models from the Tb and by parameters calculated in the atmospheric correction parameter calculator
(ATMCORR). A model of surface albedo (asup) with surface reflectance OLI Landsat 8 developed in
this study performed better than the conventional model (acon) SEBFs and ET in the Cerrado-Pantanal
transition region estimated with asup combined with Ts and Tb performed better than estimates with
acon. Among all the evaluated combinations, SEBAL performed better when combining asup with
the model developed in this study and the surface temperature recovered by the Barsi model (Tsbarsi ).
This demonstrates the importance of an asup model based on surface reflectance and atmospheric
surface temperature correction in estimating SEBFs and ET by SEBAL.

Keywords: performance; land surface temperature; atmospheric correction; flux towers

1. Introduction

Surface energy balance fluxes (SEBFs) are one of the most important biophysical
processes in environmental and hydrological studies [1–3]. SEBFs represent the processes
of partitioning of available energy on the surface, measured by the net radiation (Rn), to
evapotranspiration (ET) and soil and air heating, represented by soil heat flux (G) and
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sensible heat flux (H), respectively [1]. Among these SEBFs components, ET is widely
studied due to its importance in climatic, hydrological, and agronomic strategy models [4].

In recent years, SEBFs and ET have been estimated from orbital satellite data, which
require little meteorological data and generate reliable estimates at local and regional
scales [4,5]. Among the most used models, the surface energy balance algorithm for land
(SEBAL) has been successfully applied in different climatic regions and land covers [6].
SEBAL integrates orbital and meteorological data to compute SEBFs and ET [7].

Surface temperature (Ts) and surface albedo (asup) play an important role in estimating
SEBFs and ET by SEBAL [8,9]. Rn is estimated by the radiation balance equation using
surface meteorological data and obtained by remote sensors, such as surface reflectance and
thermal radiance that makes it possible to estimate asup and recover Ts, respectively [10].
H is calculated from an empirical linear relationship between the temperature gradient
(dT) and Ts, considering two extreme conditions of water availability on the surface [8,11],
while G is estimated by an empirical equation based on Rn, the normalized difference
vegetation index (NDVI), asup, and Ts [12,13]. Finally, the latent heat flux (LE) is estimated
as a residue of the energy balance equation [8].

In the current formulation of SEBAL, SEBFs and ET are estimated by the conventional
surface albedo (acon) equation estimated by the planetary albedo (aTOA) and corrected
by atmospheric albedo, transmittance, and the brightness temperature (Tb), without at-
mospheric and surface emissivity correction [8–11]. Some variations of SEBAL, such as
mapping evapotranspiration with internalized calibration (METRIC), include the atmo-
spheric correction of the surface reflectance of the thermal band [11,14–16]. However, few
studies have evaluated the combined effects of asup and Ts recovery on SEBAL and ET
estimates by SEBAL. asup is a key parameter in SEBF models, and its estimation under dif-
ferent atmospheric and surface conditions represents a major challenge [17,18]. Generally,
the accuracy of asup models varies between 10% and 28%, which suggests the need for their
parameterization [18]. The asup models based on surface reflectance were parameterized
for TM, ETM, and MODIS sensors [19,20], but not for the OLI Landsat 8 sensor. This limits
the estimation of asup at a high spatial resolution after the discontinuation of the Landsat
5 satellite in 2011. The asup models developed by [21] have been used in several studies on
the dynamics of mass and energy of water bodies [22], the effect of biomass burning on
meteorological parameters [23,24], urban climate and thermal comfort [25], and SEBFs and
ET by SEBAL [6,26].

The recovery of Ts by thermal radiance, corrected for the effects of the atmosphere and
the surface emissivity, has been performed with errors smaller than 1 K [16,27]. Several
algorithms have been developed to correct the attenuating effects of the atmosphere in the
thermal band of TM (Thematic Mapper), ETM (Enhanced Thematic Mapper), and TIRS
(Thermal Infrared Sensor) sensors [28–30]. These algorithms are based on the radioactive
transfer equation, which relates the upward and downward flows of thermal radiance,
atmosphere transmissivity, and surface emissivity to the thermal band [31–33].

A series of models for recovery of Ts were developed for the TM, ETM, and TIRS
sensors, with emphasis on the single-channel (SC) and split-window (SW) algorithms [34],
the radiative transfer equation (RTE) [35], and the model developed by [29]. The SC model
stands out for allowing the thermal band correction using atmospheric functions obtained
from moderate resolution atmospheric transmission (MODTRAN) or through approxima-
tions resulting from a second order polynomial relationship with the atmospheric water
vapor content [34,35]. The SW model starts from the premise that the attenuation of thermal
radiance by atmospheric radiation is proportional to the difference in thermal radiance
measured simultaneously at two different wavelengths [34]. Both the RTE models and
the one developed by Barsi remove the effect of the atmosphere from thermal radiance
by the radiative transfer equation, but the RTE model recovers Ts through Plank’s inverse
equation [35] and Barsi’s model by the equation calibrated for the sensor TIRS [29,36].

These models require some parameters obtained with the aid of radiosondes, which
makes their wide application difficult [32]. An alternative to obtain atmospheric input
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parameters for Ts recovery models was developed by NASA, using the atmospheric cor-
rection parameter calculator (ATMCORR). ATMCORR stands out for its simple operation,
considering that its platform is online and requires only some meteorological data and
for its robustness, and it can be applied for TM, ETM sensors, and TIRS in different lati-
tudes over long periods [29,36]. This online platform integrates radioactive transfer codes
(MODTRAN v4.0) with data from the National Centers for Environmental Prediction
(NCEP) [29,36].

Given the importance of estimating SEBFs and ET from the asup, which is in turn
estimated by the surface reflectance and the Ts without atmosphere and the emissivity
corrections, the objective of this study is to evaluate the performance of the asup and Ts
recovery models for the estimation of SEBFs and ET by SEBAL in the Cerrado-Pantanal
transition region of the state of Mato Grosso, Brazil. This transition zone consists of upland
cerrado vegetation that grades into an extensive wetland complex, with natural woodlands,
forests, grasslands, and human land covers, such as agriculture, pasture, and urban areas,
which affect Ts, albedo, and other local climatic variables that are important for SEBFs
and ET [1].

2. Materials and Methods
2.1. Study Site

The study area is in the transition region Cerrado-Pantanal, covering path 226 and row
71 of the satellite Landsat 8 in southern Mato Grosso, Brazil (Figure 1). Data from two flux
towers were used, one in the Cerrado and the other in the Pantanal. The Cerrado tower is
located in Fazenda Miranda (FMI) (15◦43′55′′ S; 56◦4′19′′ W), approximately 15 km south
of the city of Cuiabá. The vegetation at the FMI is dominated by native and exotic grasses
and by the semi-deciduous trees Curatella americana L. and Diospyros hispida A.DC [37],
and the soil is classified as Plinthosols [38]. The Pantanal flux tower is in the Baia das
Pedras (BPE) of the Estância Ecológica SESC-Pantanal (16◦29′52′′ S; 56◦24′44′′ W), in the
municipality of Poconé, approximately 160 km from Cuiabá. The predominant vegetation
in BPE is composed of the tree Combretum lanceolatum Pohl [39], and the soil is classified as
Gleysols [38]. The BPE topography is flat, with flooding occurring from January to June.
The Köppen–Geiger climate classification of the entire study region is Aw [40]. Annual
rainfall is 1372 mm, with a dry season from May to September and a wet season from
October to April, and average annual temperature of 26.9 ◦C [41].

Four types of land uses (agriculture, urban areas, forest, and water bodies) were
sampled in the study area to develop a surface albedo model using surface reflectance from
the OLI Landsat 8 (Figure 1). The types of coverage were strategically selected because
they represent an area of 9 pure pixels (3 × 3 pixel matrix) to minimize the influence of
neighboring types of coverage. The agricultural areas are located northeast of the study
area (yellow circles) and comprise a plateau area, with a predominance of soybean and
corn planting. The urban areas are inserted in the urban perimeters of the municipalities of
Cuiabá and Várzea Grande in densely urbanized regions (red circles). Forests comprise
large forest fragments and permanent preservation areas close to rivers (green circles). The
areas of water bodies are inserted in the extensive system of Chacororé and Sinhá Mariana
bays (blue circles), with areas of up to 64.92 km2 and 11.25 km2, respectively.

2.2. Micrometeorological Data

The flux towers continuously collected data of incident (Rgi) and reflected (Rgr) solar
radiation, net radiation (Rn), soil heat flux (G), air temperature (Ta), relative humidity (RH),
and wind speed (u) from 2013 to 2016. The sensors and their installed heights and the used
data acquisition system in the towers are shown in Table 1.
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The SEBFs and ET at the two flux towers were calculated using the Bowen ratio en-
ergy balance (BREB) method using the sensor listed in Table 1. This method has been 
widely applied and has the advantage of requiring few micrometeorological parameters 

Figure 1. Location of the study area (top-left), location of the Cerrado-Pantanal transition region
of Mato Grosso, Brazil (top-right), and the sample points (circles) and the flux towers in Fazenda
Miranda (FMI) and Baía das Pedras (BPE) (bottom).

Table 1. Description of the equipment used to measure incident solar radiation (Rgi), reflected solar radiation (Rgi), net
radiation (Rn), soil heat flux (G), air temperature (Ta), relative humidity (RH), wind speed (u), datalogger, and their
respective heights in the Fazenda Miranda (FMI) and Baía das Pedras (BPE) flux towers.

Variable Equipment Description
Installation Height from the Ground (m)

FMI BPE

Rgi/Rgr LI200X, LI-COR, Lincoln, NE, USA 5 20
Rn NRLITE, Kipp & Zonen, Delft, The Netherlands 5 20
G HFP01, Hukseflux BV, Delft, The Netherlands −0.05 −0.05

Ta/RH HMP-45AC, Vaisala Inc., Woburn, USA 5–18 22–31
u 014A, Met One, Grants Pass, USA 5 22

Datalogger CR1000, Campbell Scientific, Inc., Logan, USA

The SEBFs and ET at the two flux towers were calculated using the Bowen ratio energy
balance (BREB) method using the sensor listed in Table 1. This method has been widely
applied and has the advantage of requiring few micrometeorological parameters while
having a firm physical basis [1,39]. In addition, comparisons between estimates obtained
by the BREB and the more direct eddy covariance method provide similar data, which
makes the MRB an excellent method for environmental studies in remote and logistically
challenging areas, such as the Cerrado-Pantanal ecotone [1,39]. The calculation of the
SEBFs and ET is described in detail in [1].
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2.3. Remote Sensing Data

The study was carried out with data and images obtained between 2013 and 2016
using 27 images of surface reflectance and brightness temperature from the Operational
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) sensors, respectively, from
Landsat 8 in path 226 and row 71, and 10 images of surface reflectance of the MOD09A1
product from the MODIS sensor on the TERRA satellite were downloaded from the EROS
Science Processing Architecture (ESPA) [espa.cr.usgs.gov accessed on 25 April 2020] of the
US Geological Survey (USGS).

The OLI sensor images are composed of 9 bands, with spatial resolutions of 30 m for
bands 1–7 and 9, and 15 m for band 8 (panchromatic). The images from the TIRS sensor
are composed of bands 10 and 11, with spatial resolution of 90 m. The temporal resolution
of the Landsat 8 satellite is 16 days and the radiometric resolution is 16 bits [42]. The
images of the surface reflectance without the effect of the atmosphere were processed by the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) hosted on the ESPA
platform. LEDAPS is a complex algorithm that integrates internal sensor data (metadata)
with external data (NCEP, NOAA, and NASA) to (i) transform the digital number to
top of atmosphere (TOA) reflectance; (ii) detect pixels with clouds from TOA reflectance
and; and (iii) calculate the corrected surface reflectance from the TOA reflectance [43].
The atmospheric correction of the surface reflectance by the LEDAPS was performed
with the radioactive transfer code 6 s (Second Simulation of a Satellite Signal in the Solar
Spectrum) [44], integrating (i) meteorological data from the NCEP; (ii) digital elevation
models of the GCM (Global Climate Model); (iii) internal aerosol optical thickness (AOT);
and (iv) ozone data collected by NASA [42,43,45]. LEDAPS also uses the digital elevation
model to correct the parallax error due to the local topographic relief, as well as systematic
geometric and precision corrections using surface control chips [42,43,45].

The MOD09A1 surface reflectance product of the MODIS sensor is composed of
7 bands of surface reflectance images with spatial resolution of 500 m, temporal resolution
of 8 days, and radiometric resolution of 16 bits. The composition of the images allows
the observation of the earth’s surface every 8 days due to high spatial coverage, low
view angle, the absence or shadow of cloud, and the presence of aerosols [46]. The
MOD09A1 product is equivalent to measurements at ground level with no scattering or
atmospheric absorption. The product algorithm MOD09A1 corrects the effects of dispersion
and absorption of gases and aerosols (atmospheric correction), as well as the adjacency
effects caused by the variation of land cover, bidirectional reflectance distribution function
(BRDF), and the effects of atmosphere coupling and cloud contamination. The atmospheric
correction of this product was also performed by the 6 s algorithm, in which data of
ozone concentration, water vapor, and aerosols were obtained from other MODIS products
and auxiliary products were obtained from NASA’s Data Assimilation Office [46]. The
reflectance images of the MOD09A1 product surface used in this study were obtained on
the same days, or at the most ±2 days than those obtained by Landsat 8, provided there
was no precipitation.

2.4. Surface Albedo α Models
2.4.1. αsup Using Landsat 8 (OLI)

A surface albedo (αsup) model for the OLI Landsat 8 was developed in this study
using a multiple linear regression of surface reflectance bands (Figure 2). The αsup model
was based on combining MOD09A1 surface albedo (αMODIS) with OLI Landsat 8 surface
reflectance over different land surface cover types. The αMODIS was used as the dependent
variable and surface reflectance data from the OLI Landsat 8 were used as independent
variables in the multiple linear regression equation.

espa.cr.usgs.gov
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Figure 2. Chart flow of surface albedo model development steps from surface reflectance of the
Landsat 8 OLI.

The αMODIS in this study was estimated following the approach of Liang et al. [17], as
explained in Equation (1):

αMODIS = 0.160ρ1 + 0.290ρ2 + 0.243ρ3 + 0.116ρ4 + 0.112ρ5 + 0.081ρ7 − 0.0015 (1)

where ρ1 to ρ7 are the MOD09A1 surface reflectance for bands 1 to 7, respectively.
The surface reflectance images from the OLI Landsat 8 were resampled from 30 to

500 m, to have images with a spatial resolution that is consistent with those of αMODIS. The
αsup model was developed using images for Julian days 177 and 193 of the year 2013; 185,
233, and 249 of the year 2014; 217 of the year 2015; and 113, 121, and 185 of the year 2016,
which provided a total of 1100 pixels obtained over agriculture, urban, forests, and water
bodies areas, as shown in Figure 1. The model was validated with the image obtained on
Julian day 257 of the year 2016.

2.4.2. A Conventional αcon Model

Surface albedo (αcon) was also estimated using a conventional model (Equation (2))
that was used in a number of studies (e.g., [47,48]). This model has been widely applied
in environmental studies and in the estimation of SEBFs and ET algorithms, such as SE-
BAL [14]. It consists of a simplified radiative transfer equation that has not been evaluated
in complex transition regions, such as the Cerrado-Pantanal ecotone. The surface albedo
acon based on this model can be estimated as:

acon =
(αtoa − αatm)

τ2
oc

(2)

where αtoa is the planetary albedo; αatm is the albedo of the atmosphere, which is generally
assumed to be about [48]; and τoc is the atmospheric transmittance to global solar radiation,
calculated by Equation (3) [15]:

τoc = 0.35 + 0.627 exp

[
−0.00146Po

Kt cos Z
− 0.75

(
W

cos Z

)0.4
]

(3)

where Po is the local atmospheric pressure (kPa); Kt is the atmospheric turbidity coefficient
(Kt = 1 if clear sky and Kt = 0.5 if cloudy sky; we used Kt =1); and W is the precipitable
water (in mm; see Equation (4)), obtained by the vapor pressure of water (ea; in kPa):

W = 0.14 eaPo + 2.1 (4)

The albedo of the atmosphere, αtoa, was calculated following Equation (5) as a linear
combination of the top of atmosphere (TOA) reflectance of the OLI Landsat 8 [48], as:

αtoa = 0.300ρ2 + 0.277 ρ3 + 0.233ρ4 + 0.143ρ5 + 0.036ρ6 + 0.012ρ7 (5)

where ρ2 to ρ7 are top of atmosphere reflectance of bands 2 to 7 of the OLI Landsat 8.



Sensors 2021, 21, 7196 7 of 24

2.5. Surface Temperature (Ts) Correction Models

The surface temperature (Ts) was estimated using four currently available models
that include: (i) the atmospheric correction parameter calculator (ATMCORR); (ii) the
single-channel (SC); (iii) the radioactive transfer equation (RTE); and (iv) the multichannel
split-window (SW). These models aim to recover the radiance attenuated by atmospheric
constituents in the spectral window between 10 and 13 µm.

2.5.1. TsBarsi Correction Based on ATMCORR

The ATMCORR (atmcorr.gsfc.nasa.gov, accessed on 10 August 2021) is an initiative by
NASA to provide a comprehensive atmospheric correction tool for surface temperature [29,36].
ATMCORR integrates data from the National Center for Environmental Prediction (NCEP)
that models the global atmospheric profile for certain dates using the well-known MOD-
TRAN v4 code in a set of integration algorithms [29]. The atmospheric profiles generated
by the NCEP integrate data from satellites and surface data to model the global atmosphere
at 28 altitudes in a spatial grid of 1◦ × 1◦. The profile data is generated every six hours with
the possibility of resampling the grids. The interpolated data from the NCEP is inserted in
MODTRAN v4 and the atmospheric parameters are extracted from the MODTRAN output
files, adjusting the data for the moment of the satellite’s passage. Due to the robust integra-
tion of ATMCORR, this model has been widely applied in studies that demand corrected
temperature [49,50]. Thus, the surface temperature obtained using the ATMCORR model
as described in Barsi et al. [29], referred to in the present study as TsBarsi , was used as a
reference to evaluate the Ts as obtained by the other three temperature correction models.
The TsBarsi (K) can be calculated using Equation (6) as:

TsBarsi =
K2

ln
(

K1
Lc

+ 1
) (6)

where K1 = 607.76 W m−2 sr−1 µm−1 and K2 = 1260.76 W m−2 sr−1 µm−1 are calibration
constants of the thermal band provided by the TIRS Landsat 8 sensor; and Lc is the radiance
of a blackbody target of kinetic temperature (W m−2 sr−1 µm−1; see Equation (7)):

Lc =
LTOA − Lu − (1− ε)Ld

τε
(7)

where LTOA is the space-reaching or TOA radiance measured by the TIRS (W m−2 sr−1 µm−1);
ε is the surface emissivity over TIRS band calculated by Equation (8) [51] and the pa-
rameters obtained by ATMCORR; Lu is the upwelling or atmospheric path radiance
(W m−2 sr−1 µm−1); Ld is the downwelling or sky radiance (W m−2 sr−1 µm−1); and
τ is the thermal atmospheric transmission.

ε = εs (1− FVC) + εvFVC (8)

where εs and εv denote bare soil and vegetation emissivity, respectively, over the TIR band;
and FVC is the fraction of vegetation cover (Equation (9)):

FVC =

(
NDVI − NDVImin

NDVImax − NDVImin

)2
(9)

where NDVI is the normalized difference vegetation index; and NDVImin and NDVImax
are the minimum and maximum NDVI, respectively, extracted from the NDVI histogram.

2.5.2. TsSC Correction Based on the Single-Channel (SC) Model

The single-channel (SC) model consists of the correction of surface temperature (TsSC ;
see Equation (10)) based on correction functions γ, ψ, and δ that can be estimated by the

atmcorr.gsfc.nasa.gov
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parameters Lu, Ld, and τ [34]. The SC model can be applied to any of the bands in the
Landsat 8 TIRS. This study used band 10 to correct Ts [referred to as TsSC ]:

TsSC = γ

[
1
ε
(ψ1Ltoa + ψ2) + ψ3

]
+ δ (10)

where ψ1, ψ2, and ψ3 are atmospheric correction functions, calculated by Equations (11)–(13)
from parameters obtained from ATMCORR; and γ and δ are functions of Ltoa, brightness
temperature (Tb; K), and bγ, which is equal to K1 [51]:

ψ1 =
1
τ

(11)

ψ2 = −Ld (12)

ψ3 = Ld (13)

γ ≈ Tb
2

bγLtoa
(14)

δ ≈ Tb− Tb2

bγ
(15)

2.5.3. TsRTE Correction Based on the RTE Model

The corrected Ts using the radiative transfer equation is referred to in this article as
TsRTE (K), and was calculated following Equation (16) based on the Ltoa and the parameters
obtained by ATMCORR [51]:

TsRTE =
C2

λ·ln
(

C1
λ5·Lc

+ 1
) =

C2

λ·ln
{

C1

λ5·
[ Ltoa−Lu−τ(1−3)Ld

τε

] + 1

} (16)

where C1 = 1.19104 × 108 W µm4 m−2 sr−1 and C2 = 14387.7 µm K are constant; and λ is
the effective wavelength of the band.

2.5.4. TsSW Correction Based on the Split-Window (SW) Model

The split-window surface temperature correction model is one of the simplest tech-
niques, in which the radiation attenuation by atmospheric absorption is proportional to
the difference in radiance measured simultaneously by the two thermal bands [28,34]. The
surface temperature (TsSW ; K) based on the SW model can be calculated as:

TsSW = Tb10 + c1 (Tb10 − Tb11) + c2(Tb10 − Tb11)
2 + c0 + (c3 + c4 w)(1− ε) + (c5 + c6w)∆ε (17)

where Tb10 and Tb11 are the brightness temperature of bands 10 and 11 (K) of TIRS;
cx is constant with the following values c0 = −0.268, c1 = 1.378, c2 = 0.183, c3 = 54.30,
c4 = −2.238, c5 = −129.20, and c6 = 16.40 [34]; ∆ε is the difference in emissivity of the
thermal bands 10 and 11 of TIRS; and w is the water vapor concentration (g cm−2) calculated
by Equation (18) [52].

2.6. Estimation of SEBFs and ET Using SEBAL

The SEBAL algorithm was processed according to the flow chart shown in Figure 3. It
was proposed to estimate the daily evapotranspiration (ET) from the instantaneous latent
heat flux (LE; W m−2) obtained as a residue of the energy balance equation (Equation (18)):

LE = Rn− G− H (18)
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where Rn is the net radiation (W m−2); G is the soil heat flux (W m−2); and H is the sensible
heat flux (W m−2).
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The Rn (Equation (19)) represents the balance of short-wave and long-wave radiation
on the surface:

Rn = Rs↓ (1− α ) + RL↓ − RL↑ − (1− ε)RL↓ (19)

where Rs↓ is the measured incident solar radiation (W m−2); α is the surface albedo; RL↓ is
the long-wave radiation emitted by the atmosphere in the direction of the surface (W m−2);
RL↑ is the long-wave radiation emitted by the surface to the atmosphere (W m−2); and ε is
the surface emissivity. The RL↑ and RL↓ were calculated by Equations (20) and (21):

RL↑ = εsup.σ.T4
s (20)

RL↓ = εatm.σ.T4
a (21)

where εsup and εatm are the surface and atmosphere emissivity; σ are the Stefan–Boltzmann
constant (σ = 5.67.10−8 W m−2 K−4); Ts is the surface temperature (K); and Ta is the air
temperature (K). The RL↑ was calculated using the surface temperature calculated by the
models described in item 2.6.

The G was calculated by Equation (22) [12]:

G = Rn
[

Ts
(
0.0038 + 0.0074αsup

) (
1− 0.98NDVI4

)]
(22)

where Ts is the surface temperature (K) calculated by the different models described in
Section 2.6; αsup is surface albedo calculated by the models described in Sections 2.4 and 2.5;
NDVI is the normalized difference vegetation index; and Rn is the net radiation calculated
by the different Ts models described in Section 2.6 and αsup described in Sections 2.4 and 2.5.

H is the central variable in the SEBAL algorithm and estimated by the classic aerody-
namic (Equation (23)) [8]:

H = ρcp
(dT)
rah

(23)

where ρ is the specific air mass (kg m−3); cp is the specific heat of air at a constant pressure
(1004 J kg−1 K−1); dT is the temperature difference near the surface (K); and rah is the
aerodynamic resistance to the transport of sensible heat flux (s m−1) between two heights
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(z1 = 0.1 m and z2 = 2.0 m). The rah is obtained as a function of the friction speed after an
iterative correction process based on atmospheric stability functions [8].

The dT was calculated from a linear relationship with the Ts (Equation (24)), and the
values of the coefficients “a” and “b” were obtained using information from two “anchor”
pixels [8]:

dt = a + bTs (24)

In SEBAL, the “anchor” pixels represent conditions of hydrological extremes, in which
“cold” represents surfaces with H close to zero and “hot” surfaces with LE close to zero.
In general, the cold pixel can be represented by a body of water or a well-irrigated crop,
and the hot pixel can be represented by a severe surface water restriction, such as exposed
soils [8].

In non-agricultural environments, as those of concern in this study, the conditions
for choosing the cold pixel may not be properly satisfied, restricting the choice of the cold
pixel in areas of native forest. In this study, an approach similar to that used in METRIC
was used, using the values of Rn and G of the cold pixel of a known surface and the actual
evapotranspiration (ETr) from an estimate reference evapotranspiration (ETo), with local
weather station data and the cultivation coefficient (Kc) of the cold pixel surface [15]. Then,
the ETr was converted to LE to obtain the H of cold pixel. Thus, it was possible to find the
coefficients of Equation (24) and solve the dT by the system formed by Equations (23) and
(24) in an iterative process.

After obtaining the LE of each pixel by Equation (18), the daily evapotranspiration (ET;
mm d−1) of each pixel was calculated by Equation (25), from the instantaneous evaporative
fraction (FEi; see Equation (26)) and daily Rn (Rn24h; W m−2) of each pixel and the latent
heat of vaporization of water (λ; kg m−3) [12]:

ET =
(86400× FEi × Rn24h)

λ
(25)

FEi =

(
LE

Rn− G

)
(26)

2.7. Evaluation Approach and Performance Indicators

This study followed four steps to evaluate the effects of surface albedo and tempera-
ture models on SEBFs and ET that include:

1. Developing a surface albedo model by combining MODIS and Landsat 8 dataset. A
subset of the data was used for model development and the remaining was used to
evaluate the model performance over different land cover types. In this analysis, the
MODIS surface albedo by Liang et al. [17] was assumed to be as a reference against
which to compare the developed and existing models.

2. Comparing the performance of the of the developed surface albedo model with the
currently used conventional model.

3. Retrieving and evaluating land surface temperature based on four different methods.
In this analysis, the model by Barsi, et al. [29] was assumed to be the reference against
which to compare other retrieval methods. The comparison between the different
retrieval methods was conducted over the sample sites.

4. Evaluating the combined effects of the surface albedo models and the brightness
temperature and temperature retrieval methods on SEBFs and ET. Since both vari-
ables (i.e., α and Ts) are used in SEBAL model to estimate SEBFs and ET, a set of
combinations of the two variables were developed as shown in Table 2 to identify
these effects.
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Table 2. Summary of model combinations used to evaluate the effects of the surface albedo estimated by the conventional
model (acon) and the model developed in this study (asup) and the surface brightness temperature (Tb), and the surface
temperature retrieved by the Barsi model (Tsbarsi ), the single-channel model (TsSC ), the radiative transfer equation model
(TsRTE ), and the split-window model (TsSW ) on surface energy balance and evapotranspiration.

Combinations of α and TsModels Used to Evaluate SEBFs and ET
Evaluation Sites

Surface Albedo (α) Source Surface Temperature (Ts) Retrieval Source

acon

Tb USGS, [53] FMI
(Mixed woodland–grassland)

and
BPE

(Seasonal flooded large shrubs)

Tsbarsi Barsi et al. [29]
Silva et al. [48] TsSC Jimenez-Munoz et al. [34]

TsRTE Jimenez-Munoz et al. [51]
TsSW Jimenez-Munoz et al. [34]

asup

Tb USGS, [53] FMI
(Mixed woodland–grassland)

and
BPE

(Seasonal flooded large shrubs)

Tsbarsi Barsi et al. [29]
This study TsSC Jimenez-Munoz et al. [34]

TsRTE Jimenez-Munoz et al. [51]
TsSW Jimenez-Munoz et al. [34]

The averages of all variables were calculated with a confidence interval (CI) of ±95%
using bootstrapping of 1000 iterations of random resamples with substitution [54]. The
accuracy of surface albedo models analyzed in this study as well as the estimated SEBFs and
ET were assessed using the Willmott coefficient (d; see Equation (27)), the root mean square
error (RMSE; see Equation (28)), the mean absolute error (MAE; see Equation (29)), the
mean absolute percentage error (MAPE; see Equation (30)), and the Pearson’s correlation
coefficient (r):

d =

[
∑n

i=1(Ei −Oi)
2

∑n
i=1
(∣∣Ei −O

∣∣+ ∣∣Oi −O
∣∣)2

]
(27)

RMSE =

(
∑N

i (Ei −Oi)
2

n

) 1
2

(28)

MAE =
1
n

n

∑
i=1
|Ei −Oi| (29)

MAPE =
100
n

n

∑
i=1

∣∣∣∣Ei −Oi
Oi

∣∣∣∣ (30)

where Ei are the estimated values; Oi are the observed values; O is the average of the
observed values; and n are sample numbers. In the case of surface albedo models, the
observed values were based on MODIS surface albedo (αMODIS), while in the case of
SEBFs and ET, the observed values were obtained from the ground measurements at the
flux sites FMI and BPD. The Willmott coefficient relates the model’s performance based
on the distance between estimated and observed values, with values ranging from zero
(without agreement) to 1 (perfect agreement). The RMSE indicates how much the model
fails to estimate the variability of the measurements around the mean value, as well as the
variation of the estimated ones around the observed values [55]. The MAE indicates the
absolute mean distance (deviation) and the MAPE indicates the average percentage of the
difference between the estimated and observed values. The lowest value of RMSE, MAE,
and MAPE is 0, which means that there is complete agreement between the estimated and
observed values.

3. Results
3.1. Surface Albedo Model Based on the OLI Landsat 8

The surface albedo (asup) model developed in this analysis based on the surface
reflectance of the OLI Landsat 8 is shown in Equation (32):

asup = 0.4739ρ2 − 0.4372ρ3 + 0.1652ρ4 + 0.2831ρ5 + 0.1072ρ6 + 0.1029ρ7 + 0.0366 (31)
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where ρ2 to ρ7 represent the surface reflectance of the OLI Landsat 8 for bands 1 to
7, respectively.

A comparison of the surface albedo between aMODIS and asup as well as between
aMODIS and acon indicated that asup performed better than acon, as shown in Table 3. The
summary of the comparison shown in Table 2 was based on surface albedo values from
all selected sites. The average of asup was not significantly different from that of aMODIS,
while the average of acon was 49% higher than the that of asup (Table 3). The RMSE of asup
was 5.6-fold lower and the Willmott and correlation coefficients were approximately 2-fold
higher for αsup than acon.

Table 3. Average (±95% confidence interval) of the surface albedo estimated by MODIS (aMODIS)
used as reference values, and the average (±95% confidence interval), mean absolute error (MAE),
mean absolute percent error (MAPE, %), root mean square error (RMSE), Willmott coefficient (d),
and Pearson correlation coefficient (r) of the surface albedo estimated by the model developed in
this study (asup) and the surface albedo estimated by the conventional model (acon). Values with (***)
indicate p-value < 0.001. All units are dimensionless.

Models Average ± IC MAE MAPE RMSE d r

aMODIS * 0.159 ± 0.005
asup 0.155 ± 0.004 0.011 7.12 0.014 0.89 0.79 ***
acon 0.232 ± 0.009 0.072 46.12 0.079 0.40 0.64 ***

* The aMODIS was used as a reference to evaluate other surface albedo methods.

Regarding the performance of asup over the different land use types, it appears that
asup had better performance than acon over the different sampled land uses. The averages
asup and aMODIS were similar in pasture and urban areas, and they were close in the forest
and water bodies, while the means of acon were from 36% to 64% higher than aMODIS
(Table 4).

Table 4. Average (±95% confidence interval) of the surface albedo estimated by MODIS (aMODIS),
used as reference values, surface albedo estimated by the model developed in this study (asup) and
surface albedo estimated by the conventional model (acon) in agriculture, urban area, forest, and
water bodies on the study area. All units are dimensionless.

Models
Average ± IC Surface Albedo Values over Different Land Use Types

Agriculture Urban Area Forest Water Bodies

aMODIS 0.179 ± 0.004 0.168 ± 0.004 0.125 ± 0.001 0.08 ± 0.003
asup 0.173 ± 0.003 0.162 ± 0.006 0.130 ± 0.002 0.07 ± 0.002
acon 0.244 ± 0.007 0.275 ± 0.030 0.178 ± 0.003 0.18 ± 0.004

3.2. Ts Retreival Models

Based on a comparison with Tsbarsi , the results indicated that TsSC and TsRTE had much
lower discrepancies based on the obtained MAE, MAPE, and RMSE, and higher agreement
based on the Willmott coefficient (d) and Pearson correlation (r), compared to TsSW and Tb
(Figure 4 and Table 5). The averages of Tsbarsi , TsSC , TsRTE , and TsSW were not significantly
different; however, Tb was lower than Tsbarsi by about 2%. The largest correction error was
observed when comparing Tb with Tsbarsi , while TsRTE had the least errors compared to Tsbarsi .
The surface temperatures (Ts) corrected by the different models had MAE and RMSE up
to 86% lower than the Tb.
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Figure 4. Relation of (A) the surface temperature corrected by the Barsi model (Tsbarsi ; K) and brightness temperature (Tb);
(B) the surface temperature corrected by the single-channel model (TsSC ; K); (C) the surface temperature corrected by the
radiative transfer equation model (TsRTE ; K); and (D) the surface temperature corrected by the split-window model (TsSW ; K).

Table 5. Average (±95% confidence interval) of the surface temperature corrected by the Barsi model
(Tsbarsi ; K), used as reference values, and average (±95% confidence interval), mean absolute error
(MAE), mean absolute percent error (MAPE), root mean square error (RMSE), Willmott coefficient
(d) and Pearson correlation coefficient (r) of the surface temperature corrected by the single-channel
model (TsSC ; K), the radiative transfer equation model (TsRTE ; K), and the split-window model (TsSW ;
K). Values with (***) indicate p-value < 0.001.

Models
Average ± IC MAE MAPE RMSE d r

K K % K

Tsbarsi * 306.3 ± 1.45
Tb 300.5 ± 1.1 5.76 1.87 6.27 0.63 0.83 ***

TsSC 307.5 ± 1.5 1.06 0.34 1.28 0.98 0.98 ***
TsRTE 307.1 ± 1.5 0.78 0.25 0.95 0.98 0.99 ***
TsSW 307.2 ± 1.75 1.89 0.61 2.78 0.91 0.86 ***

* The Tsbarsi was used as a reference to evaluate other surface temperature retrieval methods.

3.3. SEBFs and ET Estimates Based on α and Ts Combinations

A summary of the comparison between estimated and measured Rn based on all
model combinations (Table 2 over both flux towers, i.e., FMI and PBE) is shown in Table 6.
A comparison of Rn estimates with measurements over each individual tower is shown
in the Supplementary Material. The averages of estimated Rn based on the different α
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and Ts combinations (Table 2) of asup with all Ts as well as the combination of acon with
Tb did not show a significant difference from the values measured at the flux towers, but
the average of estimated Rn based on the combination of acon and all Ts were 15% lower
than the measured Rn (Table 6). The estimated Rn with the combination of asup and Tb had
the lowest errors and the highest Willmott’s d and r, while the highest errors and lowest
coefficient d and r were observed with the combination of acon and TsSW (Table 6).

Table 6. Average (±95% confidence interval) of the measured net radiation (Rn; W m−2) in the flux
towers, and the average (±95% confidence interval), mean absolute error (MAE), mean absolute
percent error (MAPE), root mean square error (RMSE), Willmott coefficient (d), and Pearson correla-
tion coefficient (r) of the estimated net radiation using the conventional (acon) and parameterized
(asup) surface albedo models combined with brightness temperature (Tb) and the surface temperature
corrected by the Barsi model (Tsbarsi ), the single-channel model (TsSC ), the radiative transfer equation
model (TsRTE ), and the split-window model (TsSW ). Values with (***) indicate p-value < 0.001.

Average ± IC MAE MAPE RMSE d r
W m−2 W m−2 % W m−2

Measured Rn 510.1 ± 30.0

Model
Combination

acon

Tb 475.6 ± 22.0 33.41 6.24 43.64 0.92 0.94 ***
Tsbarsi 428.3 ± 22.0 66.00 12.66 77.98 0.79 0.88 ***
TsSC 432.1 ± 23.0 72.59 13.94 85.60 0.76 0.85 ***
TsRTE 434.2 ± 23.0 70.83 13.60 83.54 0.77 0.86 ***
TsSW 432.4 ± 23.0 72.63 13.90 86.14 0.75 0.83 ***

asup

Tb 521.4 ± 23.0 24.43 5.30 29.79 0.96 0.97 ***
Tsbarsi 484.7 ± 23.0 30.04 5.53 40.19 0.93 0.94 ***
TsSC 477.6 ± 23.0 35.12 6.44 46.76 0.90 0.93 ***
TsRTE 478.9 ± 22.0 33.65 6.16 44.94 0.91 0.93 ***
TsSW 479.0 ± 22.0 36.965 6.82 49.05 0.89 0.90 ***

Unlike Rn, the averages of estimated G based on asup with all Ts retrieval methods,
including Tb, did not differ between each other, but were between 35% and 54% higher
than the measured G (Table 7). The values of d and r changed significantly, but the errors
in estimated G with Tb were 18% less than with Ts.

The average of estimated H based on all combinations of asup and Ts as well as
the combination of acon with Tb did not show a significant difference from those of the
measured values, while the averages of estimated H based on acon and the different Ts
were between 26–35% lower than those of the measured values (Table 8). The MAE and
RMSE in estimating H with asup were between 7–47% less than those based on acon. The
estimated H with the combination of asup and Tsbarsi had the smallest MAE, MAPE, and
RMSE, while the largest MAE, MAPE, and RMSE, and smallest d and r were obtained with
the combination of acon and TsSW .

Opposed to what was observed with the Rn, G and H, there was no difference in
the averages of estimated LE and ET based on the different combinations of asup and
Ts (Tables 9 and 10). It should be noted that the MAE, MAPE, and RMSE in LE and ET
estimates with asup were on average 28% and 20% lower, respectively, and the coefficients
were slightly higher than those estimated with acon, with emphasis on the combination of
asup and Tsbarsi .
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Table 7. Average (±95% confidence interval) of the measured soil heat flux (G; W m−2) in the flux
towers, and the average (±95% confidence interval), mean absolute error (MAE), mean absolute per-
cent error (MAPE), root mean square error (RMSE), Willmott coefficient (d), and Pearson correlation
coefficient (r) of the estimated soil heat flux using the conventional (acon) and parameterized (asup)
surface albedo models combined with brightness temperature (Tb) and surface temperature corrected
by the Barsi model (Tsbarsi ), the single-channel model (TsSC ), the radiative transfer equation model
(TsRTE ), and the split-window model (TsSW ). Values with (**) indicate p-value < 0.01.

Average ± IC MAE MAPE RMSE d

W m−2 W m−2 % W m−2

Measured G 47.2 ± 6.2

Model
Combination

acon

Tb 63.8 ± 4.4 18.22 56.76 21.54 0.59 0.57 **
Tsbarsi 71.3 ± 5.3 24.18 73.35 27.89 0.54 0.58 **
TsSC 72.1 ± 5.2 25.87 75.85 28.86 0.53 0.57 **
TsRTE 71.7 ± 5.0 25.60 75.26 28.63 0.53 0.57 **
TsSW 72.1 ± 5.1 25.46 74.85 28.60 0.53 0.57 **

asup

Tb 63.6 ± 4.5 18.26 56.65 21.47 0.53 0.55 **
Tsbarsi 72.0 ± 5.2 24.79 74.64 28.41 0.54 0.57 **
TsSC 72.8 ± 5.1 25.87 77.58 29.54 0.53 0.55 **
TsRTE 73.0 ± 5.5 25.60 76.88 29.25 0.53 0.55 **
TsSW 72.6 ± 5.3 25.46 76.43 29.29 0.53 0.58 **

Table 8. Average (±95% confidence interval) of the measured sensible heat flux (H; W m−2) in the
flux towers, and the average (±95% confidence interval), mean absolute error (MAE), mean absolute
percent error (MAPE), root mean square error (RMSE), Willmott coefficient (d), and Pearson correla-
tion coefficient (r) of the estimated sensible heat flux using the conventional (acon) and parameterized
(asup) surface albedo models combined with brightness temperature (Tb) and surface temperature
corrected by the Barsi model (Tsbarsi ), the single-channel model (TsSC ), the radiative transfer equation
model (TsRTE ), and the split-window model (TsSW ). Values with (***) indicate p-value < 0.001.

Average ± IC MAE MAPE RMSE d r

W m−2 W m−2 % W m−2

Measured H 201.7 ± 23.0

Model
Combination

acon

Tb 167.0 ± 18.3 30.27 15.37 36.50 0.84 0.87 ***
Tsbarsi 148.3 ± 17.0 45.20 22.46 51.94 0.72 0.86 ***
TsSC 140.0 ± 17.5 53.00 26.10 60.73 0.65 0.81 ***
TsRTE 141.8 ± 17.0 51.00 25.47 58.56 0.66 0.82 ***
TsSW 131.0 ± 23.5 64.13 32.28 74.49 0.61 0.69 ***

asup

Tb 211.2 ± 23.0 28.17 15.06 31.39 0.91 0.84 ***
Tsbarsi 188.5 ± 21.0 23.66 12.52 30.58 0.90 0.85 ***
TsSC 183.1 ± 21.0 28.38 14.57 36.76 0.86 0.81 ***
TsRTE 186.3 ± 20.0 27.14 14.02 35.46 0.87 0.81 ***
TsSW 170.9 ± 22.0 36.83 18.8 47.00 0.80 0.78 ***
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Table 9. Average (±95% confidence interval) of the measured latent heat flux (LE; W m−2) in the
flux towers, and the average (±95% confidence interval), mean absolute error (MAE), mean absolute
percent error (MAPE), root mean square error (RMSE), Willmott coefficient (d), and Pearson correla-
tion coefficient (r) of the estimated latent heat flux using the conventional (acon) and parameterized
(asup) surface albedo models combined with brightness temperature (Tb) and surface temperature
corrected by the Barsi model (Tsbarsi ), the single-channel model (TsSC ), the radiative transfer equation
model (TsRTE ), and the split-window model (TsSW ). Values with (***) indicate p-value < 0.001.

Average ± IC MAE MAPE RMSE d r

W m−2 W m−2 % W m−2

Measured LE 259.5 ± 46.0

Models
Combination

acon

Tb 266.4 ± 41.0 29.42 11.59 37.93 0.95 0.93 ***
Tsbarsi 247.1 ± 41.0 37.33 13.70 47.45 0.93 0.91 ***
TsSC 248.7 ± 42.0 40.79 15.08 51.01 0.92 0.89 ***
TsRTE 250.2 ± 42.0 41.39 15.23 51.80 0.92 0.88 ***
TsSW 259.0 ± 44.0 41.28 14.75 52.58 0.92 0.86 ***

asup

Tb 276.6 ± 45.0 29.87 12.87 35.71 0.96 0.95 ***
Tsbarsi 260.3 ± 43.0 27.59 11.70 33.83 0.97 0.94 ***
TsSC 257.2 ± 43.0 30.04 12.76 37.97 0.96 0.93 ***
TsRTE 257.7 ± 41.0 30.51 12.87 38.71 0.96 0.92 ***
TsSW 270.6 ± 46.0 37.26 14.85 46.64 0.94 0.90 ***

Table 10. Average (±95% confidence interval) of the measured evapotranspiration (ET; mm d−1)
in the flux towers, and the average (±95% confidence interval), mean absolute error (MAE), mean
absolute percent error (MAPE), root mean square error (RMSE), Willmott coefficient (d), and Pearson
correlation coefficient (r) of the estimated soil heat flux using the conventional (acon) and parameter-
ized (asup) surface albedo models combined with brightness temperature (Tb) and surface temperature
corrected by the Barsi model (Tsbarsi ), the single-channel model (TsSC ), the radiative transfer equation
model (TsRTE ), and the split-window model (TsSW ). Values with (***) indicate p-value < 0.001.

Average ± IC MAE MAPE RMSE d r

W m−2 W m−2 % W m−2

Measured ET 3.00 ± 0.50

Model
Combination

acon

Tb 2.69 ± 0.38 0.42 13.07 0.50 0.92 0.95 ***
Tsbarsi 2.72 ± 0.40 0.39 12.45 0.46 0.94 0.95 ***
TsSC 2.79 ± 0.42 0.38 12.23 0.43 0.94 0.94 ***
TsRTE 2.76 ± 0.39 0.39 12.48 0.45 0.94 0.94 ***
TsSW 3.12 ± 0.49 0.35 13.23 0.44 0.95 0.92 ***

asup

Tb 2.90 ± 0.39 0.32 11.36 0.37 0.96 0.95 ***
Tsbarsi 2.95 ± 0.43 0.29 10.98 0.35 0.96 0.95 ***
TsSC 3.05 ± 0.44 0.28 11.14 0.35 0.96 0.94 ***
TsRTE 3.00 ± 0.42 0.30 12.42 0.35 0.96 0.94 ***
TsSW 3.18 ± 0.47 0.35 13.23 0.44 0.95 0.92 ***

4. Discussion
4.1. Surface Albedo Models Performance

The surface albedo model (asup) developed in this study performed well compared to
the conventional one (acon). The RMSE based on asup was less than 0.03 required by climate
forecasting models [18] and within the range of 0.01–0.02 found in previous studies [18,56].
The largest discrepancies shown by acon as indicated in the reported MAE and RMSE can
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be due a number of factors that include (i) the broad spectrum or broadband transmittance
being inadequate for the atmospheric correction of the composition of discrete bands;
(ii) not considering the differences in atmospheric transmissivity for each band; and (iii) the
non-correspondence of the narrow and wide bands with solar radiation on the surface [14].

The asup in the four land types was within the range found in other studies. The
asup over agricultural areas ranged from 0.14 to 0.18 [56,57]; from 0.15 to 0.20 over urban
areas due to the complexity of mixtures of built-up area and vegetation in backyards and
streets [58]; from 0.11 to 0.13 over the Cerrado forest [57,59]; and from 0.05 to 0.07 over
water bodies depending on the composition of the water [58,59]. The acon of water bodies
was greater than 0.10, which is above the values obtained in the lakes of the region [59].

4.2. Evaluation of Ts Retrieval Models

In general, the difference between Tb and Ts varies between 1 and 5 K in the 10–12 µm
spectral region, subject to the influence of atmospheric conditions and surface emissiv-
ity [60]. For mathematical convenience, the TOA thermal radiation is generally expressed
in terms of Tb with an emissivity of 1.0 [61]. The TOA radiance is the result of radiation
emitted by the Earth’s surface, upward radiation emitted by the atmosphere, and down-
ward radiation emitted by the atmosphere [62]. The TOA radiation is mostly attenuated by
water vapor and, to a lesser extent, by trace gases and aerosols [63,64].

In this study, Tsbarsi was used as a reference to validate Tb, TsSC , TsRTE , and TsSW , because
previous studies indicated Tsbarsi based on Landsat had relatively low MAE and RMSE
values low (ranging between 0.2 and 2.5 K) when compared to the field measurements
of Ts that were taken over different land surface types represented by the Surface Radi-
ation Budget (SURFRAD) Network (https://gml.noaa.gov/grad/surfrad/ accessed on
10 August 2021) during different atmospheric profiles [65–68]. Furthermore, the improved
performance of Tsbarsi is associated with the robustness of the MODTRAN algorithm and
the integration of atmospheric data from the NCEP to generate the atmospheric correction
parameters (Lu, Ld, and τ) [36]. These parameters estimated by ATMCORR were also used
in the other models, which may justify the good relationship between the Ts estimated by
the TsSC , TsRTE , and TsSW .

The good relationships between TsSC , TsRTE , and TsSW with Tsbarsi obtained in this study
agreed with other validation and simulation studies, which indicated that the MAE and
RMSE obtained in this study are within those limits reported in the literature. The typical
MAE and RMSE of TsSC and TsRTE vary between 1 and 3 K [31,69], and the TsSW is around
1.5 K [33]. Using low spatial resolution data, TsSC and TsRTE presented MAE and RMSE
from 1.6 to 2.4 K [70], and TsSW from 1.5 to 2.9 K [71].

The good agreement of TsRTE with Tsbarsi maybe due to both models using the radiative
transfer equation of Planck’s inverse equation [29,30,35,51]. The main difference of TsRTE

and Tsbarsi is on the conversion of thermal radiance into Ts, since TsRTE is converted by the
inverted Plank equation and Tsbarsi by a specific Planck curve equation with calibration
constants determined for the TIRS Landsat 8 [35,36]. TsRTE has been widely used in studies
of water bodies with an accuracy of around 0.2 K and in studies of terrestrial bodies with
errors of up to 2 K [35,72].

The RMSE of TsSC around 1.3 K showed its good agreement with Tsbarsi , at the lower
limit of the range from 1.2 to 2 K obtained under different conditions of atmospheric water
vapor [30,34]. The biggest errors of TsSW can be attributed to the model being multichannel,
which introduces greater noise if using only one thermal channel [28,34,73]. However,
TsSW is obtained by combining thermal bands with defined coefficients, considering dif-
ferent emissivity for each band and requiring only knowledge of the atmospheric water
vapor [28,34].

4.3. The Effects of α and Ts Retreival Models on SEBFs and ET

In general, RMSE of Rn is typically found to be between 20 and 80 W m−2 with
different orbital sensors (TM Landsat 5, TM+ Landsat 7, and MODIS) [59,74–80]. The

https://gml.noaa.gov/grad/surfrad/


Sensors 2021, 21, 7196 18 of 24

RMSE obtained in this study were close to those reported by [59] over the Cerrado zone
and by [10] on the Cerrado-Pantanal transitional zone in Brazil, which highlight the
relatively acceptable accuracy of estimated Rn obtained based on all combinations. The
better performance of the Rn estimated with the Tb maybe due to the shortwave and
longwave radiation balance [10]. The asup can be overestimated by up to 15%, which leads
to an underestimation of Rn [11,81], while Tb is generally lower than Ts, leading to an
underestimation of long-wave radiation emitted by the surface (RL↑), which therefore leads
to overestimation of Rn. Despite the better performance of Rn with Tb, the MAPE of Rn
estimated with asup and all Ts were less than 2%, and the RMSE less than 20 W m−2. In
addition, the difference in MAE and RMSE of the estimated Rn with all Ts and the same
surface albedo model was less than 5 W m−2 and MAPE less than 1%.

The obtained MAE and RMSE values of G were within the range of 15–32 W m−2,
which was similar to those obtained in other studies [82,83]. The low performance of G
has been reported in other studies with different land uses [82–84]. Probably, the low
performance of the G estimate is due to the low sensitivity of the model to the high spatial
complexity of the study area. G tends not to have a high impact on the SEB and ET of
densely vegetated surface, due to the lesser part of the available energy used to heat the
soil, but G tends to impact the SEB and ET of surfaces with low vegetation cover, as the
pastures and some natural grasslands in Cerrado and Pantanal [13,82,85].

The MAE and RMSE of H estimated based on all combinations with asup and the
combination of acon with Tb were less than the 50 W m−2 that was reported by [6,78,82,86].
Estimates of H with Tsbarsi , TsSC , and TsRTE were on average 3% lower than that with Tb,
indicating that the differences between Ts and Tb do not significantly impact H. This is
because the internal calibration process of SEBAL alleviates impacts of low Tb values [11].
The estimation of H by SEBAL is a function of the linear relationship “dTs = a + bTs”,
using two extreme pixels to calculate the constants “a” and “b” [8,15]. The initial value of
these constants is obtained from meteorological information, satellite estimates (Rn− G;
SAVI), and the operator’s choice (anchor pixels), and these constants are adjusted by
iterations [11,15,87]. The estimation of these constants by numerical iterations eliminates
the effects of the negative bias of Tb and transmits the calibration effect for all other pixels
in proportion to the inserted Ts. Therefore, the differences between Ts and Tb tend not to
significantly affect SEBF estimates [11,16,87].

The MAE and RMSE of LE estimates were within the range of 30–70 W m−2 found in
previous studies based on measurements with flux towers and lysimeters, and the MAPE
was less than 20% [78,82,84,86,88]. The MAE and RMSE of the ET estimates were also
within the range of 0.3 mm to 0.6 mm day−1, and the MAPE within the range of 8% to 20%
found in other studies [6,78,89–91]. In this study, SEBAL was applied in areas with grasses
and shrubland typical of the Cerrado-Pantanal transition region under different natural
water conditions and obtained errors between 11% and 12.5%, which represented absolute
errors of ET less than 0.35 mm day−1.

The slight difference between the MAE, MAPE, and RMSE and the correlation and
Willmott coefficients of the LE and ET estimated with Tb and Ts shows that the recovery
of Ts by the models does not significantly impact the estimation of these parameters.
This effect was also observed in studies by [11] and [16]. This reinforces that the internal
calibration of SEBAL keeps the “dTs = a + bTs” stable and minimizes the impacts of the
insertion of Ts in the LE and ET estimates, since the Ts of the anchor pixels represent
the extreme conditions of water availability, regardless of the removal of the effect of the
atmosphere and the emissivity of the surface on the thermal band [11,87]. In contrast, LE
and ET performed better with asup instead of acon. A similar result was also observed
in the work of [11], which proposed an internal SEBAL calibration to remove the effect
of the atmosphere in each band of the Landsat 5 sensor, whose estimate of ET with acon
introduced random errors of ±1 mm day−1.
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5. Conclusions

In this study, a model of surface albedo (asup) with the OLI Landsat 8 surface re-
flectance was developed. Surface temperature (Ts) was recovered by different models from
the brightness temperature (Tb). The performance of surface energy balance fluxes (SEBF)
and evapotranspiration (ET) estimates, based on different combinations of surface albedo
and temperature models, was evaluated against ground-based observations of SEBF. The
asup model performed better than a conventional surface albedo model (acon) as it provided
lower MAE, MAPE, and RMSE and higher Willmott coefficients (d) and Pearson correlation
(r) when compared with surface albedo data based on MODIS (aMODIS). In addition,
average values of asup were similar to those found by aMODIS, while those of acon were
about 36–64% higher than aMODIS. Additionally, acon showed some limitations over water
bodies. Minimizing these errors in spatially complex areas, such as the Cerrado-Pantanal
transition, is important for accurate estimates of SEBFs and ET.

The retrieval of surface temperature (Ts) by the different models combined with acon
significantly influenced estimates of the net radiation (Rn) and the sensible heat flux (H).
Estimates of the Rn were on average 15% lower and those of H, which were about 26–35%
lower than the measured Rn and H, respectively. However, estimates of Rn and H based
on the combination of Ts with asup were not significantly different from those measured.
Moreover, the averages of latent heat flux (LE) and evapotranspiration (ET) were also not
significantly different from those measured based on all combinations.

The determination of the asup model, with the OLI Landsat 8 surface reflectance for
the studied Cerrado-Pantanal transition region, improved the performance of SEBAL in
estimating the Rn, H, LE, and ET, when combined with both Ts and Tb. SEBFs and ET
estimated by SEBAL with asup had lower errors (i.e., RMSE) and higher agreement and
correlation coefficients d and r. It is noteworthy that the SEBFs and ET estimated by
the combination asup and Tsbarsi presented the best performance. The combination of acon
and TsSW worked well to estimate ET over the mixed shrub–grass site of the PBE, while
combination of asup and Tb worked well to estimate ET over the grassland site of the FMI.
The evaluation conducted in this analysis over the spatially complex gradient of natural
ecosystems in southern Brazil provided a robust test of the performance of these surface
albedo and temperature algorithms and can help to guide future studies on the use of
appropriate models for the estimation of SEBFs and ET over other regions with similar
complex environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21217196/s1, Table S1: Average (±95% confidence interval) of the measured net radiation
(Rn; W m−2), and the average (±95% confidence interval), mean absolute error (MAE), mean absolute
percent error (MAPE), root mean square error (RMSE), Willmott coefficient (d) and Pearson correlation
coefficient (r) of the estimated net radiation in BPE and FMI using conventional (acon), parameterized
(asup) surface albedo model combined with brightness temperature (Tb) and surface temperature
corrected by Barsi model (Tsbarsi ), single-channel model (TsSC ), radiative transfer equation model
(TsRTE ) and Split-window model (TsSW ). Values with (*) indicate p-value < 0.05, (**) p-value < 0.01 and
(***) p-value < 0.001. Table S2. Average (±95% confidence interval) of the measured soil heat flux (G;
W m−2), and the average (±95% confidence interval), mean absolute error (MAE), mean absolute
percent error (MAPE), root mean square error (RMSE), Willmott coefficient (d) and Pearson correlation
coefficient (r) of the estimated soil heat flux in FMI using conventional (acon), parameterized (asup)
surface albedo model combined with brightness temperature (Tb) and surface temperature corrected
by Barsi model (Tsbarsi ), single-channel model (TsSC ), radiative transfer equation model (TsRTE ) and
Split-window model (TsSW ). Values with (*) indicate p-value < 0.05, (**) p-value < 0.01 and (***) p-value
< 0.001. Table S3. Average (±95% confidence interval) of the measured sensible heat flux (H; W m−2),
and the average (±95% confidence interval), mean absolute error (MAE), mean absolute percent error
(MAPE), root mean square error (RMSE), Willmott coefficient (d) and Pearson correlation coefficient
(r) of the estimated sensible heat flux in BPE and FMI using conventional (acon), parameterized (asup)
surface albedo model combined with brightness temperature (Tb) and surface temperature corrected
by Barsi model (Tsbarsi ), single-channel model (TsSC ), radiative transfer equation model (TsRTE ) and
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Split-window model (TsSW ). Values with (*) indicate p-value < 0.05, (**) p-value < 0.01 and (***) p-value
< 0.001. Table S4. Average (±95% confidence interval) of the measured latent heat flux (LE; W m−2),
and the average (±95% confidence interval), mean absolute error (MAE), mean absolute percent error
(MAPE), root mean square error (RMSE), Willmott coefficient (d) and Pearson correlation coefficient
(r) of the estimated latent heat flux in BPE and FMI using conventional (acon), parameterized (asup)
surface albedo model combined with brightness temperature (Tb) and surface temperature corrected
by Barsi model (Tsbarsi ), single-channel model (TsSC ), radiative transfer equation model (TsRTE ) and
Split-window model (TsSW ). Values with (*) indicate p-value < 0.05, (**) p-value < 0.01 and (***)
p-value < 0.001. Table S5. Average (±95% confidence interval) of the measured evapotranspiration
(ET; mm d−1), and the average (±95% confidence interval), mean absolute error (MAE), mean
absolute percent error (MAPE), root mean square error (RMSE), Willmott coefficient (d) and Pearson
correlation coefficient (r) of the estimated evapotranspiration in BPE and FMI using conventional
(acon), parameterized (asup) surface albedo model combined with brightness temperature (Tb) and
surface temperature corrected by Barsi model (Tsbarsi ), single-channel model (TsSC ), radiative transfer
equation model (TsRTE ) and Split-window model (TsSW ). Values with (*) indicate p-value < 0.05, (**)
p-value < 0.01 and (***) p-value < 0.001.
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