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Abstract: Antibiotic resistance represents a global health concern. Soil, water, livestock and plant
foods are directly or indirectly exposed to antibiotics due to their agricultural use or contamination.
This selective pressure has acted synergistically to bacterial competition in nature to breed antibiotic-
resistant (AR) bacteria. Research over the past few decades has focused on the emergence of AR
pathogens in food products that can cause disease outbreaks and the spread of antibiotic resistance
genes (ARGs), but One Health approaches have lately expanded the focus to include commensal
bacteria as ARG donors. Despite the attempts of national and international authorities of developed
and developing countries to reduce the over-prescription of antibiotics to humans and the use of
antibiotics as livestock growth promoters, the selective flow of antibiotic resistance transmission from
the environment to the clinic (and vice-versa) is increasing. This review focuses on the mechanisms of
ARG transmission and the hotspots of antibiotic contamination resulting in the subsequent emergence
of ARGs. It follows the transmission of ARGs from farm to plant and animal food products and
provides examples of the impact of ARG flow to clinical settings. Understudied and emerging
antibiotic resistance selection determinants, such as heavy metal and biocide contamination, are also
discussed here.
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1. Introduction

Antibiotic-resistant (AR) bacteria impose a significant burden on healthcare. In 2017,
the Centers for Disease Control (CDC) estimated that there were 2.8 million infections
and more than 35,000 deaths in the U.S. due to infections caused by AR bacteria [1].
These estimates are nearly double the previous estimates that were published in 2013 [1,2].

It has been estimated that 20% of these infections are attributable to agricultural
antibiotic usage rather than clinical treatment [3]. Foodborne antibiotic-resistant bacteria
can survive the harsh conditions of the gastrointestinal tract [4]. Foodborne pathogens
can cause acute illness, or they can asymptomatically persist in the gut microbiome as a
reservoir for multidrug-resistant, opportunistic, extraintestinal infections [5–8].

Wastewater also contributes to AR; antibiotics persist through the wastewater treat-
ment processes [9]. Effluents end up in receiving waters, while sludge waste is used as
fertilizer [10]. All these sources of antibiotics and AR strains sink to surface waters [11,12]
and agricultural soil, which readily absorbs them [13]. Crops become contaminated and
serve as vehicles for the transmission of AR bacteria to the food chain [14,15], silently con-
tributing to AR infections [16] or the global burden of illness by directly causing outbreaks
of foodborne diseases [17].

The development of AR relies mainly on the prevention of access to drug targets,
changes in the structure and protection of antibiotic targets, the direct modification or
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inactivation of antibiotics, the efflux of antibiotics, and the formation of biofilms [18].
Modifications of antibiotics include enzymatic alteration of the antibiotic by acetylation,
phosphorylation and adenylation, and using enzyme like aminoglycoside modifying en-
zymes (AMEs) [19]. Another modification is the destruction of antibiotic molecules, which
in the case of b-lactams is facilitated by b-lactamases [20]. Decreased membrane perme-
ability is also an important mechanism of AR, mostly in Gram-negative bacteria. This is
because antibiotic targets are often parts of the inner membrane and antibiotics need to
go through the outer membrane first. For example, vancomycin is not effective against
Gram-negative bacteria because their outer membrane is impermeable to this antibiotic [21].
Bacteria have developed complex machineries (called efflux pumps) that have the ability to
extrude a number of antimicrobial compounds [22]. Another method to combat antibiotics
is through interference with their target site. One mechanism of interference is target
protection, which affects drugs like tetracycline [23] and fluoroquinolones [24]. Other
mechanisms are based on direct modification of the target site and include mutations,
enzymatic alteration (for example, methylation), replacement, or overproduction of the tar-
get [21,25,26]. Such mechanisms are facilitated by two major genetic strategies: mutational
resistance and horizontal gene transfer (HGT) [21].

Another way for bacteria to survive exposure to antibiotics is tolerance. Tolerance
is described as the ability to survive lethal concentrations of antimicrobial drugs [27].
Such ability is measured by the minimum duration for killing 99% of the population.
Tolerance is based on evolution of mechanisms, such as dormancy [27], or persistence of a
subpopulation of cells. These persister cells can survive for a much longer time than the
rest of the population [28]. Contrary to dormancy, persistence evolves rapidly following
frequent exposure to antibiotics in vitro [29].

This review focuses on the environmental spread of antibiotic resistance and provides
insights further insights into the clinical etiology of AR infections. The selective flow of
ARGs is summarized in Figure 1.
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antibiotics as well as biocides and heavy metals select for ARGs and contaminate plant, animal,
and fish products. Contaminated foods end up into the gastrointestinal tract of humans, where
antibiotic resistance emerges from antibiotic presence or is transferred from ARGs to gut microbiota.
The endpoints of this antibiotic resistance transmission are human pathogens, which develop AR
infections. Created with BioRender.com, accessed on 21 January 2020.

2. Antibiotics in the Environment

Natural occurrence of antibiotics. DNA recovered from 30,000 years old Beringian
permafrost sediments indicate that ARGs encoding resistance to beta-lactams, tetracyclines,
and glycopeptides predated their clinical use by thousands of years [30]. The coevolution of
antibiotics and ARGs contributes to the difficulty of identifying effective natural products
against AR bacteria [31].

Ninety percent of antibiotics used in clinics were originally identified from microor-
ganisms [32]. For example, vancomycin, kanamycin, and erythromycin produced by
Streptomyces orientalis, Streptomyces kanamyceticus, and Saccharopolyspora erythraea, respec-
tively, were isolated from soil samples [33]. Most of the known antibiotic classes used
today come from Actinomycetes and especially the genus Streptomyces. Those classes in-
clude beta-lactams, tetracyclines, macrolides, aminoglycosides, and glycopeptides [34].
It is no surprise that soil systems are abundant reservoirs of naturally occurring antibi-
otic compounds and anthropogenic contaminants of antibiotics, both of which select for
ARGs [35–38].

Soil actinomycetes, including Streptomyces, are a common source of antibiotic com-
pounds. However, the ocean is home to unique actinomycete genera, including Salinispora
and Marinispora. Marine actinomycetes can produce secondary metabolites with antimi-
crobial activity [35]. For example, coastal water sampling in Southern California has
led to the isolation of Marinomycin A, a natural product with antibiotic activity against
methicillin-resistant Staphylococcus aureus [MRSA] and vancomycin-resistant Enterococcus
faecium [VREF] [36]. Pestalone is another natural antimicrobial product against MRSA and
VREF produced only in the co-culture of a marine fungus, Pesalotia sp., with an unidentified
marine bacterium [39,40].

Contribution of agriculture and wastewaters in antibiotic pollution. The majority
of antibacterial agents (including ionophores) purchased in the U.S. are for agricultural
use (15.4 million kg, or 80% of the annual total in 2014) [3,41]. Antibiotics from a wide
range of classes, including macrolides, lincosamides, sulfonamides, thiamphenicol analogs,
and fluoroquinolones have been detected in agroecosystems [42]. Although antibiotics
today are used at therapeutic doses to treat existing infections in livestock, they were also
often administered prophylactically to prevent illness until 2017 [43]. More importantly,
subtherapeutic doses were delivered to livestock over extended periods of time as feed
additives to promote growth [43,44].

Another agricultural contributor to the spread of resistance, which has been over-
looked, is the use of antibiotics for crop protection [45]. Plant antibiotics have historically
accounted for less than 0.5% of total antibiotic use [46]. However, the recent approval for
application of streptomycin and oxytetracycline to prevent the spread of citrus canker and
citrus greening pandemic diseases led to an 18-fold increase of the agricultural usage of
these antibiotics [47]. This regulatory change could result in an unprecedented emergence
of ARGs in plant foods. In addition, the combinational use of antibiotics and biopesticides,
the latterconsisting of bacterial species that have been selected based on their genetic
competence to produce antibiotics [15], resist counter antibiosis [48], and colonize plant
niches [49] poses another threat.

Unmetabolized antibiotics found in hospital effluents can be carried into wastewater
treatment plants where the removal of antibiotics can be incomplete, ultimately feeding
ARGs into the natural aqueous environment [50]. The contribution of wastewater to the
spread of antibiotic resistance is supported by AR patterns in wastewater treatment plants
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that mirror their respective clinical prevalence [9]. Since most of these plants are not
designed to completely remove contaminants, antibiotics persist through the wastewater
treatment processes. Effluents end up in receiving waters (analyzed below), while sludge
waste is used as fertilizer [10]. All of these sources of antibiotics and antibiotic resistance
sink to surface waters where antibiotic concentrations in the micrograms per liter range
have been reported [11,12]. The antibiotics with the highest concentrations detected in
receiving water were trimethoprim, sulfisoxazole, ciprofloxacin, and albendazole [12].

3. Emergence of Antibiotic Resistance in the Environment

ARGs in soil. Agricultural antibiotics, manure from livestock, and hospital sewage
(as well as municipal, agricultural, and aquaculture wastewater) are important sources of
antibiotic residues that contaminate soil [51–53]. Therefore, soil bacteria act as a reservoir of
ARGs [54,55]. Multiple studies have shown a substantial increase in AR nonpathogenic, en-
vironmental bacteria. More than 97% of the 123 strains tested were resistant to ciprofloxacin
and almost 50% were resistant to erythromycin. Environmental strains carrying ARGs
don’t have to necessarily be closely related to human pathogens. Denitrifying bacteria,
classified in Brachymonas, Candidatus Competibacter, Thiobacillus and Steroidobacter genera,
found in the anoxic wastewater treatment process in pig farms are also important hosts
of ARGs [56]. Pseudomonas is also a dominant genus in the environment that consists of
many species, such as the nonpathogens P. fluorescens and P. putida and the very impor-
tant clinical pathogen P. aeruginosa, which is often associated with multidrug resistance
phenotypes [57,58].

Wastewater irrigation can also affect the soil resistome. It has been shown that irriga-
tion with untreated wastewater can increase the amount of multidrug resistant bacteria
even after long periods of no irrigation [59]. Dantas et al. isolated multidrug resistant
(MDR) soil bacteria that could also grow in the presence of several of the tested antibiotics,
suggesting that the soil reservoir contributes to the increasing levels of MDR pathogenic
bacteria [60]. This ARG reservoir may serve as a source of ARG transmission between
nonpathogenic soil bacteria and human pathogens as previously described by others,
but the overall dynamics of this phenomenon have not been associated with clinical
practice [54,61].

ARGs in water bodies. Urban and coastal water systems can serve as gateways for
the dissemination of anthropogenically associated ARGs [62,63]. Antimicrobials and the
selection of ARGs occur in beef cattle storage ponds and swine treatment lagoons, [64] but
also in water samples collected throughout the Pacific Ocean [37]. AR bacteria can also be
transferred between locations by birds or other animal species [65,66].

Studies in the Antarctic have also provided an important model to study the dis-
semination of resistance genes in aqueous environments with minimal human interfer-
ence [38,67,68]. Studies have found clinically relevant ARGs at sampling sites close to
field research stations supporting transmission routes of human origin from wastewater
plants [38,69]. Hernandez et al. reported ESBL genes blaCTX-M1 and blaCTX-M15 in seawater
samples collected near Antarctic field stations [38]. Another study also reported ESBL genes
(blaCTX-M2 and blaPER-2) and “plasmid-mediated AmpC beta-lactamase genes” (pAMPCDHA,
pAMPCFOX) in nearby freshwater samples [67].

4. Co-Selection of ARGs Due to Other Pollutants

Major heavy metal pollutants (such as cadmium, copper, lead, chromium, arsenic, and
mercury) are ubiquitous metal pollutants of soil and water due to their presence (as byprod-
ucts) in fertilizers, construction materials, and antifouling paints [70,71]. Exposure to heavy
metals mainly occurs through the food chain via plant root absorption or direct ingestion
via drinking of contaminated groundwater [72]. Recently, the U.S. Congress reported
that baby food is tainted with dangerous levels of heavy metals [73]. Heavy metals in
excess concentrations can interfere with vital cellular functions and are highly toxic to
most organisms [74]. On the contrary, heavy metals are of moderate to high physiological
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importance for some bacterial species [75]. Bacteria have coevolved resistance mechanisms
to heavy metals and antibiotics, based in extra- and intracellular sequestration, enzymatic
detoxification, and metal removal [76]. Such resistance mechanisms are thought to con-
verge [77] (based on the co-occurrence of respective resistomes in bacterial genomes [78])
and increase resistance in the absence of antibiotic treatment [79].

Other nonantibiotic antimicrobial compounds that have been observed to coselect with
ARGs are biocides [79]. Common uses of biocides include: disinfectants on equipment and
surfaces in facilities like farms and hospitals, antiseptics on body surfaces, decontaminants
and preservatives in pharmaceuticals, and food [80]. Biocides are used in large quantities;
the 2006 market in Europe was estimated at 10–11 billion euros, and it is believed that
usage has only increased since then [81]. Their consumption has risen dramatically due
to the Covid-19 pandemic [82]. Consequently, it is no surprise that biocides have found
their way into the environment. For example, high amounts of triclosan and other biocides
have been detected in rivers and wastewater treatment plant (WWTP) effluents. More
specifically, 138 g/day of triclosan and 214 g/day of triclocarbon were released into the
Savannah River in Georgia (U.S.) from three WWTPs [83]. In a different study conducted
in eight WWTPs and the receiving aquatic environment in Thailand, they found high
amounts of methylparaben up to 15.2 µg/L in the receiving Chao Phraya River, 8.47 µg/g
of triclocarbon in sludge and sediment and 1.20 µg/g of triclosan in fish samples [84].

Bacteria have developed various resistance mechanisms to biocides [81,85], including
target alteration [86,87], impermeability [88,89], efflux pumps [90,91], and inactivation of
biocides [92,93]. Similar to heavy metal resistance, biocide resistance has the ability to
coselect with antibiotics [79] and enhance antibiotic resistance [94]. For example, exposure
to benzalkonium chloride increased the microbial community MICs for benzalkonium
chloride, ciprofloxacin, tetracycline and penicillin G [95]. Benzalkonium chloride, as well
as chlorhexidine digluconate [96], can induce the multidrug efflux pump MexCD-OprJ in
Pseudomonas aeruginosa, contributing to resistance to fluoroquinolone antibiotics [97]. In a
recent study, low level exposure to chlorhexidine digluconate (24.4 µg/L) and triclosan
(0.1 mg/L) in E.coli have been shown to significantly increase horizontal transfer of mobile
AR genetic elements by conjugation [98]. Triclosan exposure can also reduce the susceptibil-
ity to clinical antimicrobials, like ciprofloxacin and levofloxacin, in E. coli isolates from urine
samples [99]. In addition, exposure of Salmonella enteritidis to chlorine increased the MIC
values eight-fold for tetracycline, nalidixic acid, and chloramphenicol [100]. Information
on the actual contribution of biocides to ARG emergence and transmission in the food
chain remains scarce [101].

5. Transmission of ARGs across the Food Chain

ARGs in meat, poultry and fish products. It has been well established that live-
stock and animal products contribute to the spread of AR bacteria and genes to hu-
mans [4,8,102–104]. Most antibiotics purchased in the U.S. are for use in agriculture [105].
Livestock are fed these antibiotics, thereby creating a selective pressure favoring ARGs in
the animal gut and feces [4,102,103]. In Belgium, about 35% of the E. coli strains isolated
from live broilers were resistant to third generation cephalosporins, while over 60% of the
broilers were found to be carriers of these third generation cephalosporin resistant E. coli
[CREC]. AR strains can also contaminate meat industry employees. Hog slaughterhouse
employees demonstrated similar numbers of Staphylococcus aureus isolates in comparison
to their family and community members [106]. However, the employees’ isolates were
resistant to more antibiotic types suggesting a greater selective pressure originating at the
hog plant [106].

Contamination of animal products starts during slaughter and spreads throughout
the food supply chain [8,104]. Even if food processing methods are applied in order
to kill bacterial cells, dead cells may remain intact or be lysed and release ARGs [107].
The subsequent spread of AR bacteria and their genes can happen in the kitchen during
meal preparation and by the incomplete cooking of meat surfaces prior to consumption [4,7].
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Hands and cutting boards are known sources of cross contamination with ESBL-producing
E. coli [108]. Furthermore, the increasing demand of minimally processed or raw fish
and meat further contaminates such products with ARGs [109]. Shiga toxin-producing
Escherichia coli (STEC) serotypes, including O157:H7 strains, were isolated from dairy cows,
cull dairy cow feces, cider, salami, human feces, ground beef, bulk tank milk, and bovine
feces in media selective for different antibiotics [110]. Extraintestinal pathogenic E. coli
(ExPEC) and other antibiotic-resistant E. coli have been found in poultry, pork, and beef
at grocery stores [8]. In a study performed in Austria, resistant E. coli isolates were found
most often in pork (76%), followed by poultry (63%) and beef (40%) [111]. Similarly, the
most predominant E. coli ARGs isolated from chicken meat were tetA (for tetracycline),
aadA1 (for streptomycin), ereA (for erythromycin), aac-3-IV (for gentamicin), cmlA and catA1
(for chloramphenicol) [112].

Aquaculture is the fastest growing food production sector representing 47% of global
fish production (80 million tons), equating to a $231.6 billion (USD) industry [113]. While the
growth and revenue of the aquaculture industry is beneficial for feeding the world’s grow-
ing population, it is alarming that antibiotics are frequently used for prophylaxis and
metaphylaxis in aquaculture without substantial regulation in the countries producing the
most fish [104,114]. One such method includes the application of antibiotics with feed in
open aquaculture cages. This method allows for unmetabolized antibiotics in fish excre-
ments and unconsumed excess antibiotics to spread into surrounding water and sediment,
particularly in the absence of collection systems [115]. Aquaculture waste is also used as
fertilizer for land based agriculture, yet another means of spreading AR bacteria and their
genes into human food sources [116]. Market finfish and shellfish can be contaminated
with bacteria resistant to clinically important antibiotic classes, including tetracyclines,
beta-lactams, aminoglycosides, and quinolones [117–120].

ARGs in Produce. While most scientific focus in agricultural sources of antibiotic
resistance has been in livestock and meat, the role of vegetables in the spread of ARGs
has been largely overlooked [121–123]. Likewise to the previously described AR bacteria
transmitted via animal products, resistant bacteria transmitted from plants can also cause
acute illness or asymptomatically colonize the gut [124]. Clinically relevant ARGs and
bacteria, such as E. coli, have also been found on vegetables [7,122,123,125]. Even multidrug
resistant strains of Acinetobacter baumanii, a pathogen listed under the most urgent threats
by the U.S. CDC, have been reported on produce and fruit [121–123].

Little is still known about what plant characteristics, human behaviors, and bacterial
properties drive the transmission of antibiotic resistance from produce to the mammalian
gut microbiome. One possible mechanism may include persister cell populations. Persister
cells of E. coli O157:H7, the causing agent of foodborne illness, increased in low humidity
conditions on lettuce [126]. Salmonella persister populations in the gut have been identified
as reservoirs for antibiotic resistance plasmids, and they were able to transmit these
resistance genes to gut E. coli [127]. Agricultural use of antibiotics also drives selection flow
of ARGs to produce. The presence of strAB genes and streptomycin-resistant genes in plant
pathogens, such as Erwinia amylovora, Pseudomonas syringae, and Xanthomonas campestris,
preceded the agricultural use of streptomycin. Such genes are thought to be acquired
from nonpathogenic epiphytic bacteria colocated on plant hosts under natural antibiotic
selection [128].

Further to previous findings, we suggest that ubiquitous bacteria harbor multiple
ARGs of clinical importance. Pseudomonas corrugata, which acts as an opportunistic
pathogen [129], was found to be resistant to cefepime, gentamicin, polymyxin B, and chlo-
ramphenicol (Table 1), which are currently used therapeutically for Pseudomonas aeruginosa
and other human pathogenic Pseudomonads [130]. Similarly, the ubiquitous soil bacterium
and opportunist plant pathogen Pectobacterium carotovorum subsp carotovorum [131] was
found to be resistant to cefepime, gentamycin, and chloramphenicol (Table 1), which are
clinically used against pathogenic Enterobacterales [130]. Finally, Bacillus thuringiensis sbsp.
kurstaki (which is used commercially as a bioinsecticide [132]) was found to be resistant
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against ampicillin, penicillin, and erythromycin, which are clinically used against Bacillus
pathogens other than B. anthracis [133]. Such findings are clearly suggestive of the acquisi-
tion of ARGs due to natural competition of these dominant environmental species with
other plant-associated bacteria. ARGs can enter the food chain and ultimately end up in
the human gut [127].

Table 1. Susceptibility testing of the plant-pathogenic bacterium Pseudomonas corrugata. Methods were used as previously
described [134,135]. Interpretive criteria (S: susceptible, I: intermediate, and R: resistant) are based on the Clinical and
Laboratory Standards Institute breakpoints. Pseudomonas corrugata strain 870 BPIC (Benaki Phytopathological Institute
Collection) breakpoints correspond to (a) “other non-Enterobacterales including Pseudomonas spp. but excluding P. aeruginosa”
breakpoints [130] (R1, I1, S1 in red); (b) “Pseudomonas. aeruginosa breakpoints [130] (R2, I2, and S2 in blue). Pectobacterium
carotovorum subsp carotovorum isolate 3412/17 BPIC breakpoints correspond to “Enterobacterales breakpoints” [130] (R1, I1, and
S1 in black). Bacillus thuringiensis sbsp. kurstaki strain ABTS-351 (ATCC-SD-1275) breakpoints correspond to “Bacillus spp.
and related genera (not B. anthracis)” breakpoints [135]. AMP: ampicillin, PEN: penicillin, FEP: cefepime, VAN: vancomycin,
FOF: fosfomycin, ERY: erythromycin, CLI: clindamycin, GEN: gentamicin, MEM: meropenem, TET: tetracycline, PMB:
polymyxin B, CHL: chloramphenicol, CIP: ciprofloxacin, RIF: rifampicin, LCM: lincomycin.

Pseudomonas corrugata

Antibiotic AMP PEN FEP VAN FOF ERY CLI GEN MEM TET PMB CHL CIP RIF LCM
MIC

(mg/L) >32 >64 32 >64 256 >64 >8 16 8 1 >16 32 <0.5 32 >32

Breakpoint R1 ≥ 32
≤ R2

R1 ≥ 32
≤ R2

I1 = 8
≤ R2

S1 ≤
4

R2
≥ 4

R1
≥ 32

S1 > 0.5
= S2

Pectobacterium carotovorum sbsp. carotovorum

Antibiotic AMP PEN FEP VAN FOF ERY CLI GEN MEM TET PMB CHL CIP RIF LCM
MIC

(mg/L) >32 >64 8 >32 128 32 >8 32 <1 1 <1 128 <0.5 4 >32

Breakpoint R ≥
32 R ≥ 16 R ≥

256 R ≥ 16 R ≥ 4 R ≥
16

R ≥
4

R ≥
32 R ≥ 1

Bacillus thuringiensis sbsp. kurstaki

Antibiotic AMP PEN FEP VAN FOF ERY CLI GEN MEM TET PMB CHL CIP RIF LCM
MIC

(mg/L) 32 16 >64 <4 64 >8 1 <2 <1 <2 >16 <4 <0.5 <0.5 16

Breakpoint R ≥
0.5

R ≥
0.25

S ≤
4

R ≥
8

R ≥
4 R ≥ 16 R ≥ 16 R ≥

16
R ≥
32 R ≥ 4 R ≥

4

Little focus has been placed on directly modeling the mechanisms of transmission
from plant foods to the gut microbiome [122–124,136] (Figure 1). The gut microbiome can
serve as a reservoir of ARGs in asymptomatic human hosts [137]. Previous research by
our group has demonstrated that lettuce can serve as a platform for the horizontal gene
transfer of antibiotic resistance plasmids from nonpathogenic bacteria harboring mobile
ARGs to clinically relevant, pathogenic E. coli [61]. Moreover, the challenge of mice by
oral gavage of an AR E. coli clinical isolate suspended in a lettuce homogenate resulted in
asymptomatic colonization of the gut and additionally allowed for the horizontal transfer
of resistance to resident Klebsiella pneumoniae in the gut [61].

6. Clinical Outcomes

In the United States between 2012–2017, there was a decline in the number of cases
of multidrug resistant infections of methicillin-resistant S. aureus (20.5%), vancomycin-
resistant Enterococcus (39.2%), carbapenem-resistant Acinetobacter spp (32.0%), and MDR
P. aeruginosa (29.7%) [138]. No trend was observed for the change of carbapenem-resistant
Enterobacteriaceae during this time period. However, there was the notable exception of a
53.3% increase in ESBL-producing Enterobacteriaceae from 2012–2017 [138,139].

Predictably, the increase in the frequency of antibiotic resistance has also resulted
in increased mortality. In Europe, between 2007–2015, it was found that there was
an increase in the estimated number of related infections due to AR E. coli, S. aureus,
P. aeruginosa, K. pneumonaie, E. faecalis, E. faecium, and S. pneumoniae from 239,238 cases to



Antibiotics 2021, 10, 640 8 of 14

602,609 cases [140]. A proportional relationship for the number of cases and the number of
attributable deaths was observed for these pathogens, and the greatest number of cases
(285,758) and deaths (8750) were observed for third-generation cephalosporin-resistant
E. coli [140]. Additionally, this resulted in an increase from 11,114 to 27,249 attributable
deaths over this same time period [140]. The relative increase in mortality attributed to each
of the pathogens studied was variable. The greatest increase in mortality was observed for
carbapenem-resistant K. pneumoniae, which was attributed to 341 and 2094 deaths in 2007
and 2015, respectively.

Hospitals are a hotspot for the emergence of AR bacteria due to the relative high den-
sity of patients with bacterial infections and the use of antibiotics and other antimicrobial
disinfectants that may also inadvertently select for increased resistance. Unsurprisingly,
surveillance studies often report the presence of AR bacteria on hospital surfaces and also
in the water system [141–143]. The abundance of AR bacteria and/or resistance conferring
genes within the hospital are risks for direct transmission to patients. It has been common
practice for hospitals to track antibiotic resistance by isolating and characterizing individual
clinical isolates. However, it has been difficult to attribute changes in antibiotic resistance
patterns to specific examples of horizontal gene transfer. Most of the evidence regarding
transfer of antibiotic resistance from animal foods has been based on the identification
of E. coli, mostly clones and ARGs that are indistinguishable in both food and human
isolates [144]. Recent advances in sequencing technology and whole genome sequencing
may now provide the resolution for studying genetic relatedness, which will allow for the
real-time monitoring and detection of plasmid transfer dynamics [145,146].

Significantly less data exists for characterizing the horizontal gene transfer of ARGs
in a patient. Conjugative transfer of a mupirocin-resistance plasmid has been described
between Staphylococcus epidermidis to methicillin-resistant Staphylococcus aureus in a nursing
home resident [147]. Another study was able to show the likely plasmid transfer between
E. coli and K. pneumoniae within a single patient and, additionally, that same plasmid was
likely transferred to a second patient [146]. Broad-host Gram-negative plasmids have
also been described to transfer the blaKPC gene that resulted in the spread of carbapenem
resistance among Citrobacter freundii, Enterobacter cloacae, Klebsiella aerogenes, and Klebsiella
pneumoniae in a transplant patient [148]. In addition to the more simple mechanism of
the direct transfer of plasmids from one bacterium to another, plasmid dynamics can be
much more complex and require genetic rearrangement involving additional plasmids,
thus creating even more complexity [148,149]. Recently, mechanistic models were em-
ployed to combine date from 9000 patients and characterize the dissemination routes
of a pOXA-48-like carbapenemase-encoding plasmid in a hospital setting over a 2-year
period [150].

7. Conclusions

Antibiotic resistance continues to be a significant problem. While the mechanics of
how genetic information can be transferred from one bacterium to another are generally
understood, there remain significant knowledge gaps in how ARGs are trafficked from
environmental sources to humans and animals (Figure 1). Little information is available
about the inter- and intraspecies transfer of ARGs in vivo. However, recent advances
in genomics tools and technologies will allow for real-time monitoring of ARG transfer
dynamics. A better understanding of how ARGs are trafficked will allow for improved
strategies to mitigate resistance transmission, with the ultimate goal of reducing morbidity
and mortality associated with AR infections.
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