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Abstract
Background  Over the past few years, immune checkpoint inhibitors have changed the therapeutic landscape of non-small-
cell lung cancer (NSCLC). Response to immune checkpoint inhibitors correlates with a pre-existing anti-tumoral immune 
response. Checkpoint inhibitors have been introduced as second-line therapy and are only very recently used as monotherapy 
or in combination with chemotherapy as first-line treatment of NSCLC. However, the effect of conventional first-line 
platinum-based chemotherapy on the immune infiltrate in the tumor is largely unknown.
Methods  We measured the gene expression of a custom set of 201 cancer- and immune-related genes in 100 NSCLC tumor 
biopsies collected before chemotherapy and 33 re-biopsies after platinum-based chemotherapy at the time point of progres-
sion. For 29 patients matched pre- and post-chemotherapy samples could be evaluated.
Results  We identified a cluster of 47 co-expressed immune genes, including PDCD1 (PD1) and CD274 (PD-L1), along with 
three other co-expression clusters. Chemotherapy decreased the average gene expression of the immune cluster while no 
effect was observed on the other three cluster. Within this immune cluster, CTLA4, LAG3, TNFRSF18, CD80 and FOXP3 
were found to be significantly decreased in patient-matched samples after chemotherapy.
Conclusion  Our results suggest that conventional platinum-based chemotherapy negatively impacts the immune microen-
vironment at the time point of secondary progression.

Keywords  Non-small-cell lung cancer · Immune microenvironment · Chemotherapy · Immune checkpoint

Introduction

For decades, treatment of non-small cell lung cancer 
(NSCLC) relied on combinations of platinum-based chemo-
therapy regimens with rather limited success. However, the 
emergence of immune checkpoint inhibitors is now rapidly 
changing the therapeutic landscape for NSCLC. In 2015, the 
anti-programmed cell death 1 (PD-1) antibodies nivolumab 
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and pembrolizumab were the first immune checkpoint 
inhibitor to be approved by the food and drug administra-
tion (FDA) for the treatment of advanced squamous and non-
squamous NSCLC [1–4]. Recently, two additional blocking 
antibodies against PD ligand 1 (PD-L1), atezolizumab and 
durvalumab, have been approved for the treatment of non-
resectable advanced NSCLC [5, 6]. However, only a minor 
fraction of NSCLC patients has objective responses to these 
immunomodulatory drugs, yet these responses are often 
long-lasting. Reported response rates to nivolumab range 
between 15 and 33% for the treatment of squamous NSCLC 
[3, 4, 7] and between 12 and 19% for the treatment of non-
squamous NSCLC [1, 4, 8]. For pembrolizumab, atezoli-
zumab and durvalumab, similar response rates have been 
reported for either histological subtypes [2, 5, 9].

Since the approval of the anti-PD-1 and anti-PD-L1 anti-
bodies, most NSCLC patients were treated with immune 
checkpoint inhibitors in second-line therapy upon tumor 
progression after standard platinum-based chemotherapy. 
However, the KEYNOTE-24 study documented that first-
line treatment with pembrolizumab was superior to stand-
ard chemotherapy in a subgroup of patients with > 50% 
PD-L1 expression on the tumor cells [10]. It is especially 
noteworthy that the survival benefit was observed despite 
a high degree of crossover of patients from chemotherapy 
to pembrolizumab (43.7%) upon disease progression [10]. 
However, similar trials with nivolumab and durvalumab as 
first-line monotherapy failed to improve progression-free 
survival (PFS) [11, 12]. In contrast, the combination of 
nivolumab with the anti-CTLA-4 blocking antibody ipili-
mumab improved PFS in patients with high tumor muta-
tional burden compared to standard chemotherapy [13].

It has become increasingly clear that response to immune 
checkpoint inhibitors correlates with the presence of a pre-
existing anti-tumoral immune response. Already in the first 
trials, it became clear that the presence of tumor-infiltrating 
T cells (“hot tumors”) is a predictive marker for response to 
immune checkpoint inhibitor [14]. In subsequent studies, 
immune-related gene expression patterns, IFNγ signatures 
and Th1 cytokines have been identified as predictive factors 
for the treatment with PD1/PD-L1 blocking molecules [9, 
15]. Therefore, we sought to analyze the effect of conven-
tional chemotherapy on the expression of immune-related 
genes in NSCLC tumor samples. We measured the gene 
expression of 201 cancer- and immune-related genes in 
NSCLC tumors before conventional platinum-based chemo-
therapy and at the time point of progression. RNA was iso-
lated from formalin-fixed paraffin-embedded (FFPE) tumor 
biopsies collected as part of the SAKK19/09 study from 
epidermal growth factor receptor (EGFR) wild-type, non-
squamous NSCLC patients. No significant difference was 
found when pre- and post-therapy samples were compared 
at a single gene level. Therefore, using a bioinformatics 

approach, we built a weighted co-expression network to 
identify modules of co-expressed genes. Out of four iden-
tified co-expression modules, one module was enriched 
for genes related to adaptive immune responses. Overall, 
chemotherapy was found to reduce the average gene expres-
sion profile of this immune module. This suggests a nega-
tive impact of platinum based chemotherapy on anti-tumoral 
immunity.

Methods

Trial design and objectives

The SAKK 19/09 clinical trial design has been previously 
described [16, 17]. Briefly, the trial was designed as a non-
randomized multi-center phase II study. A total of 152 
patients were enrolled. The inclusion criteria were defined 
as followed: histologic diagnosis of non-squamous NSCLC, 
stage M1a/b according to the 7th TNM edition, no brain 
metastasis according to computer tomography (CT) and 
no contradictions for the trial treatment. Patients receiving 
prior chemotherapy or molecular targeted therapy for meta-
static disease, with the exception of neoadjuvant or adjuvant 
chemotherapy if terminated 6 months before registration, 
were excluded from the study. Overall, three patients were 
excluded from further analysis, as they did not receive any 
treatment (one died before treatment initiation, one had 
a persisting pilonidal sinus and one showed a decreased 
performance status). Patients were stratified according to 
their EGFR mutation status. Patients with EGFR mutations 
(Stratum A: del9 or L858R) (n = 20) were excluded and 
only EGFR wildtype patients (Stratum B) were included for 
further analysis (n = 129). Patients with EGFR wild type 
received either four cycles cisplatin (CIS) with bevacizumab 
(BEV) plus pemetrexed (PEM) (Cohort 1: n = 77) or were 
treated without BEV (Cohort 2: n = 52). The purpose of this 
clinical trial was to demonstrate that (1) tailored therapy 
according to EGFR mutation status was promising for fur-
ther investigation and (2) to test whether BEV plus CIS/PEM 
was superior to CIS/PEM alone [16, 17]. In addition, the 
study required a tumor biopsy at the time point of progres-
sion after first-line therapy to analyse resistance mechanisms 
to chemotherapy and changes in the immune infiltrate in the 
tumor. In the present study, we analyzed the gene expres-
sion profiles from EGFR wild type tumors (Stratum B) at 
baseline and at the time point of progression after first-line 
treatment (Fig. 1).

Treatment and follow‑up protocol

Patients with EGFR wild type received four cycles of induc-
tion therapy with CIS 70 mg/m2 and PEM 500 mg/m2, with 
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or without BEV 7.5 mg/m2 every 3 weeks. Patients without 
progression after four cycles were treated with maintenance 
therapy with PEM 500 mg/m2, with or without BEV 7.5 mg/
m2 every 3 weeks until confirmed progression. If CIS-related 
toxicity > grade 2 was observed, CIS was substituted with 
carboplatin area under the curve 5. Thoracoabdominal CT 
scans were performed at baseline and follow-up scans were 
done every 6 weeks until confirmed progression. Response 
was evaluated according to Response Evaluation Criteria in 
Solid Tumors (RECIST) 1.1.

Sample collection

Written informed consent was obtained for the longitudinal 
collection of formalin-fixed and paraffin-embedded (FFPE) 
tumor biopsies. Diagnostic tumor biopsies were collected at 
baseline and all patients agreed to repeat the tumor biopsy 
upon disease progression. All FFPE tumor biopsies were 
assessed by a board certified pathologist to evaluate ade-
quacy for laser capture microdissection and gene expression 
analysis. The laser capture microdissection was performed 
on a Laser PALM Microlaser Technology System.

mRNA analysis

Total RNA was extracted from microdissected tumor tis-
sue using the FFPE Tissue RNA Extraction Kit from 
amsbio, (Bioggio-Lugano, Switzerland), according to the 
manufacturer’s protocol. RNA quantity was assessed on a 

Nanodrop and quality was assessed on a Bioanalyzer. Gene 
expression was analyzed on a NanoString nCounter plat-
form (Nanostring Technologies). Briefly, 100 ng RNA were 
incubated overnight at 65 °C with Nanostring probe sets.

All samples were analyzed with a custom probe code set 
consisting of a panel of 201 genes.

The genes were selected from literature to evaluate the 
effect of the different treatment regimens on the expression 
immune inhibitory and activating ligands/receptors, NFkB- 
and WNT-signalling related genes, as well as genes involved 
in the nucleotide excision repair pathway and angiogenesis 
(Table S3). The code set contained internal positive (spiked 
RNA to assess overall assay performance) and negative con-
trols (orphan probes for background estimation). Counts of 
hybridized probes were measured on a nCounter Analysis 
system and raw data was normalized using a homemade 
Excel macro as described previously [18]. Briefly, the nega-
tive control averages plus 2 SD were subtracted to correct for 
background noise and values below 0 were set to 1. Then, 
the geNorm method was used to select adequate genes for 
normalization from the included set of 6 candidates based 
on their relative stability [19]. For the final normalization, 
the geometric mean of the selected normalization genes 
was calculated and used as the normalization factor. Nor-
malized expression values were log2 transformed and sam-
ples where > 50% of the probes were not detectable were 
removed from further analysis (Fig. 1). The gene expression 
data are deposited at the NCBI Gene Expression Omnibus 
(GEO) under the accession number GSE154286.

Fig. 1   Flowchart diagram of the 
biopsy collection and analysis
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Co‑expression module detection (gene clusters)

The weighted gene co-expression network analysis 
(WGCNA) R package was used to identify clusters of co-
expressed genes, referred to as modules. The WGCNA 
function ’blockwiseModules’ was implemented to create 
a co-expression network and to extract modules from a 
weighted and signed correlation matrix [20, 21]. The block-
wiseModules function was implemented using the follow-
ing parameters: power = 8, minModuleSize = 10, nework-
Type = “signed”. Briefly, Pearson correlation coefficients 
were calculated for any two genes across all samples. Then, 
a weighted network matrix was obtained by transforming the 
Pearson correlation matrix with a power function. Next, the 
topological overlap measure (TOM) was calculated using a 
dynamic tree-cutting algorithm. 1-TOM was finally used as 
distance measure to cluster genes hierarchically and modules 
were determined from the resulting dendrogram by choosing 
a height cutoff 0.5. Gene expression profiles of the individ-
ual modules are summarized by the module eigengene (ME) 
expression value, defined as the first principle component of 
the expression matrix.

Functional module annotation

To classify the identified co-expression modules function-
ally, gene ontology (GO) enrichment analysis was performed 
using ‘clusterProfiler’ in R [22]. Modules were searched for 
over-represented biological process (bp) GO terms. Enrich-
ment analysis was performed against a background list con-
taining all 201 genes. This ensures that only GO terms which 
are identified by the entire gene set (n = 201) and which are 
enriched in a specific module are detected. GO terms with a 
p value of p < 0.01 were considered as significantly enriched.

Results

Characteristics of the NSCLC dataset

We analyzed the expression of 201 genes related to apop-
tosis, angiogenesis, cell cycling, stemness and immunity 
in FFPE tumor biopsies from NSCLC patients collected 
before and after platinum-based chemotherapy at the time 
of progression. The samples analyzed in this study were col-
lected as part of the SAKK19/09 study from EGFR wild 
type patients (Table 1) [16, 17]. Patients enrolled in the 
study were either treated with CIS + PEM + BEV (n = 77) 
or CIS + PEM (n = 52). Allocation to the treatment arms was 
not randomized. The CIS + PEM + BEV cohort was enrolled 
first, followed by the CIS + PEM cohort. As shown previ-
ously, the lack of randomization did not cause any obvious 
imbalances in the baseline characteristics between the two 

cohorts [17]. Most patients (87%) did not receive any kind 
of treatment prior to their enrolment. Previous treatments 
included surgery, radiotherapy or adjuvant chemotherapy.

Baseline tumor biopsies were collected from 123 of 129 
patients (95.3%; CIS + PEM + BEV n = 74; CIS + PEM 
n = 49) and matched tumor re-biopsies were collected 
at time point of progression from 62 patients (48.1%; 
CIS + PEM + BEV n = 36; CIS + PEM n = 26) (Fig. 1 and 
Table S1). The main reasons for not performing re-biopsies 
were patient-wish and the decision of the physician. The fre-
quency of re-biopsies was comparable in the BEV + cohort 
and in the BEV-cohort (Table S1). We were able to analyze 
the gene expression on the Nanostring nCounter platform 
(NanoString Technologies) for 116 of 123 baseline sam-
ples and 36 of 62 re-biopsies (Fig. 1 and Table S1). Sam-
ples where the expression of more than 50% of the genes 

Table 1   Patient characteristics

All categories except “previous treatment” sum up to 100%. Patients 
may have received more than one previous treatment modality before 
inclusion into the study
CIS cisplatin, PEM pemetrexed, BEV bevacizumab

Cohort (n = 129)

n %

Gender
 F 56 43.4
 M 73 56.6

Urine dipstick for proteinuria
 1+  22 17.1
 Negative 107 82.9

Smoking
 Yes, currently 67 51.9
 Yes, formerly 45 34.9
 Never 17 13.2

Tumor stage
 M1a 22 17.1
 M1b 107 82.9

Comorbidities
 No 29 22.5
 Yes 100 77.5

Chemotherapy regimen
 CIS + PEM + BEV 77 59.7
 CIS + PEM 52 40.3

Previous treatment
 No 113 87.5
 Chemotherapy 8 6.2
 Radiotherapy 4 3.1
 Surgery 15 11.6

Written consent for biobanking
 Yes 123 95.3
 No 6 4.7
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was below the detection limit were excluded from further 
analysis. In the final gene expression dataset, 100 baseline 
biopsies and 33 re-biopsies remained for the analysis (29 
matched biopsies, 71 single baseline biopsies, 4 single re-
biopsies) (Fig. 1 and Table S1).

Impact of chemotherapy on the gene expression 
profile

To visualize the effect of platinum-based chemotherapy on 
gene expression in NSCLC, we performed unsupervised 
hierarchical clustering on centred and scaled gene expres-
sion levels. Clustering of a subset of patient-matched base-
line/progression biopsies (n = 29 pairs) resulted in a sepa-
ration of baseline and progression biopsies into separate 
clusters (p = 0.0002, McNemar test) (Fig. 2a). The same 
picture was obtained when we repeated the unsupervised 

hierarchical clustering on the entire dataset containing 
all 100 baseline biopsies and 33 rebiopsies (n = 133) 
(p = 0.0003, Chi-square test) (Figure S1).

With the exception of 5 paired pre- and post-treatment 
samples clustering right next to each other (17.2%), 
the remaining paired samples clustered relatively far 
apart. Out of these five patients, four were treated with 
CIS + PEM and one received CIS + PEM + BEV (Figure 
S2). Thus, 36.4% of CIS + PEM pre- and post-treatment 
samples compared to 5.6% of CIS + PEM + BEV pre- 
and post-treatment samples clustered next to each other 
(p = 0.0331, Chi-square test) (Figs. 2b and S2). This means 
that the gene expression profiles of patients receiving 
CIS + PEM showed a higher proportion of patient samples 
with high similarities between baseline and rebiopsy com-
pared to patients receiving CIS + PEM + BEV (Fig. 2b). 

Fig. 2   Clustering of baseline biopsies and matched rebiopsies from 
29 EGFR wild type NSCLC patients. a Heatmap for the expression 
of 201 immune and cancer-related genes. Columns represent NSCLC 
biopsies and rows represent genes. Expression values have been cen-
tred and scaled for each row for better visualization. Rows and col-
umns have been grouped using unsupervised hierarchal clustering. 
Two patient subgroups were derived from the clustering and are indi-
cated above the heatmap: (violet) subgroup 1 (n = 38), (orange) sub-

group 2 (n = 20). Blue and yellow bars indicate baseline biopsies and 
rebiopsies, respectively. b Frequency of paired pre- and post-therapy 
samples found to cluster together as neighbours or apart after treat-
ment with CIS + PEM or CIS + PEM + BEV. Statistics: McNemar test 
was used to calculate the significance of matched samples to cluster 
apart from each other into subgroup 1 and subgroup 2. Chi-square 
test was used to calculate cluster as neighbours or apart from each 
other
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This suggests that the addition of BEV could increase 
changes in gene expression induced by chemotherapy.

Identification of an immune gene co‑expression 
network

Overall differential expression analysis did not detect sig-
nificantly differentially expressed genes. We attribute this to 
our biased and limited selection of genes and an overall het-
erogenous sample population. Therefore, we decided to use 
an unbiased approach to identify global gene co-expression 
networks and correlate them with the time point of biopsy. 
To achieve this, the expression data from the entire gene 
expression dataset (n = 133) was used to identify gene co-
expression networks. The WGCNA R package was used to 
identify clusters of co-expressed genes, so-called modules 
based on average linkage hierarchical clustering [20, 21]. 
A power of beta = 8 was applied as the soft threshold to 
ensure a scale-free network. With this method, the algorithm 
identified 4 co-expression modules (Fig. 3a and Table S2). 
Next, we analyzed whether these modules correspond to 
specific biological functions using GO enrichment analysis. 
Only the blue and yellow modules enriched significantly for 
GO biological processes (Fig. 3a). The yellow module was 
enriched for genes involved in cell cycle regulation (Fig-
ure S3). The top 15 enriched GO terms in the blue module 
were all immune-related processes, relevant for activation, 
differentiation and proliferation of lymphocytes, especially 
T-cells (Fig. 3b). Among the 47 genes which make up the 
blue “immune” module we found the immune checkpoint 
genes PDCD1, CD274 and CTLA4.

Based on the differential expression profile of the 47 
immune-related genes that constitute the blue module, we 
repeated an unsupervised average linkage hierarchical clus-
tering on all samples of the dataset (n = 133) (Fig. 3c). This 
analysis divided the patients in two main clusters: (1) a clus-
ter with low gene expression levels (immune-cold, marked 
by the red ribbon) and (2) a cluster with intermediate to high 
gene expression levels (immune-active, marked by the green 
ribbon). Interestingly, the immune-cold cluster was signifi-
cantly enriched for biopsies collected at the time point of 
progression (p = 0.0175, Chi-square test). We observed the 
same result, when the analysis was restricted to the patient-
matched samples (n = 29 pairs). The samples clustered into 
an immune-hot and an immune-cold cluster and re-biopsies 
after chemotherapy cluster significantly into the immune 
cold cluster (p = 0.0215, McNemar test) (Data not shown).

Chemotherapy reduces the expression 
of immune‑related genes

Based on the observation that patient-matched samples at 
baseline and progression tended to cluster distant from each 

other (Fig. 2b), we compared the expression of the genes 
in the immune module (blue) of patient-matched samples 
before and after chemotherapy (n = 29 pairs). The expres-
sion of genes in each module was summarized in a module 
eigengene (ME) expression value based on the first prin-
cipal component of this module, which can be considered 
as the best summary of the standardized expression data 
of the genes included in the module. We then compared 
MEs between all paired baseline/progression samples. We 
found that the blue immune module was the only one to 
be significantly reduced after chemotherapy (p = 0.0167; 
Paired T test with Holm Sidak correction) (Fig. 4a). This is 
in line with the observation that the re-biopsies clustered at 
a higher frequency in the immune cold cluster (p = 0.0175, 
Chi-square test) (Fig. 3c). This reduction of immune-related 
genes was observed in both cohorts treated either with 
CIS + PEM + BEV (p = 0.0345; Paired T test with Holm 
Sidak correction) or with CIS + PEM (p = 0.0345; Paired T 
test with Holm Sidak correction) (Fig. 4b).

Chemotherapy causes down regulation of CTLA4, 
FOXP3, LAG3, TNFRSF18 and CD80

As chemotherapy only had an impact on the overall expres-
sion of the immune module (Fig. 4), we restricted the dif-
ferential gene expression analysis to the latter. Of the 47 
immune-related genes analyzed in 58 patient-matched 
baseline/progression samples (n = 29 pairs), we found 
5 genes to be significantly reduced after chemotherapy 
(paired T test with controlling false discovery rate (FDR) at 
q = 0.05). Genes that were significantly reduced in re-biop-
sies included cytotoxic T-lymphocyte-associated protein 4 
(CTLA4; p = 0.00141; q = 0.02132), Forkhead-Box-Protein 
P3 (FOXP3; p = 0.00147; q = 0.02132), lymphocyte-activa-
tion gene 3 (LAG3; p = 0.00177; q = 0.02132), tumor necro-
sis factor receptor superfamily member 18 (TNFRSF18; 
p = 0.00181; q = 0.02132), and cluster of differentiation 
80 (CD80; p = 0.05038; q = 0.04736) (Fig. 5a–e). Down-
regulation of one of these genes was accompanied by the 
down-regulation of several or all of the five immune-related 
genes (Fig. 5f). Next, we tested whether the observed reduc-
tion of the average expression of the immune module was 
mainly the result of the changes in the expression of CTLA4, 
FOXP3. LAG3, TNFRSF18 and CD80. Therefore, we cal-
culated the blue module eigengene values without includ-
ing CTLA4, FOXP3, LAG3, TNFRSF18 and CD80. Despite 
removing these genes the blue module eigengene was still 
significantly reduced after treatment with chemotherapy 
(Figure S4). This indicates that the observed reduced expres-
sion of a panel of immune-related genes in the blue module 
did not depend on a few defined genes.

Even though interferon-γ (IFN-γ) was not signifi-
cantly differently expressed in matched patient samples 
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(p = 0.1774, paired t-test with controlling FDR at q = 0.05), 
we included this cytokine in the analysis based on a recent 
publication by Higgs et al. [23] They found that survival 
of NSCLC patients receiving durvalumab correlated with 
detectable IFN-γ mRNA in tumor biopsies. Overall, we 
detected IFN-γ in 58 out of 100 baseline samples (58%) 
and in 4 out of 33 progression samples (12.1%) (Fig. 5g). 
Restricting the analysis to matched patient samples, 
we detected mRNA expression in 11 out of 29 baseline 

biopsies (34.5%). After chemotherapy, IFN-γ expression 
was detectable only in 4 out of the 29 patient-matched re-
biopsies (13.8%). Interestingly, only 1 out of the 11 IFN-
γ+ baseline samples remained IFN-γ+ after progression 
(Fig. 5h). While binominal analysis of IFN-γ expression 
is significantly reduced in the rebiopsies (p < 0.0001, Chi-
square test) over all samples, we only observed a trend in 
patient-matched samples (p = 0.0923, McNemar test).

Fig. 3   Identification of an immune module in NSCLC. a The entire 
dataset consisting of 201 genes was clustered based on a weighted 
gene co-expression network as represented by the correlation heat-
map. The intensity of red in the heatmap represents the correlation 
strength between any two genes on a linear scale. The 4 identified 
co-expression clusters, referred to as modules, are indicated by the 
colors yellow, brown, blue and turquoise. b Barplot representing the 
top 15 enriched gene ontology biological process terms (p < 0.01) 
of all genes included in the blue module. c Unsupervised hierar-
chical clustering of the entire dataset (n = 133) based on the gene 

expression of genes included in the blue module(n = 47). Rows rep-
resent NSCLC biopsies and columns represent genes. Two patient 
subgroups were derived from the clustering and are indicated above 
the heatmap:(green) immune-active (n = 101), (red) immune-cold 
(n = 32). Blue and yellow bars indicate baseline biopsies and biopsies 
upon progression, respectively. Statistics: Chi-square test was used to 
calculate the significance of baseline biopsies and rebiopsies cluster-
ing apart from each other into the immune-active and immune-cold 
cluster
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Discussion

It has become increasingly clear that the success of immune 
checkpoint inhibition is strongly linked to the presence of a 
pre-existing T cell response against the tumor [23]. Several 
studies have analyzed the immune tumor microenvironment 
by gene expression profiling in the search of predictive bio-
markers. A retrospective analysis of 50 tumor samples from 
melanoma patients treated with the anti-CTLA4 antibody 
ipilimumab provided the first evidence that gene expres-
sion profiling could be useful as a predictive biomarker 
[15]. Clinical activity (objective response or stable dis-
ease ≥ 24 weeks) with ipilimumab correlated with an active 
immune microenvironment in the tumor. The expression 
of 22 immune-related genes including the cytotoxic T cell 
markers granzyme B (GZMB), perforin (PRF1), as well 
as MHC class II HLA-DQA1 correlated with response to 
immunotherapy [15]. Ribas et al. presented two IFN-γ-
related gene signatures with predictive value, a 10-gene and 
an expanded 28-gene immune signature, including IFNG, 
CXCL10, LAG3, GZMB and HLA-DR [24].

In the present analysis, we identified a module of 47 
immune-related genes that were co-expressed in non-
squamous NSCLC EGFR wild-type tumors. The module 

consisted of genes involved in the regulation of the adaptive 
immune response similar to the immune profiles defined 
by the two other groups [15, 24]. Standard platinum-based 
chemotherapy had a negative impact on the expression 
of this immune gene module. Importantly, chemotherapy 
reduced the average expression of a panel of immune-
related genes, even though the overall differential expression 
analysis did not detect a differential expression in a single 
defined gene. Although CTLA4, TNFRSF18, LAG3, CD80 
and FOXP3 gene expression were found to be significantly 
reduced when the analysis was limited to the immune mod-
ule, these defined genes did not determine the overall effect 
of chemotherapy on the immune module.

Even though BEV has been reported to have posi-
tive immune-modulatory effects we did not observe any 
major differences in chemotherapy-induced changes of 
the immune microenvironment between CIS + PEM and 
CIS + PEM + BEV treated patients [25]. In contrast, the 
IMpower150 trial recently reported improved overall sur-
vival (OS) with first-line atezolizumab in combination with 
carboplatin, paclitaxel and bevacizumab over carboplatin, 
paclitaxel and bevacizumab. Interestingly, atezolizumab in 
combination with carboplatin and paclitaxel alone did not 
improve OS [26, 27]. Our data suggest that BEV might act 

Fig. 4   Effect of chemotherapy 
on co-expression modules in 
patient-matched biopsies. Col-
lective expression (represented 
by the module eigengene) of a 
the 4 identified co-expression 
modules stratified by the biopsy 
time point and b the blue 
co-expression module further 
stratified by treatment arm. Sta-
tistics: Paired T test with Holm-
Sidak for multiple comparison 
correction
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synergistically with immune checkpoint blockade via other 
mechanisms than maintaining or supporting the immune 
infiltrate in the tumor.

Higs et  al. demonstrated that NSCLC patients with 
detectable IFN-γ mRNA expression in the tumor responded 
better to durvalumab compared to patients with no detect-
able levels of IFN-γ [28]. In our study, over the course of 
chemotherapy until progression, only one out of ten patients 
remained IFN- positive and nine lost IFN-γ expression, 
while four previously IFN-negative patients turned IFN-
positive. This suggests that IFN-γ mRNA expression in the 
tumor should be analysed directly before immunotherapy 

and not in archival samples taken at the time point of diag-
nosis before chemotherapy.

The expression of CTLA4, TNFRSF18, LAG 3and CD80 
and the regulatory T-cell marker FOXP3 were significantly 
reduced when analysed as single genes in the biopsy sam-
ples taken at progression after first-line chemotherapy and 
when the statistical analysis was limited to the immune 
module. CTLA4 and PD1 are both expressed on activated T 
cells. CTLA-4 inhibits early T cell activation and cell cycle 
progression, whereas PD-1 primarily inhibits T cell func-
tion in the effector phase [29]. The anti-CTLA4 antibody 
ipilimumab was the first immune checkpoint inhibitor to get 

Fig. 5   Differently expressed blue module genes in patient-matched 
biopsies. Differential gene expression of genes belonging to the blue 
module (n = 47) was analyzed in patient-matched baseline/progres-
sion biopsies (n = 29 pairs). Genes found to be significantly differ-
ently expressed were a CTLA4, b FOXP3, c LAG3, c TNFRSF18 
and b CD80. Statistics: Paired t-test with FDR (q = 0.05) for multi-
ple comparison correction. f Heatmap representing the changes in 
gene expression of CTLA4, FOXP3, LAG3, TNFRSF18 and CD80 
between the rebiopsy and baseline biopsy (Log2 fold change). Rows 

and columns have been grouped using unsupervised hierarchal clus-
tering. g, h IFNγ expression status (IFNγ+ or IFNγ−) at baseline and 
progression of g all biopsies and h only paired Biopsies. Each cir-
cle represents a patient. For paired samples yellow circles represent 
patients without a change in the IFNγ expression status, orange cir-
cles represent IFNγ+ patients which become IFNγ− and blue circles 
represent IFNγ− patients which become IFNγ+. Statistics: Chi-square 
test (g) and McNemar test (h)
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FDA approval. However, single-agent immune checkpoint 
blockade with anti-CTLA4 antibodies have not been effica-
cious in patients with metastatic NSCLC [30]. Currently, 
multiple clinical trials investigate the therapeutic potential 
of combined CTLA4/PD-1 blockade in NSCLC patients 
(NCT03409614, NCT02453282, NCT03319316). Besides 
PD1 and CTLA4, LAG3 is another important immune 
checkpoint receptor that was found to be expressed on 
activated TILs but not NSCLC cells [31]. Preclinical stud-
ies have found that inhibition of LAG3 allowed cytotoxic 
T-cells to regain cytotoxic function similar to PD-1/PD-L1 
inhibition [32]. A phase I/IIa study is currently testing an 
anti-LAG3 antibody (BMS-986016) in immune therapy 
refractory solid tumors (NCT01968109). Multiple preclini-
cal studies have provided evidence that stimulation of GITR 
(TNFRSF18) in the tumor microenvironment contributes to 
costimulatory activation of CD4 and CD8 T-cells, while 
inhibiting/depleting intra-tumoral regulatory T cells [33].

To our knowledge, our study is the first analysis of the 
immune microenvironment in metastatic non-squamous 
NSCLC before and after standard platinum-based chemo-
therapy. Despite the relatively low number of samples, 
we document that the average expression of a panel of 47 
immune-related co-expressed genes is significantly down-
regulated after platinum-based chemotherapy. Altogether 
our data suggests that conventional platinum-based chemo-
therapy negatively impacts anit-tumoral immunity.
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