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Abstract: Current treatment for invasive fungal diseases is limited to three classes of antifungal drugs:
azoles, polyenes, and echinocandins. The most recently introduced antifungal class, the echinocandins,
was first approved nearly 30 years ago. The limited antifungal drug portfolio is rapidly losing its
clinical utility due to the inexorable rise in the incidence of invasive fungal infections and the
emergence of multidrug resistant (MDR) fungal pathogens. New antifungal therapeutic agents and
novel approaches are desperately needed. Here, we detail attempts to exploit the antifungal and
immunoregulatory properties of host defense peptides (HDPs) in the design and evaluation of new
antifungal therapeutics and discuss historical limitations and recent advances in this quest.

Keywords: antifungals; host defense peptides; peptidomimetics; immunomodulation; multidrug
resistance; defensins

1. Introduction

Invasive fungal infections are a global health concern, with high rates of incidence and mortality,
particularly in immunocompromised patients [1–3]. The paucity of antifungal drugs available
for treatment of invasive mycoses represents a growing public health vulnerability, as the numbers
of immunosuppressed individuals grow with increasing use of cancer chemotherapy, bone marrow
and solid organ transplants, and immunosuppressive drugs for treatment of autoimmune disorders.
Serious, often life-threatening, mycoses that affect humans are primarily due to only a few genera
(Table 1). Candida spp. infections range from mild and superficial to invasive infections with mortality
rates of 40% or greater [2]. An estimated 200,000 cases of Aspergillus spp. infections occur annually
with invasive disease primarily affecting immunocompromised patients. With treatment, invasive
aspergillosis causes death in up to 50% of affected patients, whereas left untreated, as often occurs
in developing countries, lethality approaches 100% [1]. Immunocompromised patients are also highly
susceptible to cryptococcosis caused by Cryptococcus neoformans and closely related Cryptococcus
gattii. Although cryptococcosis is initially a pulmonary infection, in the immunosuppressed patient
the organism commonly disseminates systemically to the central nervous system (CNS) causing
meningoencephalitis with an estimated 70% mortality [1].

Currently, there are three classes of antifungals: azoles, polyenes, and echinocandins (Table 2).
Azoles are the most widely used class of antifungal agents because of their bioavailability as oral and
intravenous (i.v.) formulations and their excellent safety profiles. However, some Candida species, such
as C. krusei, are intrinsically resistant to fluconazole, the most widely used azole. Fluconazole-resistant
isolates are emerging rapidly because azoles are fungistatic which promotes resistance selection with
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extended use [4,5]. Polyenes have been in use since the 1950s, but their toxicities limit their use to
severe infections. The toxicity of amphotericin B (AmpB) is well known, particularly its nephrotoxicity,
due to its affinity for and disruption of host cell membranes [6]. Fortunately, lipid-associated and
liposomal formulations of AmpB have reduced adverse events associated with its use [6]. Although
initially approved nearly 30 years ago, echinocandins are the newest class of antifungals. While
usually effective in treatment of candidiasis and aspergillosis [7,8], echinocandins are ineffective against
Cryptococcus spp. and endemic mycoses [7].

Table 1. Annual worldwide fungal infections.

Fungal Disease Estimated Cases Mortality Rate References

Candidiasis 400,000/year 10–75% [1,2,4]
Aspergillosis 200,000/year 30–95% [1,4]

Cryptococcosis 1,000,000/year 20–70% [1,4]

Table 2. Approved antifungals for clinical usage.

Antifungal Class Fungal Targets Mechanism of Action Limitation References

Azoles Aspergillus, Candida, Cryptococcus
Interference with ergosterol

biosynthesis via
14α-demethylase inhibition

Fungistatic [4,5]

Polyenes Aspergillus, Candida, Cryptococcus,
Histoplasma, Blastomyces

Ergosterol extraction from
plasma membrane Toxicity [4]

Echinocandins Aspergillus, Candida β-1,3-glucan synthase inhibition Poor oral
bioavailability [7]

The public health impact of systemic mycoses is amplified by the increasing incidence of multidrug
resistant (MDR) pathogens. Numerous clinical isolates have emerged that are resistant to all three
classes of approved antifungals [4,9–13], highlighted by the international spread of MDR C. auris,
which is now classified by CDC as a serious threat [14,15]. In the United States alone, systemic mycoses
are estimated to cause more than 1.6 million deaths annually [16] with associated treatment costs
exceeding USD 7 billion [17]. Accordingly, new efforts are underway to address the growing and
worldwide impact of systemic fungal infections, including the development of fungal vaccines and
new therapeutic strategies [18–20]. Here we discuss the potential of host defense peptides (HDPs) (also
long referred to as antimicrobial peptides) as bioinspired templates for new agents to treat invasive
fungal infections. While antimicrobial peptides are expressed by nearly all life forms, the primary focus
of this review will be on antifungal HDPs expressed as elements of the mammalian immune system.

2. Mammalian HDPs

HDPs are short polypeptides, generally fewer than 50 amino acids, that display a wide range
of in vitro antimicrobial activities against bacteria, fungi, viruses, and unicellular protozoa [21].
HDPs expressed in mammals are structurally diverse, predominantly expressed in leukocytes and
epithelia [22–24], and nearly all were identified by in vitro antimicrobial screens of fractionated tissue
extracts. A number of elegant studies have disclosed a central role for HDPs in innate immunity [25–29],
thus it was logical that these molecules be evaluated for their potential as therapeutics. In addition,
enzymatic cleavage of larger proteins may generate peptides (termed cryptides) with antimicrobial
properties that potentially contribute to antimicrobial host defense [30]. Collectively, studies that
began in the 1960s have identified several hundred antimicrobial peptides, many of which possess
antifungal activities [18,31]. As discussed below, the vast majority of mammalian antifungal HDPs are
fungicidal. Moreover, many HDPs also have immunoregulatory properties that appear to be essential
for antifungal responses of host cells in vitro and for antifungal efficacy in vivo. In the following
sections, we detail the major classes of mammalian antifungal HDPs, the status of their development as
therapeutic candidates, and discuss promising advances of HDP-inspired, antifungal peptidomimetics.
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2.1. Histatins

Histatins (Hsts; Table 3) constitute a family of linear histidine-rich cationic peptides isolated from
human saliva [32]. Among the 12 Hst family members characterized, Hst5 is the most potent fungicidal
peptide against C. albicans in vitro [33]. Synthetic Hst5 variants, termed Dhar4 and Dhar5, also inhibit
biofilm formation of MDR C. albicans in vitro [34,35]. The candidacidal activity of Hst5 results from
its binding to the yeast cell surface followed by internalization into the cytosol. Intracellular Hst5
induces oxidative stress and impairs mitochondrial function that induces a lethal ionic imbalance
in fungal cells [33]. PAC-113 is a dodecapeptide, corresponding to amino acids 4–15 of Hst5, in which
the C-terminal His is carboxamidated. Topically applied PAC-113 has been shown to be effective
in phase I and II in clinical trials for oral candidiasis in HIV patients [18], and a rinse formulation
for treatment and prevention of oral candidiasis is being developed by Pacgen Biopharmaceuticals.
PAC-113 is currently marketed as an over-the-counter product in Taiwan. As topical agents, Hst and
derivatives thereof have shown promise as candidacidal agents with low toxicity toward mammalian
cells [36]. There have been no reports of systemic delivery of Hsts or their derivatives, indicating their
utility is limited to topical applications.

2.2. Cathelicidins

The cathelicidin peptide family is a heterogeneous group of peptides with sizes ranging from
12 to 80 residues with highly diverse sequences and structures [73]. They share a highly conserved,
amino terminal prepro sequence termed the cathelin domain. The most extensively studied antifungal
cathelicidin is LL-37 (Table 3), the only known human cathelicidin. LL-37 is a cationic α-helical
peptide composed of 37 amino acids that is widely expressed in the skin, gastrointestinal, urinary,
and respiratory tracts [74,75], as well as by monocytes, neutrophils, NK, B, and T cells [76–78]. LL-37
is fungicidal in vitro against C. albicans and Aspergillus spp. [39,79]. LL-37 disrupts the cytoplasmic
membrane of C. albicans blastospores [39] and also protects mammalian host cells by inhibiting
biofilm formation and host cell binding by interaction with yeast cell wall carbohydrates [80]. LL-37
inhibits A. fumigatus hyphal growth and adhesion to host cells resulting in suppression of TNF-α
and IL-6 release [42,45]. The immunoregulatory effects of LL-37 include its chemoattraction of
neutrophils [38] and augmentation of reactive oxygen species (ROS) production by neutrophils exposed
to phorbol 12-myristate 13-acetate or bacteria [37]. The peptide also induces chemokine release by
leukocytes and epithelial cells, in particular IL-8, to increase neutrophil recruitment [40], and it inhibits
neutrophil apoptosis [43]. LL-37 selectively modulates proinflammatory cytokines by peripheral blood
mononuclear cells (PBMCs). For example, the peptide downregulates TNFα, IL-1β, IL-6, and IL-8
secretion by blood monocytes stimulated with TLR2 or TLR4 agonists, but it stimulates TNFα and IL-6
production by CpG-stimulated monocytes [20,41,44].

Other cathelicidins evaluated for their antifungal potential include porcine protegrins (cationic
hairpin peptides of 16–18 amino acids stabilized by two disulfides) [46] and bovine indolicidin,
a cationic tryptophan-rich tridecapeptide amide [81] (Table 3). Protegrins and indolicidin are expressed
at high levels in granulocytes of the respective species. Protegrins have potent fungicidal activity
against C. albicans in vitro but failed to advance clinically due to their unacceptable toxicity toward
mammalian cells [46]. Similarly, indolicidin was fungicidal against Candida spp. and C. neoformans
in vitro [82], but was cytotoxic and poorly tolerated in naive BALB/c mice that received the peptide
i.v. [47]. However, liposomal encapsulation of indolicidin markedly reduced cytotoxicity and greatly
improved tolerability when administered i.v. to mice [47]. This improved formulation was tested
for therapeutic efficacy in mice challenged with A. fumigatus spores. A single dose of liposomal
indolicidin was therapeutically effective in this model, providing evidence that liposomal formulation
technology, used to enhance tolerability and efficacy of AmpB, could be applied to an antifungal
peptide [47].
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Table 3. Representative host defense peptides (HDPs) and mimics.
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Table 3. Cont.
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RTD-1
(θ-defensin)
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RTD-1 
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Tri-disulfide β-
stranded 

macrocycle 

Permeabilizes 
fungal cells and 

induces oxidative 
stress in vitro, 

enhances fungal 
clearance in vivo 

PDB: 2LYF 
[9,60–65] 

AB103; 
Raltecimod 

(CD-28 mimetic) 

 
ASPMLVAYDA 

 

 

D-Ala1, D-Ala10 
CD-28 mimetic 

 

Modulates host 
responses in vivo 

 

Chemspider: 
58828035 

[66,67] 

Zadaxin 

 

SDAAVDTSSEITTKDLKEKKEVVEEAEN 
 

 

α-helix; 
synthetic 
version of 

human peptide 
thymosin α 1 

Modulates host 
responses in vivo 

PDB: 2L9I 
[68-70] 

GFCRCLCRR 

RTCICRCVG 
Tri-disulfide β-stranded macrocycle Permeabilizes fungal cells and induces oxidative

stress in vitro, enhances fungal clearance in vivo
PDB: 2LYF
[9,60–65]
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Table 3. Cont.

Compound Sequence/Structure Structural Motif Activity Reference/Database
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the magainin-inspired mPE
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[71,72]
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2.3. α- and β-Defensins

The defensin family comprises three structural subfamilies, termed α-, β-, and θ-defensins [83],
the first two of which will be discussed here. α- and β-defensins vary in length from 29 to
47 amino acids [84], and despite having different tri-disulfide motifs, have remarkably similar tertiary
structures (Table 3). In vitro, neutrophil α-defensins are fungicidal against numerous species, including
C. albicans [85], C. neoformans [86], Coccidioides immitis [87], Rhizopus oryzae, and A. fumigatus [88].
Additionally, numerous studies demonstrate that human α-defensins possess immunomodulatory
properties that are predominantly proinflammatory. For example, α-defensins induce IL-6 secretion by
T-cells [50], upregulate TNFα and IL-1β expression by monocytes [48], stimulate TNFα, IL-6, and IL-12
expression in myeloid dendritic cells [89], and induce IL-8 release by lung epithelial cells [49,51,90].
α-defensins also act as a bridge between innate and acquired immunity by promoting antigen or
tumor-specific immune responses in vitro and in vivo [50,91,92], mobilizing immature dendritic
cells and naïve T lymphocytes [93], and enhancing chemotaxis of macrophages, mast cells, and T
lymphocytes [94].

β-defensins were first identified in cattle [95,96], and soon thereafter discovered in humans [97].
There are more than 40 human β-defensin (HBD) genes [98], but most studies on HBD peptides
have focused on HBDs 1–3 which are expressed in many tissues [99]. HBD-2 and 3 expression
is induced by proinflammatory signals, such as TNFα and IL-1β [100–105], whereas HBD-1 is
expressed constitutively [106,107]. HBD-1 was fungistatic against Candida spp. [108,109] whereas
both HBD-2 and HBD-3 were fungicidal against C. albicans [55]. In addition to their microbicidal
properties, like α-defensins, β-defensins function as immunostimulants. For example, mouse
β-defensin-2 is an endogenous ligand for TLR-4 on immature dendritic cells, producing a Th1
polarized immune response with production of IL-1 α/β, IL-6, and IL-12 [52]. HBDs 2–4 induced
expression of several proinflammatory cytokines in keratinocytes [53,54] and HBD-2 elicited similar
effects in CD3/28-stimulated peripheral T-cells [53]. Under some conditions, HBDs are reported to
have immunosuppressive activities [110].

Therapeutic development of α- and β-defensins, including those expressed in humans, have not
advanced to the clinic for any indication. In fact, none of the antifungal peptides described above have
been translated clinically for treatment of invasive mycoses. However, Hst and indolicidin analogs,
LL-37-derived peptides, and a number of other synthetic peptides are under development as topical
agents to treat a number infectious diseases including mucocutaneous candidiasis [31]. As discussed
by Haney et al., it is not surprising that the antimicrobial activities of HDPs determined in vitro do
not predictably translate functionally in the physiologic milieu of infected host tissues [111], despite
the wide use of this approach for small molecules. For HDPs, the challenge of in vitro-to-in vivo
translation, especially for a systemically administered drug, is complicated by other factors including
unpredictable binding of the peptide to blood elements and tissues, peptide degradation, unfavorable
pharmacokinetics, and potentially adverse effects of the HDP itself. It is evident, therefore,
that preclinical efficacy and toxicology studies are required to justify clinical development of HDPs.

3. Potential Role of HDPs in Antifungal Drug Development

For reasons outlined above, the track record of peptide-based drug development of anti-infectives
is littered with failures. Ironically, the development of peptide drugs in general is on a steep positive
trajectory, with 20 new peptide-based clinical trials every year, and more than 400 peptidic drugs
in clinical development. Over the last 20 years, a total of 60 peptide drugs have been approved
worldwide, with metabolic disorders and cancer as the main targeted therapeutic areas [112]. Moreover,
as noted above, a number of HDPs are in development for topical antifungal applications, including
the treatment of oral and vulvovaginal candidiasis [31]. Despite the challenges of antifungal drug
development in general, and the inherent barriers encountered in developing peptide drugs, there is
reason to be hopeful that the biological properties of HDPs may contribute to the quest for new
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antifungal agents. The following sections provide a few examples of recent successes, exploiting both
the antifungal and immunotherapeutic properties of HDPs.

3.1. IDR-1018

Hancock and colleagues were among the first to recognize that the antimicrobial efficacy of HDPs
was linked to the immunoregulatory properties of the molecule [111,113]. This informed the synthesis
of innate defense regulator (IDR) peptides using bovine cathelicidin Bac2a as the template for analog
design and subsequent activity screens. Freitas et al. demonstrated the utility of this approach in studies
of IDR-1018, a linear dodecapeptide amide that was tested for its effect on survival in a mouse model
of systemic candidiasis [56]. Candidemic mice were treated daily with 1, 5, or 10 mg/kg of IDR-1018
by the i.p. route beginning 24 h post retroorbital infection. The highest dose statistically prolonged
survival and had a modest effect on fungal kidney burden after 7 days of peptide treatment. It was
concluded that the therapeutic effect of IDR-1018 is mediated by its modulation of proinflammatory
cytokines (TNFα, IL-1β, IL-6, and IL-12) by bone marrow derived macrophages stimulated with heat
killed C. albicans [56].

3.2. hLF 1-11

Human lactoferrin (hLF) is a 77 kDa iron-binding glycoprotein implicated in host defense by direct
killing of C. albicans, or through the action of proteolytic fragments (cryptides). A number of studies
were performed using hLF1-11, the amino terminal undecapeptide of hLF. hLF1-11 is fungicidal
in vitro, having greater potency than hLF itself [59]. Direct fungal killing occurred by increasing
mitochondrial potential and permeability via calcium uptake, which resulted in ROS and adenosine
triphosphate production, and consequently in C. albicans cell death [58]. The efficacy of hLF1-11 in vivo
was evaluated in neutropenic mice challenged i.v. with C. albicans Y01-19 and treated with a single
i.v. dose of hLF1-11 24 h post infection. After an additional 18 h, mice were euthanized and renal
fungal burden was quantified as a function of peptide dose. Significant reduction is fungal burden
was obtained with peptide doses as low as 0.4 ng/kg [58]. Although the study design did not allow
for determination of treatment impact on survival, histologic analysis indicated that peptide treatment
inhibited filamentation of surviving fungi. Moreover, hLF1-11 treatment dose-dependently reduced
serum TNFα and IL-6 in infected mice.

3.3. θ-Defensins

Recent studies suggest that θ-defensins, the third of the three mammalian defensin subfamilies,
may represent a unique HDP template for antifungal drug development. θ-Defensins are cyclic
octadecapeptides expressed exclusively in Old World monkeys and are the only known cyclic
polypeptides in the Animal Kingdom [114]. The cyclic backbone is produced by head-to-tail splicing
of two nonapeptides derived from α-defensin-like precursors [115], and binary combinations produce
multiple θ-defensin isoforms (e.g., six in rhesus macaques [116]; 10 in olive baboons [117]) that have
distinct antimicrobial activities against bacteria and fungi in vitro [9,116–118].

Rhesus theta defensin 1 (RTD-1), the first θ-defensin isoform described, has served
as the prototype for characterizing in vitro antimicrobial activities against bacteria, fungi, and enveloped
viruses [9,85,117–122]. In early in vivo studies, single dose administration of RTD-1 was effective
in E. coli- and polymicrobial sepsis in BALB/c mice [62]. While RTD-1 is broadly microbicidal in vitro,
numerous lines of evidence suggested that in vivo efficacy is a function of RTD-1 immunomodulation of
systemic inflammation. Studies show that RTD-1 homeostatically regulates LPS- and E. coli-stimulated
release of TNFα by inhibiting tumor necrosis alpha converting enzyme (TACE; ADAM17) [61], as well
as other proinflammatory cytokines by regulation of nuclear factor kappa B and mitogen-activated
protein kinase pathways [64]. These studies suggested that RTD-1 promotes survival in mouse models
of sepsis by immunomodulation of the host response.
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In a recent study, the candidacidal properties and fungicidal mechanisms of natural θ-defensin
isoforms were evaluated, demonstrating that the peptides are broadly, though differentially, fungicidal
against numerous Candida species including MDR resistant strains of C. albicans and C. auris [9]. RTD-1
killing of C. albicans was time and concentration dependent, and temporally correlated with yeast
permeabilization, ATP release, and induction of fungal ROS [9]. RTD-1 was >200-fold more active than
Hst5 in these studies, and was stable to fungal proteases that rapidly degraded Hst5 [9]. These findings
are consistent with previous studies demonstrating the stability of RTD-1 in biological matrices [62].
Moreover, θ-defensins are extremely poor immunogens [63], suggesting that they, or analogs thereof,
might have utility as systemically administered therapeutics.

Since RTD-1 was among the most potent and broadly anti-candidal θ-defensins in vitro [9],
this peptide was evaluated for therapeutic efficacy in a mouse model of systemic candidiasis. Mice were
challenged i.v. with drug sensitive or MDR C. albicans, and treated i.p. with 5 mg/kg of RTD-1 once
daily for 7 days beginning 24 post infection [60]. RTD-1 was highly effective in promoting long term
survival of mice infected with both C. albicans strains, and this was statistically equivalent to the
effects of fluconazole and caspofungin in mice infected with drug sensitive C. albicans SC5314 [60].
In mice infected with MDR C. albicans 53264, endpoint analysis showed RTD-1 to be superior to both
fluconazole and caspofungin [60]. In both infections, RTD-1 was highly effective in promoting fungal
clearance, as determined by quantitation of renal fungal burden, and was more effective in promoting
fungal clearance than fluconazole or caspofungin [60]. Moreover, RTD-1 treatment homeostatically
restored dysregulated inflammatory responses, including chronically elevated granulocyte counts and
inflammatory cytokines responses (TNFα, IL-1β, IL-6, IL-10, and IL-17) that occurred in sham-treated
infected mice [60]. Interestingly, RTD-1 treatment produced a transient 3–4-fold increase in peripheral
blood neutrophils in infected animals [60]. This may be significant given the importance of neutrophils
in the host response to systemic fungal infection.

Analysis of pharmacokinetic parameters in RTD-1 treated mice revealed that the maximum
plasma concentrations achieved in the multiple i.p. dosing scheme employed were less than 1% of that
required to kill either organism in the presence of 50% mouse serum [60]. These data demonstrate
that the effect of RTD-1 in resolving systemic candidiasis is not the result of direct fungal killing,
but rather peptide-mediated augmentation of the host antifungal response. While the mechanistic
details underlying the observed efficacy in vivo have yet to be revealed, a common feature of RTD-1
in multiple models is the modulation of dysregulated inflammation. This effect has been obtained
in RTD-1 treatment of endotoxin-mediated lung injury [123], P. aeruginosa lung infection [119,124],
and pulmonary inflammation in a murine model of SARS coronavirus infection [65]. These data
suggest that cyclic θ-defensins represent a novel approach for developing HDPs as host directed agents
that enhance the host response to fungal infection.

3.4. Immunomodulatory Peptides

The concept of host directed immunomodulation for treatment of infection has gained attention
in recent years. Two examples are immunotherapeutic peptides, Raltecimod™ and Zadaxin™,
both of which regulate systemic inflammation in the host. RaltecimodTM (AB103) developed by
Atox Bio, is a CD28 mimetic that antagonizes CD28 cell signaling [66,67]. It is efficacious in mouse
models of toxic shock, sepsis, and Gram negative bacterial peritonitis by promoting bacterial clearance
and preventing septic shock. ZadaxinTM is a synthetic version of the 28 amino acid human peptide
thymosin α 1. The peptide regulates multiple immune cell subsets by stimulating the production
of cytokines and has been approved in 35 countries for treatment of hepatitis B and C and also shows
promise for treatment of severe sepsis [68–70].

3.5. Antifungal Peptide Mimics

A promising approach, circumventing limitations of HDPs per se, has been the design and
evaluation of HDP mimetics [71,125,126]. These nonpeptidic molecules, based on a meta-phenylene
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ethynylene core [127], a peptide mimic inspired by membrane binding properties of the frog skin
peptide magainin II [128]. One analog, compound C4 (Table 3) was shown to permeabilize C. albicans
yeast and hyphal cell membranes, inducing ATP release and propidium iodide uptake [71]. Further,
C4 was fungicidal in vitro and in vivo and was highly efficacious in promoting long term survival
of immunosuppressed mice challenged with C. albicans SC5314. Importantly, initial toxicity studies
showed that C4 and related compounds have low in vitro and in vivo toxicities, demonstrating
selectivity of a new class of antifungals [126].

4. Conclusions and Future Perspectives

Despite warnings of emerging MDR fungal pathogens, such as C. auris, only recently have there
been significant national and international efforts devoted to antimicrobial resistance, only a fraction
of which has been focused on systemic mycoses. Nevertheless, pockets of the scientific community
are employing novel strategies to develop the next class of antifungal agents and novel therapeutic
approaches. In this regard, peptide mimetics certainly hold promise. Further, there is growing
evidence that HDP-inspired peptides that augment the host antifungal response and modulate
dysregulated inflammation will contribute to the list of possible therapeutic solutions urgently
required. Given the remarkable increase of peptides entering clinical trials in recent years (https:
//webs.iiitd.edu.in/raghava/thpdb/index.html), there is reason to be optimistic that peptides and peptide
mimics will contribute to a much needed expansion of the clinical anti-infective armamentarium.
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