
Complete Genome Sequence of the Aerobic Facultative
Methanotroph Methylocella tundrae Strain T4

Martine A. R. Kox,a Muhammad Farhan Ul Haque,b Theo A. van Alen,a Andrew T. Crombie,c Mike S. M. Jetten,a

Huub J. M. Op den Camp,a Svetlana N. Dedysh,d Maartje A. H. J. van Kessel,a J. Colin Murrellb

aDepartment of Microbiology, IWWR, Radboud University, Nijmegen, The Netherlands
bSchool of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
cSchool of Biological Sciences, University of East Anglia, Norwich, United Kingdom
dWinogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia

ABSTRACT Methylocella tundrae T4T is a facultative aerobic methanotroph which
was isolated from an acidic tundra wetland and possesses only a soluble methane
monooxygenase. The complete genome, which includes two megaplasmids, was se-
quenced using a combination of Illumina and Nanopore technologies. One of the
megaplasmids carries a propane monooxygenase gene cluster.

Methane-oxidizing bacteria (MOB) play a major role in the global conversion of
methane, since they utilize methane as a source of carbon and energy. MOB are

widespread in nature, especially in methane-rich areas (1–3). Most MOB are aerobic
Gram-negative bacteria belonging to the Alphaproteobacteria, Gammaproteobacteria,
or Verrucomicrobia. MOB are mostly obligate one-carbon utilizers, except for Methylo-
cella species, Methylocapsa aurea, and some Methylocystis species, which also utilize
multicarbon compounds (4–8). Unlike most methanotrophs, Methylocella species rely
entirely on soluble methane monooxygenase (sMMO) for methane oxidation and lack
particulate methane monooxygenase (pMMO). The draft genome sequences of two
Methylocella strains Methylocella silvestris BL2T (9) and Methylocella silvestris TVC, have
been published (10). We now report the complete genome sequence of Methylocella
tundrae T4T, isolated from an acidic Sphagnum tundra peatland in northern Russia (11).

M. tundrae T4T was cultivated on M2 agar medium (12) with methane (10% [vol/vol]
in the headspace) as the sole carbon and energy source. Multiple colonies were
harvested, from which genomic DNA was extracted using the ammonia acetate extrac-
tion method (13). Sequencing was performed using a dual sequencing strategy. First,
the DNA was sequenced using the MinION access program (Oxford Nanopore Tech-
nologies, Oxford, UK). The library was prepared using kit number SQK-LSK108 with the
fragmentation step using a g-TUBE (2 � 60 s at 5,000 rpm; Covaris, Inc., Woburn, MA,
USA) and subsequently sequenced using a FLO-MIN106 R9.4.1 flow cell. Next, DNA was
also sequenced using paired-end (2 � 150-bp) Illumina MiSeq sequencing to obtain
high-quality sequences. The library was prepared using the Nextera XT kit (Illumina, San
Diego, CA, USA) and sequenced using the MiSeq reagent kit v3 (Illumina).

A total of 6,386,172 raw Illumina paired-end reads (mean length, 149 bp) were
obtained, subsequently trimmed using default settings, with a minimum read length of
100 bp and trimming of the first 15 bp, and merged in CLC Genomics Workbench v11
(Qiagen Aarhus A/S, Denmark). Nanopore sequencing yielded 49,146 raw reads (mean
length, 6,466 bp; N50, 8,738 bp), which were base-called using Albacore v2.1.10, assem-
bled using Canu v1.8 (14), and polished first with Racon v1.3.1 (15) and then with
Illumina reads using Pilon v1.23 (16), all with default settings. This resulted in three
circular scaffolds. Circularity was further investigated using Repseek v6.6 with default
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settings (17), which showed overlap (�97% identity for �8,800 bp) at the start and end
of every scaffold. Additionally, it was confirmed that there was no overlap between the
different scaffolds by calculating dot plots with Gepard v1.40 using default settings (18).
Genome completeness was checked with CheckM v1.0.12 (completeness, 98.35%;
contamination, 0.73%) (19). Finally, the genome was annotated via the MicroScope
platform (20). The largest scaffold consisted of the chromosome (Table 1), and the
smaller two scaffolds represented two megaplasmids (Table 1, megaplasmids A and B),
each with their own alphaproteobacterial plasmid replication site (repABC operon) (21).
This is the first time megaplasmids have been observed in Methylocella species.

The presence of all genes required for the formation and functioning of sMMO
(mmoXYBZDCRG) and the absence of pMMO genes was confirmed. Gene operons
encoding calcium-dependent methanol dehydrogenase (mxaFJGIRSACKLD) and
lanthanide-dependent methanol dehydrogenase (xoxFJG) are also present. Like Methy-
locella silvestris BL2T, all genes required for carrying out the complete oxidation and
assimilation (via the serine cycle) of formaldehyde were identified. Genes related to
nitrogen metabolism are located on the chromosome, including nifHDK (N2 fixation),
narGHJI (membrane-bound respiratory nitrate reduction), and nosRZDFY (nitrous oxide
reductase). Interestingly, the propane monooxygenase gene cluster (prmABCD) is lo-
cated on megaplasmid A. Megaplasmid B contains mainly genes of unknown function.
Further genome analyses and detailed comparative genomics studies of the growing
number of Methylocella species are required to better understand the phylogeny and
evolution of facultative methanotrophy in these unique bacteria.

Data availability. This whole-genome sequencing project has been deposited in
the ENA within project number PRJEB31709. The raw paired-end Illumina reads were
deposited with SRA accession number ERR3223707 and the raw MinION reads with SRA
number ERR3224043. The assembled genome is available under GenBank accession
numbers LR536450 to LR536452. The version described in this paper is the first version.
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TABLE 1 Genomic attributes of the 3 genetic elements that make up the genome of
Methylocella tundrae T4T

Data for:

Attribute Chromosome Megaplasmid A Megaplasmid B

Size (bp) 3,909,804 303,933 208,729
DNA G�C content (%) 61.80 61.84 61.46
No. of DNA scaffolds 1 1 1
Circular Yes Yes Yes
Total no. of genesa 4,276 390 275
Protein coding density (%) 86.71 85.56 87.08
No. of RNA genes 59 0 0
No. of rRNA genes 2 (5S,16S, and 23S) 0 0
No. of tRNA genes 53 0 0
No. of pseudogenes 61 13 2
No. of genes with function predicted 616 53 15
No. of genes assigned to COGsb 2,957 252 96
Coverage (�) 102 85 114
GenBank accession no. LR536450 LR536451 LR536452
a Without artifacts.
b COGs, Clusters of Orthologous Groups.
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