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Cancer cells release nucleic acids, freely or associated with other structures such as
vesicles into body fluids, including blood. Among these nucleic acids, circulating tumor
DNA (ctDNA) has emerged as a minimally invasive biomarker for tumor molecular profiling.
However, certain biological characteristics of ctDNA are still unknown. Here, we provide
an overview of the current knowledge about ctDNA biological features, including size and
structure as well as the mechanisms of ctDNA shedding and clearance, and the physio-
pathological factors that determine ctDNA levels. A better understanding of ctDNA biology
is essential for the development of new methods that enable the analysis of ctDNA.
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INTRODUCTION

Cancer ranks as the leading cause of death worldwide and the main barrier that hinders life
expectancy (1). The emergence of precision medicine in the field of medical oncology brought a halo
of hope for cancer patients and has improved notably in the past few decades due to the rapid
expansion of knowledge in cancer genomics and the identification of targetable genomic biomarkers
(2). Although the discovery of therapeutic biomarkers marked a turning point in cancer patients’
treatment, several challenges arose with them. For example, in lung cancer patients, the increasing
number of biomarkers to be assessed compromises the availability of tumor tissue. Moreover, tissue
biopsy, apart from being a very invasive procedure that can imply potential complications for the
patients, does not reflect tumor heterogeneity, making it more difficult to have an overview of the
molecular characteristics of the tumor (3, 4).

In this scenario, liquid biopsy arose as a minimally invasive approach, particularly useful when
tumor tissue is inadequate or non-existent, that enables the identification of significant tumor-
Abbreviations: bp, base pair; cfDNA, cell-free DNA; CH, clonal hematopoiesis; CRC, colorectal cancer; CTC, circulating
tumor cell; CSF, cerebrospinal fluid; ctDNA, circulating tumor DNA; ddPCR, digital droplet PCR; dPCR, digital PCR; EVs,
extracellular vesicles; LOD, limit of detection; MRD, minimal residual disease; mtDNA, mitochondrial DNA; NGS, next-
generation sequencing; NSCLC, non-small-cell lung cancer; VAF, variant allele frequency; wt, wild-type; ALK, ALK receptor
tyrosine kinase; BRAF, B-Raf proto-oncogene, serine/threonine kinase; EGFR, epidermal growth factor receptor; KRAS, KRAS
proto-oncogene, GTPase; TP53, tumor protein p53.
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derived biomarkers throughout the course of the disease,
including resistance mutations (5, 6). Different components
can be isolated from body fluids and used in liquid biopsy
analysis such as circulating tumor cells (CTCs), extracellular
vesicles (EVs), tumor-educated platelets (TEPs), or circulating
tumor DNA (ctDNA) (7). Among them, we are going to focus on
ctDNA as it is the biomarker with more diagnostic and
prognostic potential.

The cell free-DNA (cfDNA) was first described in healthy
individuals by Mandel et al. in 1948 (8) and it was not until the
year 1977 that Leon et al. found out increased levels of cfDNA in
the serum of cancer patients (9), highlighting its huge potential
as a tumor biomarker. cfDNA is generally at a concentration
between 0 and 100 ng/mL in the blood of healthy patients, and is
upped to >1000 ng/mL in cancer patients (4, 10). The fraction of
plasma cfDNA derived from tumor cells, known as ctDNA, is the
most extensively studied and the most used non-invasive
alternative, from a clinical point of view, for the molecular
characterization of solid tumors, including non-small-cell lung
cancer (NSCLC), colorectal cancer (CRC), breast cancer (11),
head and neck (12) and melanoma (13). ctDNA was first
validated in clinical oncology by examining the KRAS/BRAF
mutation in CRC patients (14) and then, it was introduced into
clinical practice for the detection of mutations in the EGFR gene
in NSCLC (15). Since then, the interest in this biomarker has
exponentially risen being the topic of more than 870 publications
in 2021 (Web of Science™ database, Figure 1) and being
currently used in 359 different trials , listed in the
database ClinicalTrials.gov.

Although liquid biopsies often refer to blood biopsies, other
biofluids such as urine, saliva, cerebrospinal fluid (CSF), pleural
effusion, pericardial effusion, and ascites effusion, can be also
used (16, 17). In this way, malignant effusions that occur as a
consequence of disease progression are highly informative.
Indeed, tumors shed higher amounts of ctDNA into nearby
body fluids than into the bloodstream (18). Moreover, peritoneal
washings, which are routinely performed in surgeries of ovarian
cancer patients, have been shown to be useful for BRCA testing
(19). Therefore, although obtaining these biofluids may be a
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more aggressive procedure, they constitute an informative source
for biomarker testing (18).

The study of ctDNA has multiple potential uses in oncology
such as early diagnosis, tumor molecular profiling, or early
detection of resistance mutations. ctDNA levels correlate well
with tumor bulk and therefore it can be used as a surrogate for
tumor size and staging (20, 21). In the same way, fluctuations in
ctDNA levels have been shown to correlate well with the course
of the disease, being an adequate approach for noninvasive
tumor response to treatment monitoring for many cancer
types (22–24).

However, the structure and origin of ctDNA, as well as the
mechanisms of ctDNA shedding, filtering, degradation, and
clearance remain unclear. In this review, we summarize the
dynamics of extracellular tumor DNA, including the balance
between ctDNA release and clearance and the influence of
clinicopathological factors in these processes.
ctDNA: CHARACTERISTICS AND
MECHANISMS OF RELEASE

cfDNA comprises small fragments of double-stranded nuclear
(coding and non-coding) and mitochondrial DNA (mtDNA) of
approximately 40-200 base pairs (bp) in size, with a peak at about
166 bp that corresponds with nucleosome-associated DNA
fragments (4, 25). Although the main source of cfDNA is the
hematopoietic system (55% white blood cells and 30% erythrocyte
progenitors) (25), there is still a huge interest in understanding
how different organs contribute to the overall amount of cfDNA in
the physiological and pathological conditions.

ctDNA can be released by a multitude of mechanisms, not
only when cells die via apoptosis, necrosis, oncosis, ferroptosis,
pyroptosis, and phagocytosis, but also by senescence or the active
secretion in extracellular vesicles (EVs) and mtDNA egestion
(26, 27) (Figure 2).

Fragment length and nucleosome occupancy might provide
clues for cfDNA shedding mechanisms. Indeed, short fragments of
<200 bp are assumed to be released during apoptosis as a
consequence of caspase-dependent cleavage. Multiple of these
fragments are packed in apoptotic blebs and phagocytized by
macrophages, to be finally released into the blood and lymphatic
circulation (28, 29). Interestingly, shorter fragments (<100 bp)
might be enriched with ctDNA and mtDNA which preferentially
carried tumor-derived genomic alterations (30, 31). Indeed, a
higher ctDNA fragmentation pattern was observed in
melanoma, lung cancer, and metastatic CRC patients with high
levels of mutation burden compared with healthy individuals (32).
Conversely, large fragments of >200 bp are originated during the
necrosis process (33), however, the contribution of necrosis in the
amount of cfDNA remains unclear (34). Interestingly, DNA of
necrotic cells can be further degraded by DNase I, and necrotic
cells can be engulfed by macrophages, originating smaller
fragments of circulating DNA (35, 36). For all those reasons, the
development of methods based on cfDNA size and fragmentation
pattern is crucial to enhance the enrichment of ctDNA and
FIGURE 1 | ctDNA publications: Number of publications with ctDNA as a
topic between 1990 and 2021, collected in Web of ScienceTM database.
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consequently, improve the sensitivity of methods for ctDNA
analysis. Furthermore, the distribution of cfDNA fragments with
different sizes is important, since it reflects cfDNA integrity.
Although ctDNA derived from apoptotic bodies would be more
informative in terms of tumor molecular information, cfDNA
integrity seems to be higher in cancer patients compared to
healthy individuals, suggesting that necrotic cell death plays an
important role in ctDNA release, especially in advanced stages and
aggressive tumors (37, 38). This observation could be explained by
the fact that healthy cells die primarily by apoptosis, while
malignant cells die not only from apoptosis but also from
necrosis or autophagy (9). In this regard, cancer cells could
activate autophagy to obtain an alternative energy source from
the digestion of their damaged organelles or their self-digestion,
shedding ctDNA as a consequence (39).

DNA from necrotic or apoptotic cells can be also released into
the circulation by different immune cell types; however, it is not
clear how much each mechanism contributes to the amount of
ctDNA. After the phagocytosis of necrotic and apoptotic cells,
macrophages or other scavenger cells digest the DNA into
smaller fragment sizes and release them into the tissue
microenvironment and bloodstream, actively or dying (36, 40).

ctDNA can also be actively released by living tumor cells,
from primary tumors or metastases via EVs. Like cfDNA, there is
a wide variety of EVs in terms of size whose role in cancer and,
specifically, in the transport of ctDNA between distant tissues for
cell communication seems to differ. In this sense, Vagner et al.
showed that both ctDNA and EVs size seems to be a key element
in genomic alteration transport (41). Indeed, large vesicles (from
100 nm up to 1 mm in diameter) from prostate cancer patients,
such as microvesicles or apoptotic bodies, appear to be enriched
with smaller fragments of ctDNA (<200 pb), compared with
small EVs, from 30 to 150 nm in diameter, such as exosomes
(41, 42). Still, nanoscale EV-derived DNA (approximately 114
nm average size in stage-I EV samples) has been demonstrated to
Frontiers in Oncology | www.frontiersin.org 3
be a superior mutation detection method in early-stage NSCLC
compared to cfDNA (43). In line with these data, additional
studies have identified the presence of DNA in EVs isolated from
cancer patient samples and described the identification of
different mutations in oncogenes such as KRAS or TP53
(44–47). However, the proportion of ctDNA engulfed into EVs
actively released by tumor cells and the effect of different
treatments on this active secretion is not clear (41, 48).

Irrespective of the mechanism of ctDNA shedding;
nucleosome footprints, DNA methylation profiles, DNA
preferred end motifs, and genetic alterations can be used to
characterize and identify the origin of cfDNA as they carry
information from the original tissues (49–51) (Figure 3). In this
regard, certain human genomic locations have been described as
preferential ends when ctDNA is generated (52), suggesting that
DNA cleavage is a non-random process. Interestingly, a greater
end motif diversity has been associated with cancer patients
(53, 54), suggesting that ctDNA tail motifs could be used to
enhance the performance of cancer diagnosis by identifying the
fragments of cfDNA from tumor cells (ctDNA) and filtering out
fragments from healthy cells. Another interesting approach for
determining the tissue source of ctDNA was proposed by Snyder
et al. (49), who hypothesized that it is feasible to identify cfDNA
origin based on nucleosome positioning. Nucleosomes are
distributed along DNA following different patterns that
correlate with characteristic epigenetic features of different cell
types or even according to cancer types. Matching the epigenetic
footprint of these ctDNA fragments against reference databases
would enable the molecular classification of cancers of unknown
origin. In line with these data, the stability of DNA methylation
and the presence of cell-specific methylation patterns can also
contribute to the identification of tumor origin or even the
detection of metastasis through cfDNA analysis (55).
Specifically, the analysis of differentially methylated regions in
colon and liver tissues enabled the differentiation of patients with
FIGURE 2 | Mechanisms of ctDNA release: Tumor cells shed DNA into the bloodstream by different types of cell death, including necrosis (larger fragments of >200 bp),
apoptosis (shorter fragments of <200 bp enriched with tumor-derived genomic alterations), pyroptosis, phagocytosis, oncosis or ferroptosis, but also by non-death
associated mechanisms such as senescence, or the active secretion of EVs and mtDNA. Thus, ctDNA analysis provides tumor-relevant clinical information.
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liver or colon cancer but also, the discrimination between colon
cancer patients with and without liver metastasis (56). Indeed,
the analysis of cfDNA methylation has been already approved by
the FDA for its use in the clinic (57), being the Epi proColon test
the first screening analyzing a cfDNA methylation biomarker
approved in 2016 for colorectal cancer patients (58).
ctDNA CLEARANCE

The amount of cfDNA, and ctDNA in particular, depends on a
balance between DNA shedding and DNA clearance. Overall, the
half-life of cfDNA ranges from 16 minutes to 2.5 hours (59), as a
consequence of the action of three main different mechanisms:
(i) the action of DNases present in the bloodstream (60), (ii) the
active clearance of nucleosomes and DNA and (iii) filtration in
organs such as kidney or lymph nodes (Figure 4).

ctDNA clearance can be carried out by various filtering organs
(60). Kupffer cells within the liver are responsible for clearing the
majority of cfDNA, specifically longer fragments (61, 62), followed
by kidneys, which are involved in DNA fragmentation through their
deoxyribonuclease activity (62). In this way, in vivo experiments
injecting radiolabeled mononucleosomes in mice demonstrated that
the liver removed approximately 70 to 85% of the nucleosomes
Frontiers in Oncology | www.frontiersin.org 4
within 10 min (61). The macrophages of the spleen and lymph
nodes play also a minor role in ctDNA clearance (Figure 4). In
addition to these organs, lymphatic drainage may constitute the
main source of ctDNA clearance within the tumor
microenvironment (60). In cancer patients, cfDNA level is higher
than in healthy individuals in part due to the excess of cell death by
the whole set of mechanisms aforementioned, which leads to the
overload of the clearance systems and subsequent accumulation.
Nevertheless, the kinetic dynamics of ctDNA in cancer patients
need to be further studied.

Finally, the association with molecular or macromolecular
complexes, as well as encapsulation in EVs, prevent the rapid
degradation of ctDNA by circulating enzymes and immune
system cells (63). Another factor that seems to play a role in
ctDNA clearance is fragment size, but it is still not clear how they
affect half-life.
ctDNA LEVELS IN DIFFERENT TYPES
OF CANCER

The first time that cfDNA was measured in different cancer types
was in 1977 by Leon et al. (9), who reported that levels of cfDNA
in patients with various cancers were higher compared with
FIGURE 4 | Mechanisms of ctDNA clearance: Kupffer cells from the liver are primarily responsible for ctDNA clearance, followed by circulating enzymes and immune
system cells and other filtering organs such as kidneys, spleen and lymph nodes.
FIGURE 3 | Biological features of ctDNA: The integrated analysis of ctDNA somatic alterations, methylation and fragmentomic information, improves ctDNA
detection and provides useful information about original tissue.
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healthy individuals. A few years later, in 1989, Stroun et al. (64)
stated that increased levels of cfDNA in cancer patients were
caused by a fraction of DNA released into the bloodstream by
cancer cells, this portion of cfDNA was named ctDNA.
Nowadays, it is well established that ctDNA levels vary
depending on the cancer type (Figure 5). It has been especially
characterized that tumors located in the central nervous system
release the lowest levels of ctDNA into the bloodstream due to
the blood-brain barrier (21, 65, 66). Of note, more than 90% of
patients with gliomas did not harbor detectable levels of ctDNA
according to Huang et al. (67). Similarly, Zill et al. (68) analyzed
25,578 samples from 21,807 patients in more than 50 tumor
types, reporting a ctDNA detection rate of 93%. Remarkably, no
differences were found in terms of ctDNA detection except for
patients with brain tumors or brain-only metastases, who shed
significantly less ctDNA into the bloodstream. Likewise, some
studies have also pointed out that patients with visceral
metastases have higher levels of ctDNA than those with brain
metastases (69–72). Noteworthy, about 30% of cancer patients
develop intracranial metastases, a severe complication that
decisively affects the patient’s prognosis and quality of life
(73,74). Thus, it would be important to optimize the detection
of ctDNA for these patients in other body fluids such as CSF. In
addition, ctDNA detection is rather challenging in
medulloblastomas, or kidney, prostate or thyroid cancer. On
the other hand, ctDNA can be easily detected in samples from
advanced stages of ovarian, liver, pancreas, bladder, colon, lung,
stomach, breast, liver, esophagus, and head and neck cancer
patients as well as neuroblastoma and melanoma patients (21).

Interestingly, there are also variations within the same type of
cancer depending on tumor histology. For example, in lung
cancer, a higher percentage of ctDNA detection has been
described in squamous tumors compared to adenocarcinomas.
The most plausible explanation is that squamous tumors have a
Frontiers in Oncology | www.frontiersin.org 5
more necrotic profile (75). These results have also been observed
in patients with triple-negative breast cancer, whose ctDNA
levels are higher than those of other breast cancer subtypes,
which can be related to a higher rate of necrosis and cell
proliferation (76, 77).

Lastly, tumors harboring certain alterations such as TP53
mutations and copy number gains seem to have increased
ctDNA shedding, which may be due to increased metabolic
activity or cellular turnover (71). In this regard, TP53
alterations have been suggested to be markers of aggressiveness
and poor prognosis (78).
ctDNA AS A SURROGATE OF TUMOR
BURDEN, STAGE, AND METASTASIS

The amount of ctDNA has been associated with tumor size,
stage, and metastasis in multiple studies (Figure 5). Specifically, a
retrospective study of serially collected liquid biopsy samples
from 40 ovarian cancer patients demonstrated a significant
correlation between lesion volume and ctDNA level (79).
Another study that analyzed samples from 640 patients with
different tumor types described a clear correlation between
ctDNA and cancer stage, reaching higher levels in patients
with advanced disease and lower levels in premalignant and
early-stage cancers (21). In line with these results, analyzing
samples from more than 20,000 patients with different tumors,
Zill and colleagues showed that those patients with premalignant
lesions or earlier stages shed less ctDNA than those with
advanced stages (68). Specifically, in NSCLC patients, Chabon
et al. were able to detect ctDNA in 42%, 67%, and 88% of patients
with stage I, II, and III diseases respectively (80). In fact, 50% of
localized tumors shed ctDNA without reaching 0.01% of the
FIGURE 5 | ctDNA amount in different cancer types: The amount of ctDNA is correlated with tumor type, size, stage and metastasis.
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ctDNA level (80); whereas advanced-stage tumors release
concentrations of ctDNA than can exceed 10% of the
cfDNA (21).

On the other hand, in ctDNA-positive patients, tumor size
and volume correlate broadly with ctDNA levels, as measured by
the mean of variant allele frequency (VAF) of single nucleotide
variants detected in plasma ctDNA (81). Currently, it is not well
established how ctDNA should be quantified. This issue is
especially controversial in tumors that do not harbor druggable
mutations. In this sense, it is not clear whether it is more
appropriate to select the highest VAF among all detected
mutations or to take all of VAFs into account through
summation, arithmetic mean, or other approaches.

In summary, ctDNA levels increase proportionally according
to tumor burden, disease stage, and metastasis, highlighting the
use of ctDNA as a prognostic biomarker. Indeed, it is well
established that patients with high levels of ctDNA have
worsened survival outcomes compared with those with lower
or even undetectable levels of ctDNA (82–85).
ctDNA TO MONITOR
TREATMENT OUTCOMES

Numerous studies show that ctDNA levels correlate well with
tumor load and therefore ctDNA dynamics can be used as a
surrogate of treatment response (86–88). In addition, the
modification of the ctDNA methylation profile has been
proposed as an alternative biomarker for treatment response
(89). It has been shown that the type of treatment, as well as the
time interval between exposures and the dose, may rate affect
ctDNA shedding. In this way, it has been suggested that targeted
therapies used in cancer patients, such as EGFR or ALK tyrosine
kinase inhibitors, promote faster ctDNA clearance than
immunotherapy (90). Furthermore, cytotoxic therapies such as
chemotherapy or ionizing radiation seem to increase cfDNA
levels due to cellular senescence (91, 92). Of note, it is well
established that some chemotherapy agents produce leukopenia.
cfDNA from dying cells dilutes ctDNA in wild-type (wt) DNA
leading to decreased levels in VAF, which may bias results.
Conversely, other cancer treatments do not release as much
cfDNA due to its mainly cytostatic effect, implying cell growth
arrest (93). In the neoadjuvant setting, ctDNA has been shown to
correlate well with tumor response to treatment. Recently,
NADIM investigators have shown that ctDNA clearance after
neoadjuvant chemo-immunotherapy outperformed tumor
response to treatment measured by CT-scans and according to
RECIST criteria in the prediction of survival (94). Similarly, a
significant association between pathological complete response
and ctDNA clearance was reported in the CheckMate 816 trial
(95). Measurement of residual disease following neoadjuvant
treatment that accurately predicts long-term survival is an
essential requirement for clinical trial development. Although
further studies are needed, ctDNA postulates as an early
surrogate of survival being a promising trial endpoint in the
neoadjuvant setting.
Frontiers in Oncology | www.frontiersin.org 6
Finally, patients with surgically resected tumors show a sharp
drop in ctDNA levels after surgery (59). However, the amount of
nonspecific cfDNA increased after tumor resection (96), due to
injury of surrounding tissue during surgery. In this sense, the
appropriate time point for plasma collection after surgery needs
to be established. In these patients, ctDNA detection allows
monitoring of minimal residual disease (MRD) after tumor
resection (97). Several platforms with exceptional sensitivities
such as cancer personalized profiling by deep sequencing
(CAPP-Seq) (98) targeted error correction sequencing
(TEC-Seq) (99), the Tracking Cancer Evolution Through
Therapy (TRACERx, Signatera) (81, 100) or CancerSEEK5
multiplex PCR (mPCR) (101) have been shown to be useful
for detection of minimal residual disease (MRD) or early
detection of cancer. In this regard, it appears that measuring
not just ctDNA can boost sensitivity. Combining ctDNA analysis
with the study of informative methylation regions improves
sensitivity (102) (Figure 3).
TECHNICAL FACTORS AFFECTING
ctDNA DETECTION

The use of ctDNA to noninvasively assess tumor genomic
variants is increasing. However, some pre-analytical and
analytical issues may affect the detection and quantification
of ctDNA.

Regarding starting material, blood plasma is a preferential
choice compared with serum because wt cfDNA released from
leukocytes during the clotting process in serum samples dilutes
ctDNA in wt DNA (103, 104). Particularly, Soo et al. reported a
higher level of cfDNA in serum (481 ng/mL) than in plasma
(17.7 ng/mL). Of note in a cohort of 33 pre-treatment serum and
75 pre-treatment plasma samples from patients with diffuse large
B cell lymphoma, Soo et al. were able to detect more genomic
alterations in plasma samples (186 vs. 22 mutations) with higher
tumor allele fraction (2.8% vs. 0.85%) (105), compared with
serum samples. In addition, plasma samples have shown less
inter-patient variability (106). The use of K2 EDTA tubes to
collect plasma samples is therefore recommended when samples
are processed within 6 hours after blood extraction (107). For
longer periods between extraction and processing, the use of
special collection tubes with stabilizing agents is recommended.
Of note successful preservation of cfDNA over 14 days at room
temperature is possible using collection tubes with stabilizing
agents (108).

Concerning sample processing, the complete removal of any
cellular component is essential. For this goal, the best option is a
two-step centrifugation at 1600g for 10 minutes for plasma
isolation (109). According to this recommendation, Herrera
et al. reported less concentration of cfDNA in plasma samples
that were centrifuged twice compared with samples that were
centrifuged only once (13 µg/l vs. 819 µg/l), revealing that cfDNA
concentrations were contaminated with genomic DNA (110).
These observations confirm that the second centrifugation step is
crucial for ctDNA analysis. Finally, it is well known that ctDNA
July 2022 | Volume 12 | Article 943253
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integrity is better conserved as cfDNA extracts compared to
plasma when samples are stored at -80°C and avoiding freeze-
thaw cycles (103).

As already mentioned, body fluids other than blood have
shown a higher concentration of cfDNA compared to blood
samples in patients with lung adenocarcinoma with EGFR
mutations (1.90 vs. 0.36 ng/µL; p=0.0130). Likewise, CSF from
patients with primary brain tumors such as glioblastoma, glioma,
or primary central nervous system lymphoma showed higher
amounts of ctDNA compared to peripheral blood (18, 19).

Technical procedures for cfDNA isolation can be classified
into three categories: phase isolation, silicon membrane-based
spin column, and magnetic bead-based isolation. Phase isolation
methods may lead to a high cfDNA isolation yield and a wide
range of DNA fragment sizes. On the other hand, spin column
and magnetic bead-based methods have lower efficiency but
show a higher selective recovery for DNA fragments of a
certain size (111, 112). Specifically, cfDNA purification using
magnetic beads appears to recover higher amounts of small
cfDNA fragments compared to silica membrane methods
(113). In any case, automated processing should be performed
to reduce operator variability (114). Nevertheless, within
automatic methods, Pérez-Barrios et al. reported different
recovery of mono-, di- and tri-nucleosomes DNA fragments
when analyzing 34 cfDNA samples obtained from 17 plasma
samples from cancer patients extracted by Maxwell® RSC
ccfDNA Plasma Kit (Promega Corporation, Madison, WI,
USA) and MagNA Pure Compact Nucleic Acid Isolation Kit I
(Roche Diagnostics, Penzberg, Germany) methodologies (112).

Currently, several platforms are available for noninvasive
biomarker testing some of which have received approval from
regulatory agencies. There is a wide range of reported
sensitivities of the different methodological approaches, in this
way PCR-based approaches have a significantly lower limit of
detection (LOD) compared to other technologies such as dPCR
and NGS (115). Although dPCR offers an ultra-high sensitivity
for ctDNA analysis, only a few known mutations can be tested at
a time, whereas NGS technologies allow the screening of multiple
genomic alterations, known or unknown. In addition, NGS
enables the combination of genomic data and epigenomic
signatures, which may improve sensitivity (116) (Figure 3). In
any case, the knowledge of the limitations of the different
technical approaches for ctDNA analysis is crucial for the
accurate interpretation of the results (117).

cfDNA input remains the major limiting factor, and for most
techniques using less than 20 ng of cfDNA may impair results. A
study by Zhang Y et al. showed that the sensitivity declined from
Frontiers in Oncology | www.frontiersin.org 7
82.6% to 46.7% when using cfDNA inputs of ≥ 5 ng per reaction
and < 2 ng, respectively (118). Furthermore, several comparative
studies have clearly reported that, among other technical factors,
discordant calls mostly occur at low VAF (115, 119), and
therefore VAFs should always be reported in clinical reports.

Finally, it is important to point out that clonal hematopoiesis
(CH) constitutes an important source of false-positive calls. CH
is defined by the presence of a somatic mutation in blood or
hematopoietic progenitor cells, but without other diagnostic
criteria for hematological malignancy. It is more frequent in
aged patients and patients with solid tumors and of course, it is
more likely to be detected with deeper sequencing approaches
(120). Importantly, CH-derived mutations can lead to erroneous
sequencing results which thereby might guide erratic treatment
recommendations (121).
CONCLUSIONS
Liquid biopsy overcomes some tissue biopsy limitations such as
tumor heterogeneity, tissue availability, and risks associated with
the invasive procedure. Among the biological components of
body fluids, ctDNA has emerged as a pivotal analyte for the
management of cancer patients. However, ctDNA detection and
quantification are affected by several physio-pathological
conditions and a deeper knowledge of factors affecting ctDNA
kinetics is needed. The size fragment pattern, nucleosome, and
methylation profile of ctDNA may differ according to the
original tissue and the mechanism of release, which may be
clinically informative, and methodological approaches capable to
explode this information are of particular interest.
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