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Large, multi-site, heterogeneous brain imaging datasets are increasingly required for the

training, validation, and testing of advanced deep learning (DL)-based automated tools,

including structural magnetic resonance (MR) image-based diagnostic and treatment

monitoring approaches. When assembling a number of smaller datasets to form a

larger dataset, understanding the underlying variability between different acquisition and

processing protocols across the aggregated dataset (termed “batch effects”) is critical.

The presence of variation in the training dataset is important as it more closely reflects

the true underlying data distribution and, thus, may enhance the overall generalizability

of the tool. However, the impact of batch effects must be carefully evaluated in order to

avoid undesirable effects that, for example, may reduce performance measures. Batch

effects can result from many sources, including differences in acquisition equipment,

imaging technique and parameters, as well as applied processing methodologies. Their

impact, both beneficial and adversarial, must be considered when developing tools to

ensure that their outputs are related to the proposed clinical or research question (i.e.,

actual disease-related or pathological changes) and are not simply due to the peculiarities

of underlying batch effects in the aggregated dataset. We reviewed applications of DL

in structural brain MR imaging that aggregated images from neuroimaging datasets,

typically acquired at multiple sites. We examined datasets containing both healthy control

participants and patients that were acquired using varying acquisition protocols. First,

we discussed issues around Data Access and enumerated the key characteristics of

some commonly used publicly available brain datasets. Then we reviewed methods

for correcting batch effects by exploring the two main classes of approaches: Data

Harmonization that uses data standardization, quality control protocols or other similar

algorithms and procedures to explicitly understand andminimize unwanted batch effects;

and Domain Adaptation that develops DL tools that implicitly handle the batch effects

by using approaches to achieve reliable and robust results. In this narrative review, we

highlighted the advantages and disadvantages of both classes of DL approaches, and

described key challenges to be addressed in future studies.

Keywords: multi-site datasets, deep learning, domain adaptation, data aggregation, batch effects, machine

learning, MR brain imaging
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1. INTRODUCTION

Structural magnetic resonance (MR) imaging is a critical
component in many clinical and research brain studies (Chalavi
et al., 2012; Kim et al., 2014; Fillmore et al., 2015). These
and similar studies allow for the analysis and quantification of
brain tissues and important brain structures (Cover et al., 2017;
Moeskops et al., 2018; Smith et al., 2019), and for the accurate
detection of brain pathology (or abnormalities) (Sandeep et al.,
2006; Kim et al., 2014; Lian et al., 2021). Improvements in MR
acquisition techniques over the past few years have allowed for
the detection of increasingly smaller structures and more subtle
abnormalities. However, these improvements also have led to an
exponential increase in the volume and complexity of the image
data to be processed and analyzed. The contemporaneous growth
in the number and size of multi-site MR imaging studies has
resulted in additional challenges related to managing large data
volumes and understanding the increased imaging variability,
particularly when aggregating data acquired at different research
facilities or with different acquisition protocols (Nieuwenhuis
et al., 2017).

The ability to appropriately manage, understand and
aggregate large, multi-site and heterogeneous datasets is a key
requirement when developing automated, computer-assisted
tools to study brain structures and monitor brain abnormalities
(Leite et al., 2016; Pinheiro et al., 2019; Gauriau et al., 2021).
This requirement is particularly true when developing deep
learning (DL)-based methods (Lundervold and Lundervold,
2019; Pan et al., 2020). When experiments are performed with
smaller, more homogeneous datasets, the tool performance is
often limited to the specific, tightly prescribed, cohort under
study (Maier et al., 2018; Saba et al., 2019). The experimental
results demonstrated in larger, more heterogeneous datasets are
typically found to be more reliable and generalizable, allowing
tool performance to be extrapolated to other cohorts (Tofts and
Collins, 2011; Chalavi et al., 2012). However, images acquired
at different sites can present varying characteristics due to
differences in acquisition parameters, site procedures, and
scanner configuration. These effects represent scan variability
and commonly are termed batch effects. If not well understood
and appropriately addressed, batch effects may lead tomisleading
or unreliable results in many applications (Pizarro et al., 2019).

The challenges of batch effects may be further exacerbated
in the era of DL as new, large, multi-site, heterogeneous
datasets are created by combining (or aggregating) multiple
previously acquired datasets (Bento et al., 2019; Lee et al., 2020;
Zlochower et al., 2020). The impact of data variability must
be first understood to ensure that these models are answering
the proposed research question, not only in the presence of
inherent image variability, but also after addressing potential
misclassification or misdiagnosis attributable to this variability
(Obuchowicz et al., 2020). Large and heterogeneous datasets are
key requirements for model development to avoid limiting the
model to a specific cohort. This observation is especially true for
models that require large and heterogeneous datasets during the
development phase in order to ensure model convergence and
avoid overfitting (Maier et al., 2018).

Generalizable DL is an important objective when developing
tools using MR brain images (Kuijf et al., 2019). Tools need to
assure that their results are reliable, even when broadly applied
(i.e., they work with data other than that used for training). The
improved performance of DL tools designed with heterogeneous
datasets allows for superior benchmarking, primarily by avoiding
the use of handcrafted features that are more disease- or image-
cohort specific (Shen et al., 2017). Generalized DL models
that, for example, successfully process multi-site, heterogeneous
data acquired on different scanners, are more likely to be
adopted in broader clinical and medical research environments
(Akkus et al., 2017).

While our focus here is on brain imaging, many of these
concepts are general and, broadly speaking, applicable to imaging
studies of other anatomical regions. The study and development
of DL models with large heterogeneous data are relevant to a
variety of applications, and also, for ensuring imaging quality
control and protocol compliance (Currie et al., 2019). Improving
the reliability, generalization, and interpretability of these models
would enhance application in multiple research areas (Jiang
et al., 2018) and, importantly, accelerate translation to the clinic
(Faria et al., 2015). These expectations are in particularly true
for data acquired using different parameters or at different sites,
longitudinal studies in which the scan protocol may change
over time, assessment of different disease processes, or different
progression rates in the same disease.

Our goal was to investigate issues relating to batch effects
when developing DL models, and potential future application
of DL tools that study, segment, classify and quantify brain
aging, and brain abnormalities. We have focused this review
on development, evaluation, and the specific challenges of
conducting large, multi-site, heterogeneous studies. Such studies
attempt to leverage the power of data collected at different sites.
We concentrate on three main aspects (Figure 1): (A) Data
Access (section 2) with a focus on data collection, specifically
on public datasets; (B) Data Harmonization (section 3)
including works aiming to explicitly standardize (or harmonize)
heterogeneous MR imaging datasets by, for example, performing
pre-processing and outlier detection methods; and (C) Domain
Adaptation (section 4) including surveying models implicitly
optimized to present generalizable and reliable results on
heterogeneous datasets.

More conventional machine learning methods have studied
batch effects in heterogenous, multi-center, MR head imaging
datasets. Bento et al. (2021), for example, demonstrated accuracy
rates > 98% for a model determining key image acquisition
parameters, such as MR vendor and magnetic field strength.
Data harmonization approaches aim to minimize the impact
of these and other acquisition variables by making it more
difficult to distinguish images acquired at different sites using
different acquisition parameters. Data harmonization methods
attempt to explicitly minimize the influence of acquisition
variation. Domain adaptation approaches, in contrast, seek
to implicitly account for batch effects by accounting for this
variability within the proposed model. These methods usually
require the creation of a domain-diverse dataset to train the
models, ultimately increasing the generalizability, minimizing
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FIGURE 1 | Graphical paper outline. Data Access (left): including description of heterogeneous datasets due to variations in acquisition, curation, and annotation;

challenges with access to publicly available data, and issues relating to ethics and privacy concerns. Data Harmonization (middle): including model development from

standardized image sets generated by performing pre-processing and outlier detection algorithms. Domain Adaptation (right): including use of advanced techniques

and models that improve generalization and reliability by using techniques, such as domain transfer and multi-task learning, as well as adversarial network

approaches. Data Harmonization and Domain Adaptation are further organized by proposed task: segmentation and classification models.

the divergence criterion between the data distributions, and
facilitating domain-independent decision making. To ensure
clarity, the review of data harmonization and domain adaptation
was further organized by proposed image processing task:
segmentation or classification (Figure 1).

In this narrative review, we identified key papers describing
DL models applied to adult human structural brain MR
imaging problems, especially those processing commonly
acquired structural MR sequences like T1-weighted (T1-w),
T2-weighted (T2-w), and fluid-attenuated inversion recovery
(FLAIR) imaging. In our non-exhaustive search on PubMed
and of conference proceedings, we used “deep learning” and
“heterogeneous brain MR imaging” as principal keywords.
Additional keywords, including “multi-center MR dataset,”
“trustworthy AI,” “data bias,” “fairness,” “robustification,”
“invariant,” “out-of-distribution sample,” “domain adaptation,”
and “domain shift” were used to refine the search for our review.
We included only English-language reports published prior to 31
August 2021. We noted the significant use of technical jargon in
this area of research, making literature review and benchmarking
challenging. The intent of this review was to comprehensively
and critically overview the use of large, multi-site, heterogeneous
brain imaging dataset in DL. We highlighted and provided
representative examples of significant areas of research activity,
identified key challenges and gaps in the research literature, and
proposed important future needs.

2. DATA ACCESS

Large, heterogeneous datasets are required to develop solutions
for many DL problems in adult brain imaging. Typically, these
datasets contain images acquired on scanners from multiple sites
and may include acquisitions on scanners from different vendors
operating at different magnetic field strengths, using similar but

not necessarily the same acquisition parameters (Guio et al.,
2016). In this section, we review the benefits and challenges of
accessing heterogeneous data, as well as explore difficulties when
using public datasets, as well as emerging ethical and privacy
concerns related to the usage of medical imaging data.

Training of DL models benefits from using large datasets that
sufficiently represent the qualities of the population under study.
The dataset should not only represent the phenomena under
investigation (such as presence of a specific pathology) but also
include examples of individuals with confounding phenomena
and without the phenomena, as well as incorporating the range
of anticipated batch effects. These effects describe variation
due to differences in data acquisition, processing, curation, or
annotation steps. Appropriate incorporation of this variability
is thought to be essential to model generalization (Balachandar
et al., 2020). One way of achieving this goal is to combine data
from different datasets; an approach that facilitates the conduct
of experiments on a larger and more diverse set of samples.
Attention, however, must be paid to prevent introduction of
unwanted correlations in the aggregated dataset (e.g., having
individuals with pathology imaged on a scanner from one vendor
and individuals without pathology scanned on another vendor)
(Figure 2). Often, publicly accessible, open-access repositories
are a vital source of the data needed for training, validating, and
testing DL algorithms, specially when benchmarking algorithms
(Prior et al., 2020).

Compared to other DL applications, specifically non-medical
applications, many brain imaging datasets present with a limited
amount of “normal” data. Such data are obtained from presumed
healthy, normal, or control participants and are frequently
limited in number and diversity, typically because of either the
cost of conducting an MR imaging procedure or challenges in
accessing an MR scanner by non-patients (Larrazabal et al.,
2020). When developing DL models, the lack of normal
data presents a challenge, raising the requirement for larger
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FIGURE 2 | Example of fluid-attenuated inversion recovery (FLAIR) images in a multi-site dataset: (A) healthy control participant imaged on a specific scanner vendor;

(B) a patient with a pathology (white matter hyperintensities, WMH, Wardlaw et al., 2013) imaged on the same scanner vendor; (C) a second patient with WMH

pathology imaged on a different scanner vendor. Images acquired using different scanner vendors may present different image contrasts, shape, and other

characteristics. These varying characteristics may impact the DL models development and performance due to unwanted correlations in the dataset (that are not

correlated with the pathology occurrence).

datasets for training using strategies like data augmentation
and combination of different datasets, or using more advanced
DL strategies like transfer learning and domain adaptation
(Teh, 2020).

Another significant obstacle in developing and implementing
supervised DL models is the often limited availability of
appropriately annotated images in these datasets. Manual
labeling by experts commonly is used to support supervised
learning or to assess model performance. Some datasets present
labels that can support supervised learning strategies for
classification tasks (often related to the patient clinical diagnosis),
or segmentation tasks (brain structures or brain abnormalities
related to a specific pathology). Manual labeling, however,
can be time-consuming, expensive, prone to errors, and may
present with unacceptable intra- and inter-expert variation
(Obuchowicz et al., 2020). There are different approaches to
overcome these challenges, such as using consensus methods,
like simultaneous truth and performance level estimation
(STAPLE, Warfield et al., 2004), and unsupervised approaches
(Shen, 2013; Souza et al., 2018).

Finally, to fully develop reliable, validated, and reproducible
research, it is also necessary to ensure quality of the acquired
data. There are many factors that can impact acquisition quality.
For instance, long acquisition times can adversely affect patient
comfort, increasing the possibility of image artifact due tomotion
(Fantini et al., 2021). For this reason, an image quality control
step is a prerequisite in large projects, specially when involving
multiple sites. Quality control ensure minimum requirements
and quality standards for the medical images to be use in
supporting diagnosis and treatment responses (Kim et al., 2019).

There are many publicly available brain MR datasets. These
datasets can include presumed healthy control (HC) participants,
as well as patients diagnosed with different pathologies like
Alzheimer’s disease (AD) or mild cognitive impairment (MCI),
autism, brain cancer (e.g., glioblastoma multiforme, GBM),
multiple sclerosis (MS), and Parkinson’s disease. Most of these
datasets include adults from around 18 years of age through

to 80 years of age and older, including both male and
female participants.

Many datasets present a single MR modality (i.e., T1-w
volume images), while others supportmulti-modality studies.We
summarized commonly used public brain MR imaging datasets
(having >30 participants, Table 1). Of note, several of these
databases have been made available during conferences like the
Medical Image Computing and Computer Assisted Intervention
(MICCAI) Society. In our tabular summary, we have included the
public datasets that were used in many of the studies described
in the following sections. We purposefully did not include
subscription or pay-to-access brain imaging datasets.

Pooling of datasets is common, despite the complexities
of effectively combining datasets (i.e., dataset aggregation).
Researchers often express disappointment with having to browse
disconnected data repositories with non-intuitive interfaces in
order to access and select data. They must also deal with varied
levels of data quality and data completeness, requiring additional
time and resources to prepare data for their analysis. In addition,
once data are obtained, the connection to the source archive is
often lost making changes difficult to track, potentially leading
to inconsistencies in the data. Some support tools are available,
such as Datalad (https://www.datalad.org/), which provide a
versioning system for shared datasets. However, personnel with
specialized training are required to run these tools. There are
also newer initiatives, such as the Connectome Coordination
Facility (https://www.humanconnectome.org/), which attempts
to overcome some of these issues by adopting an integrated
focus on data acquisition and data infrastructure to both host
and distribute data, and data harmonization to assure that data
acquired at multiple institutions across different studies are as
comparable possible.

Accessing large, heterogeneous datasets can also raise a
number of ethical and privacy concerns. Studies involving human
participants require ethical approval from one or more local
Research Ethics Boards or equivalent. Normally, approval is
granted only after providing information related to (1) the
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TABLE 1 | Summary of some publicly available MR brain imaging datasets.

# Acquisition Longitudinal Sample Availability

Dataset Participants sequences data population of labels

ABIDE (Di Martino et al., 2014) 1112 T1-w NO HC, Autism YES

ADNI (Wyman et al., 2013) 2542 T1-w, T2-w, FLAIR, DTI YES HC, MCI, AD NO

Calgary-Campinas-359 (CC-359) (Souza et al., 2017) 359 T1-w NO HC NO

Cambridge Center for Aging Neuroscience (Taylor et al., 2017) 653 T1-w, T2-w NO HC YES

Connectome Coordination Facility (CCF) - HCP Young Adult

https://www.humanconnectome.org/study/hcp-young-adult

1113 T1-w NO HC YES

Dallas Lifespan Brain Study (Bischof and Park, 2015) 315 T1-w NO HC YES

Information eXtraction from Images (IXI)

(brain-development.org/ixi-dataset/)

600 T1-w, T2-w, PD, DWI NO HC NO

MICCAI 2015 BRATS (Menze et al., 2015) 262 T1-w, T2-w, FLAIR NO GBM YES

MICCAI 2019 WMH Segmentation (Kuijf et al., 2019) 60 T1-w, FLAIR NO SVD YES

MIRIAD (Malone et al., 2013) 69 T1-w YES HC, AD YES

MR-MS (Lesjak et al., 2018) 36 T1-w, T2-w, FLAIR YES MS YES

Neuroimaging Tools and Resources Collaboratory (NITRC)

(https://www.nitrc.org/)

65 T1-w, T2-w, PD NO HC YES

OASIS (Fillmore et al., 2015) 1664 T1-w NO AD NO

PPMI (Simuni et al., 2016) 1460 T1-w YES HC, Prodomal Parkinson’s YES

Southwest University Adult Lifespan Dataset (Wei et al., 2018) 494 T1-w NO HC YES

TCIA (public.cancerimagingarchive.net/nbia-search/) 955 T1-w NO GBM YES

The list includes relevant information, such as number of participants, acquisition sequences, if longitudinal data are available, the sampled population and if manual labels are available.

AD, Alzheimer’s disease; DWI, diffusion-weighted imaging; DTI, diffusion tensor imaging; FLAIR, fluid-attenuated inversion recovery; GBM, glioblastoma; HC, healthy control; MCI, mild

cognitive impairment; MS, multiple sclerosis; PD, proton density; SVD, small vessel disease; T1-w, T1-weighted; T2-w, T2-weighted.

procedures for participant recruitment, (2) the specific process
of obtaining informed consent, (3) the nature of the material that
will be collected, and (4) the uses, both primary and secondary,
of the acquired data (Larson et al., 2020). These considerations
are pertinent topics for discussion when working with medical
images, since online storage of digital images facilities data access
(Lotan et al., 2020). Critically, medical images differ from other
health data types in a few important aspects. Electronic health
records, for example, are comparatively easy to aggregate and de-
identify (or anonymize). Medical images, in comparison, require
further, more detailed consideration to ensure appropriate data
handling and protection of individual privacy (Balthazar et al.,
2018; Larson and Boland, 2019).

Potentially identifiable, clinical data must be de-identified and
carefully safeguarded. Data sharing and aggregation for research
and development should only be allowed when those with data
access are identified and agree to respect the ethics and privacy
regulations (Larson et al., 2020).

3. DATA HARMONIZATION

With the proliferation of multi-site neuroimaging studies, there
is an emerging need to more appropriately handle the non-
pathological batch effects, particularly after dataset aggregation.
If improperly addressed, these effects can potentially hinder
the detection of imaging features associated with the clinical
covariates of interest (i.e., imaging evidence of disease-related
pathology) and, worse, may cause spurious or erroneous findings.
Figure 3 describes an organizational structure for categorizing

FIGURE 3 | Data Harmonization (section 3) and Domain Adaptation (section 4)

are related concepts that address issues related to batch effect correction.

Data Harmonization attempts to standardize images, explicitly minimizing the

batch effects. Conversely, Domain Adaptation implicitly corrects batch effects

while achieving the modeling objective. A hybrid approach that first includes

elements of data harmonization and is followed by a domain adaptation

approach (solid horizontal arrow) is possible and may lead to improved results.

methods for processing heterogeneous data. In this section,
methods that use data harmonization approaches will be
reviewed and in section 4 methods that use Domain Adaptation
approaches will be described. Table 2 summarizes key data
management strategies by batch effect correction approach
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TABLE 2 | Summary of reviewed papers organized by batch effect correction approach (denoted by shading): explicitly using data harmonization vs. implicitly using

domain adaptation; and principal task (segmentation vs. classification).

Batch effect Principle Participant Main

Publication correction approach task population aim

Smith et al. (2019) Explicit N/A SVD Propose a harmonizing framework for neuroimaging studies

Jovicich et al. (2006) Explicit N/A Phantom Improve reproducibility in morphometric studies

Fortin et al. (2018) Explicit N/A HC Investigate scanner effects on cortical thickness

measurements

Li et al. (2020) Explicit N/A HC Propose a denoising method to reduce variance related to

scanner

Zeng et al. (2018) Explicit N/A Synthetic data and HC Perform super-resolution reconstructions

Gauriau et al. (2021) Explicit Segmentation Various pathologies Study abnormalities in MR images related to the presence of

brain pathology

Despotovic et al. (2015) Explicit Segmentation HC Compare different brain segmentation strategies with focus

on the pre-processing

Liao et al. (2008) Explicit Segmentation Phantoms and HC Study the impact of intensity inhomogeneities or bias fields

Ahmed et al. (1999) Explicit Segmentation HC Estimate and compensate for intensity inhomogeneities

Shinohara et al. (2017) Explicit Segmentation MS Propose several automated lesion-detection and whole-brain

analysis using protocol harmonization

Sajja et al. (2006) Explicit Segmentation MS Minimize false-positive lesion classification on brain

segmentation

Dewey et al. (2019) Explicit Segmentation HC Propose a data harmonization-segmentation method based

on image contrast (DeepHarmony)

Swati et al. (2019) Explicit Classification GBM and HC Perform brain tumor classification using transfer learning

considering unbalance training data

Van Leemput et al. (1999) Explicit Classification MS Propose a fully automated bias field correction prior to tissue

classification

Tohka et al. (2016) Explicit Classification AD, MCI and HC Compare different feature selection approaches in dementia

classification

Sundaresan et al. (2021b) Implicit Segmentation AD, MS, Stroke and SVD Develop domain adaptation strategies to segment brain

lesions

Zeng et al. (2020) Implicit Segmentation Compare lesion segmentation methods according to improve

translation to clinical environment

Orbes-Arteaga et al.

(2019)

Implicit Segmentation SVD Propose a domain adaptation strategy for using data

augmentation and adversarial networks

Ghafoorian et al. (2017) Implicit Segmentation SVD Study how to properly apply domain adaptation: required

amount of data from new domain and portion of model to be

retrained

Akkus et al. (2017) Implicit Segmentation Survey brain MR imaging segmentation methods according

to the usage of data augmentation and transfer learning

Karani et al. (2018) Implicit Segmentation HC Propose a brain structure segmentation method for single

CNN with shared convolutional filters and domain-specific

batch normalization layers

Ackaouy et al. (2020) Implicit Segmentation GBM and HC Describe an unsupervised domain-shift approach for brain

abnormality segmentation

Kondrateva et al. (2021) Implicit Classification Analyze and compare different approaches for domain-shift

problem with focus on advanced data processing,

auto-encoding neural networks and their domain-invariant

variations, model architecture enhancing, and feature training

Hofer et al. (2017) Implicit Classification AD and HC Propose an approach to perform adaptation in feature space

directly to reduce domain shift impact

Islam and Zhang (2018) Implicit Classification AD and HC Identify different stages of AD and obtained superior

performance for diagnosing early-stage disease using

ensemble Deep CNNs

Jain et al. (2019) Implicit Classification AD and HC Propose AD classification approach based on transfer

learning minimizing the pre-processing steps

Zhang et al. (2019) Implicit Classification AD and HC Perform brain disease identification using unsupervised

conditional consensus adversarial network

The study participant population and main aim are provided. AD, Alzheimer’s disease; GBM, glioblastoma; HC, healthy control; MCI, mild cognitive impairment; MS, multiple sclerosis;

N/A, Not-applicable; SVD, small vessel disease.
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(data harmonization vs. domain adaptation) and principle task
(segmentation vs. classification).

An important approach when developing DL models using
large and heterogeneous datasets is harmonization and/or
standardization. Efforts to achieve data harmonization of
heterogeneous datasets (Onofrey et al., 2019) include minimizing
variability by removing poor quality samples (i.e., outlier
detection Bento et al., 2018) and by applying procedures for
image standardization (i.e., pre-processing Kidoh et al., 2020).
The use of content-based medical image retrieval methods are
also relevant to data harmonization as they apply techniques
for retrieving cohorts of similar images from a larger image
database, (Liu et al., 2017). Outlier detection, pre-processing
and content-based retrieval methods can decrease the sources
of unwanted variability in image datasets. These techniques
that modify images may result in the introduction of undesired
changes (e.g., image artifacts) or may result in the loss of subtle
biomarkers and abnormalities, particularly if image smoothing
techniques are used (McVeigh et al., 1985).

Smith et al. (2019) identified gaps in our knowledge and
proposed to develop tools for harmonizing imaging and
analysis by proposing a framework for neuroimaging biomarker
development that was based on (1) validating repeatability and
reproducibility, (2) attention to biological (or clinical) principles,
and (3) assessment of the feasibility of implementation. Their
platform (www.harness-neuroimaging.org) comprises an MR
imaging repository with specific acquisition protocols, software
database, rating scales, and case report forms that is suitable for
cerebral small vessel disease applications. Similar harmonizing
frameworks would be generalizable to other brain disorders.

The effects of MR scanner gradient non-linearity have on the
reproducibility of multi-site human MR imaging is one example
of a situation that depends on data harmonization. Gradient
non-linearity was investigated in order to facilitate precise,
quantitative, platform-independent, multi-site evaluation by
Jovicich et al. (2006) who applied an image distortion correction
method based on spherical harmonic description of the gradient
errors. They verified the method using phantom data and
then applied it to the brain image data from a group of
participants scanned twice at multiple sites using different 1.5
T MR scanners. Imaging variability within sites and in multi-
site studies was assessed by evaluating the reproducibility of
voxel-based image intensities. Reproducibility was improved
after gradient non-linearity distortion correction, suggesting that
this data harmonization scheme may improve reproducibility
in morphometric studies. The correction for gradient non-
linearity errors has the potential for improving the accuracy of
morphometric analysis in longitudinal and multi-site imaging
studies, by improving both geometric accuracy and image
intensity reproducibility. These corrections, while beneficial in
multi-site studies, however, do not account for all the sources of
image intensity variability.

Fortin et al. (2018) also investigated MR scanner effects
in large multi-site studies, specifically on cortical thickness
measurements using eleven MR scanners. They proposed a set
of tools (based on earlier work in gene expression Johnson et al.,
2007) aiming to identify scanner effects that are generalizable

to other modalities. Authors showed that the proposed
approach not only minimize batch effects, but also increased
reproducibility, based on the presented statistical analyses by
mitigating batch effects (Fortin et al., 2018). In another study, Li
et al. (2020) proposed to identify and remove effects related to
the scanner from multi-site MR imaging. They proposed a data-
driven approach that applied independent component analysis
(ICA) to test the proposed method, developed on a single 3 T
scanner. Their proposed denoising method showed a reduction
of variance related to scanner. The method showed promising
findings for minimizing batch effects in heterogeneous and
multi-site studies containing data acquired in different scanners.

A deep convolutional neural network model was proposed
Zeng et al. (2018), aiming to perform single- and multi-
contrast super-resolution reconstructions. Their results, using
synthetic and real brain MR imaging data, showed that the
proposedmodel outperforms state-of-the-art MR imaging super-
resolution methods, considering visual quality and quantitative
measurements such as peak signal-to-noise ratio (pSNR) and
structural similarity index (SSIM). This improved performance
was obtained when the training and test images were from the
same dataset, while the super-resolution results for the multi-
site data were poor. These findings indicated that these training
and testing images have large variations resulting from the use
of different datasets. For this reason, the authors suggested the
training and testing images should come from the same dataset,
having data acquired under the same experimental conditions.
Another limitation was related to the size of the dataset, a large
dataset was required to train their proposed model. Training of
their models was also a time-consuming task.

Another DL approach to perform data classification was
proposed by Gauriau et al. (2021). The goal of their study was to
distinguish MR images for the presence of brain pathology (i.e.,
either “likely normal” or “likely abnormal”) using FLAIR images.
The experimental dataset comprised over 10,000 patients with
a broad variety of pathologic conditions, including neoplasms,
hemorrhages, and infarcts. They performed a pre-processing
step that resized and normalized the images, before performing
experiments across datasets to evaluate model generalization.
The model showed good performance in differentiating “likely
normal” from “likely abnormal” brain examinations using multi-
site data. This study also highlighted that some pathologic
conditions with subtle imaging findings were not readily visible
on FLAIR images, illustrating a possible limitation of the model.
They proposed to mitigate this limitation by using data acquired
from multiple MR sequence acquisitions (resulting in different
image contrasts) in future studies.

The key advantage of harmonization approaches is that they
attempt to further understand data variability before attempting
to reduce it. Thus, they provide an implicit method to improve
image curation and overall dataset quality. They also allow
the subsequent application of less complex learning models
that focus only on disease-related pathology. The use of less
complex models can potentially improve model interpretability
(Figure 3). However, the steps and techniques commonly used
to standardize data are tailored to specific harmonization of
datasets.When new data is input into the analysis, this data much
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be first re-evaluated and the model possibly retrained, to ensure
that appropriate harmonization approaches are used.

3.1. Segmentation
Image segmentation is an important brain MR image processing
task that is commonly used for visualizing and measuring
anatomical structures. It is a necessary step for brain
morphometric, for delineating pathological regions, and
for surgical planning and image-guided interventions (Lorenzo
et al., 2019). In the last few decades, a series of brain segmentation
techniques of varying accuracy and degrees of complexity have
been developed and reported in the literature. Undeniable,
computerized image-segmentation methods have shown much
potential and application in computer-aided diagnosis and
treatment planning. In this section, we focus on the role of data
harmonization by studying data variability applied to human
brain segmentation fromMR images.

Despotovic et al. (2015) compared different approaches
for brain segmentation, summarizing their characteristics,
advantages and disadvantages. Special focus was given to the MR
imaging pre-processing step, including image registration, bias
field correction, and removal of non-brain tissues. The authors
showed that the selection of the most appropriate technique for
a given application is a difficult task, since new segmentation
problems emerge and new solutions are continuously proposed.
In fact, Despotovic et al. highlighted that in many cases, a
combination of several techniques may be a requirement to
achieve a reliable segmentation. Another important concept in
brain segmentation is the integration ofmulti-modal information
(i.e., images acquired from different modalities or at varying
points in time).

The impact of intensity inhomogeneities or bias fields in MR
images have also been examined. Liao et al. (2008) presented
work on a fast, spatially constrained kernel clustering algorithm
for segmenting medical brain MR, specially correcting bias
fields in MR imaging data. Their algorithm uses a kernel
technique to map image data to higher dimensional kernel
space, improving the separability of data and providing greater
potential for effectively segmenting MR imaging data. They
also proposed an approach for correcting spurious intensity
variation in MR images. The fast kernel clustering and bias
field correction are beneficial, and when used in an iterative
manner have dramatically reduced the complexity of kernel
clustering. Experiments on both phantoms and real MR images
showed that the proposed algorithm generally outperformed
the corresponding traditional algorithms when segmenting MR
imaging data corrupted by high noise and bias fields.

Ahmed et al. (1999) proposed a brain segmentation
that focuses on data harmonization by estimating intensity
inhomogeneities for segmentation of MR imaging data. Their
algorithm modifies the objective function of the standard fuzzy
c-means algorithm to compensate for such inhomogeneities.
Their proposal allows a pixel labeling to be influence by the
labels in its immediate neighborhood, acting as a regularizer,
leading to a more homogeneous labeling results. Experiments
performed on both synthetic data and MR images demonstrated
the effectiveness and efficiency of the proposed algorithm.

A different approach to segmenting lesions in MS patients
from T1- and T2-weighted MR images was described by
Shinohara et al. (2017). This paper address an important
topic that is multi-site variability by imaging a volunteer with
relapsing-remitting MS twice (scan-rescan testing) at seven sites
associated with the North American Imaging in MS Cooperative
Steering Committee. This committee developed a uniform high-
resolution 3 T MR imaging protocol for quantifying cerebral
lesions and atrophy and implemented it at the sites. Expert
image segmentation maps were manually obtained for lesions
on both the T1-w and T2-w images to allow the development
of supervised techniques. Several automated lesion-detection
and whole-brain, cortical, and deep gray matter segmentation
pipelines were assessed, and statistical analyses performed to
assess variability as well as systematic biases in the volume
measurements across sites. The study found that even in multi-
site studies with consistent scanner field strength and vendor
after protocol harmonization, systematic differences can lead to
severe biases in volumetric analyses.

Sajja et al. (2006) tackled another common issue when
segmenting MR images: false-positive lesion classification on
segmented brain MR images, which can be a major problem
when determining lesion volumes in MS and other patients.
Their approach used proton density (PD)-weighted, T2-w and
FLAIR images and involved lesion classification using the Parzen
window classifier (Jain and Ramaswami, 1988). The performance
of this algorithm was evaluated on 23 MS patients. Contextual
information was exploited to minimizing the false-negative
lesion classifications using a hidden Markov random field-
expectation maximization (HMRF-EM) algorithm and lesions
were delineated using fuzzy connectivity. One of the main
advantages of the proposed approach is the translation to
other brain pathologies with minor modifications. The proposed
method, however, does have a limitation related to lesion
overestimation, mainly impacting smaller lesion loads. Another
limitation was related to the need of human intervention.

The final example study in the data harmonization-
segmentation subsection proposes a method of contrast
harmonization, called DeepHarmony. This method uses a U-net-
based DL architecture to produce images with consistent contrast
(Dewey et al., 2019). Images harmonized with DeepHarmony
have shown significant improvement in consistency of volume
quantification between scanning protocols. To provide
training data, a small cohort (n = 8) was scanned using two
different protocols (overlapping participant cohort). Contrast
harmonization showed that the atrophy estimate were affected
by protocol change, impacting the DeepHarmony findings. The
data from overlapping participant cohort allows overcoming
inconsistencies in segmentation caused by the batch effects.
This study of batch effects allow the design of long-term studies,
without invalidation of results previously acquired. Further, the
authors highlighted some limitations for longitudinal studies,
which could be overcome by augmenting the DeepHarmony
methodology with improvements such as fully 3D networks
or adversarial training, which have been shown to improve
accuracy and perceptual quality in computer vision and medical
imaging tasks.
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Even when essentially all acquisition protocols parameters
are harmonized, combining studies still can present variability
due to small, unaccounted for differences between scanners.
In most cases, specific harmonization techniques are tailored
to standardize specific combinations of datasets. Thus, data
harmonization in image segmentation is an area that must be
constantly evolve to allow the aggregation of larger datasets with
more sources of data variability.

3.2. Classification
In this section, important studies that perform data
harmonization prior to image classification are reviewed.
Image classification overcomes the semantic gap between
the low-level visual information captured in the MR image
and the high-level information (descriptor) perceived by a
human evaluator. Traditional machine learning classification
techniques focus only on low-level or high-level features, some
use some hand-crafted features to reduce the semantic gap, and
most require the combination of good feature extraction and
classification methods. DL has recently shown great progress
and, specially, deep convolution neural networks (CNNs) have
shown much success in challenging image classification tasks.
DL is very powerful in that feature representation can effectively
depict both low-level and high-level information.

For most medical imaging applications, the training datasets
are small, therefore, it is often a challenging task to apply
DL and train models from scratch with only access to small
datasets. To overcome the limitation of small training dataset
sizes, different net approaches have been examined. For example,
a brain tumor classification using a pre-trained deep CNNmodel
based on transfer learning (Swati et al., 2019). Experiments were
performed using T1-wMR imaging data. The proposed approach
did not use handcrafted features and required less pre-processing.
The results were compared not only with traditional classification
models but also to other CNN approaches, outperforming
state-of-the-art classifiers. This work demonstrated the learning
transferability from natural images to medical brainMR imaging,
by using a transfer learning strategy as feature extractor (without
additional domain-specific training) that was trained separately
from the classifier training. One limitation was the in ability
to perform fine-tuning experiments using volumetric images
because of the size of the dataset.

Van Leemput et al. (1999) evaluated the usage of a fully
automated bias field correction prior to tissue classification. In
this paper, the MR signal was modeled as a random process with
a parametric probability distribution with inhomogeneity field
corruption. The proposedmethod aims to improve the likelihood
of model parameters using an iterative strategy, interleaving
pixel classification with the estimation of class distribution
and bias field parameters. The proposed approach requires no
user interaction, allowing objective and reproducible results.
Experiments were performed on simulated data and on various
MR datasets, to illustrate performance on various MR images
with field inhomogeneities, and to allow the comparison to other
bias correction algorithms.

In a third example, different feature selection approaches were
compared for dementia classification using brain MR imaging.

The objective in Tohka et al. (2016) was to separately model
two classification problems using AD patients, MCI patients,
and HC participants: (1) classify AD from HC, and (2) classify
MCI from HC. Tohka et al. compared support vector machines
(SVMs), evaluating the usage of feature selection, embedded
feature selection methods, and stability selection. The use of
embedded feature selection methods resulted in an optimized
generalization performance for the MCI vs. HC classification
problem. Another relevant finding was that the variability in
classification accuracy due to independent samples did not
typically depend on the feature selection method, and was
generally found to be acceptable. A limitation of this work
was that only dementia-related applications were considered.
The generalization of the study findings to other brain diseases
is required.

Most of the works that aim to perform brain MR classification
report challenges related to low number of samples. This is one
of the main reasons for the aggregating data from multiple sites,
comprising both private and public datasets. Data harmonization
is applied in such datasets to reduce the data variability related
to the scanner, such as pre-processing algorithms, and some also
require human intervention. Besides, after data harmonization,
classification studies also use strategies to overcome the limited
data size, such as data augmentation strategies and transfer
learning. The authors suggest that the usage of 3D networks
and adversarial training to tackle image variability may lead to
optimize and more generalizable findings.

4. DOMAIN ADAPTATION

Even though careful harmonization of acquisition parameters
can reduce variability, inter-protocol differences become almost
inevitable to arise, specially with ongoing improvements in
hardware and in sequence design, even within a single-site study
(McCreary et al., 2020). This observation highlights the need
to develop more advanced deep-learning models that attempt
to implicitly manage data variability. These advanced models
are potentially less affected by the batch effects and can thus
present generalizable results (Moeskops et al., 2018; Perkuhn
et al., 2018). Models that implicitly account for image data
variability by, for example, employing domain transfer, domain
adaptation techniques, or multitask learning have been proposed
(Shin et al., 2016; Wang and Deng, 2018). By analyzing and
modeling image data variability, these approaches tend to provide
more reliable results because their outputs are related to the
underlying research question (i.e., pathology of interest) and
are not influenced by batch effects (Cole et al., 2017). Table 2
summarizes key domain adaptation approaches by principle task
(segmentation vs. classification).

Generative adversarial networks (GANs) are a frequently
applied approach that has been successful because of its capability
to generate data without explicitly modeling the probability
density function and by imposing higher-order consistency on
the results (Creswell et al., 2018). These results have proven to
be useful in many situations including domain adaptation, data
augmentation, image-to-image translation, and cross-modality
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translation (Xin and Babyn, 2019). The development of new
methods and algorithms for the transfer of training and
adaptation of domain in multi-modal medical imaging data
is crucial for the development of accurate models, and their
translation to the clinical practice.

It is relevant to consider the problem of domain shift in
analyses of brain MR imaging data, specially in multi-site studies.
Recent work in domain adaptation addresses this challenge and
successfully leverages labeled data in a source domain to perform
well on an unlabeled target domain.

4.1. Segmentation
The accuracy of CNNs may be severely degraded when
segmenting images acquired on different scanners or using
different protocols as compared to the training data (Dolz et al.,
2018). DL-based segmentation approaches for brain MR imaging
are gaining interest due to their self-learning and ability to
generalize over large amounts of image data. As DL architectures
mature, they are beginning to outperform previous state-of-the-
art classical machine learning algorithms (Orbes-Arteaga et al.,
2019). DL has also achieved great performance in non-brain fields
of medical imaging (Dewey et al., 2019).

A generalizable method for brain image segmentation where
data is collected from multiple scanners and sites and, therefore,
affected by site/domain shifts is proposed in Aslani et al. (2020).
Performance was improved by integrating an encoder-decoder
network with a regularization network that included an auxiliary
loss term to reduce the impact of the domain-shift problem.
Experiments were evaluated on MS lesion segmentation using a
private clinical dataset (117 patients from 56 different scanning
sites). The proposed method was compared with other methods
in the literature and showed better generalization performance in
terms of Dice similarity coefficient (DSC) and positive predictive
value (PPV) measures among all tested models. The authors
reported that some, mainly small volume, lesions were not
identified. Automatic segmentation of lesions in MR images is
essential for clinical assessment, treatment planning and response
to treatment follow-up in MS. Recently, the application of CNNs
has increased for this task. Although these methods provide
accurate segmentation, their applicability in clinical settings
remains limited due to poor reproducibility across different
image domains (Ackaouy et al., 2020).

Sundaresan et al. (2021a) proposed a segmentation approach
for white matter hyperintensity lesions that can occur in
a variety of brain diseases (including AD, MS, stroke, and
small vessel disease). Experiments using domain-adaptation
strategies, such as transfer learning, domain adversarial neural
networks, and domain unlearning using data from three datasets.
Results showed improved generalization when compared with
the baseline model, an ensemble network model proposed
earlier (Sundaresan et al., 2021b), demonstrating the ability of
domain-adaptation techniques to learn the domain invariance
between datasets.

Zeng et al. (2020) systematically reviewed different methods of
lesion segmentation in MS patients. DSC and PPV metrics were
used for the quantitative comparison of themethods. The authors
highlighted the difficulty for model benchmarking, specially

when comparing methods that used private (or proprietary)
and not public datasets. Another highlight was related to the
usage of DL based methods. Although such methods improved
the performance of automatic segmentation methods, there
is still a key challenge to directly use these methods in a
clinical environment. Aggregating, using larger datasets, and
potentially using publicly available data, has the potential to
improve translation of DL, accelerating their application in
medical imaging applications. However, there is still room for
improvement of the generalizability of DL-based methods. Zeng
et al. (2020) predicted that future work in MS segmentation will
be a focus on domain-adaptive models from both image and
feature aspects of MS segmentation.

An interesting, semi-automatic method to adapt a
segmentation model from a source domain to a target
domain was proposed by Orbes-Arteaga et al. (2019). The
proposed algorithm method combines consistency loss with
the adversarial learning. Experiments were performed on white
matter hyperintensity lesion segmentation from brain MR
images (using the MICCAI 2017 challenge data Kuijf et al.,
2019 as the source domain and two target domains). Their
method significantly outperformed other domain-adaptation
methods, presenting critical findings to the translation for the
clinical practice, considering scanner upgrades and multi-site
trials. Their experiments also showed that the effects of data
augmentation (which usually present a positive impact in the
performance) failed to provide benefit in the pure adversarial
setting. Orbes-Arteaga et al. showed the best performance was
obtained when combining a pure adversarial setting with the
proposed strategy. They highlighted one limitation in their work,
related to the need for paired data.

The use of domain adaptation for white matter lesion
segmentation was also proposed in Ghafoorian et al. (2017).
These authors addressed two relevant topics related to transfer
learning: the amount of data on the new domain that is
required for a proper domain adaptation, and the portion of
the pre-trained model that needs to be retrained for a specific
number of samples from the new domain. During experiments,
a CNN was trained using MR images of brain and the model
performance of the domain-adapted network evaluated on the
same task with images from a different domain. Performance
was compared to using the same trained network on a new
dataset, vs. training from scratch. The domain-adapted network
outperformed training from scratch networks. When more
training data becomes available, fine-tune of the shallower layers
(e.g., the last convolutional layers) should be performed. Tuning
the initial few convolutional layers that comprises domain-
independent characteristics is rarely beneficial.

Akkus et al. (2017) surveyed brain MR imaging segmentation
methods, describing and comparing current start-of-the-art
approaches based on speed and other properties, as well as listing
possible future directions in this research area. They highlighted
two important findings: usage of data augmentation may
minimize the requirement for larger datasets; and advocate the
usage of transfer learning, sharing well-performing DL models
trained on brain MR imaging (both normal and pathological
samples). In brain imaging research, transfer learning has
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improved the generalization capability of these models in multi-
site data, when compared with learning from scratch. The
authors highlighted that there is still a limitation on the current
state-of-the-art models related to generalization, presenting
reliable results to variations in brain MR images. In practice,
the DL methods performance is dependent on pre-processing,
initialization, and post-processing. Training on relatively small
brain imaging datasets, as compared to large-scale natural image
dataset (i.e., ImageNet having millions of images) result in
poor generalization. Akkus et al. (2017) suggested that future
DL models will need to be robust to variations in brain MR
imaging or have unsupervised learning capability to reduce the
requirement of ground truth labels.

Karani et al. (2018) presented a study of brain structure
segmentation from MR images acquired using different scanners
and protocols. They addressed the generalization problem by
applying multi-domain learning and treating images acquired
with different scanners and protocols as samples from different,
but related domains. The proposed solution is a single CNN
with shared convolutional filters and domain-specific batch
normalization layers, which can be tuned to new domains with
only a few labeled images, using semi-supervised learning. The
proposed method presented similar results to dedicated CNN
trained for each scanner/protocol combination. This paper is one
of the first efforts to address the limitation of usage of CNNs
for medical image analysis, providing a benchmark for managing
data distribution changes observed in the clinical environment.

Another paper also proposed a domain-adaptation approach
but used an unsupervised domain-shift approach (Ackaouy
et al., 2020). This framework, known as Seg-JDOT, used
a DL model (variation of a 3D U-net architecture) to
segment similarly samples from a source domain and a target
domain with similar representations. A multi-site dataset (from
the MICCAI 2016 challenge Commowick et al., 2018) was
used to evaluate the proposed framework and showed that
adaptation toward a target site can improve model performance
over standard training. The authors suggest that Seg-JDOT
adaptation to other neural network architectures or tasks
is straightforward. However, even with effective findings in
dealing with domain-adaptation problem, the inclusion of
clinical sites with small number of patient may present a
limitation in the results. Future studies will need to evaluate the
framework with respect to other CNN architectures, different
from U-net.

Although DL has achieved great performance for both brain
structure and brain abnormalities segmentation tasks compared
to traditional methods, there are still some problems that limit its
potential in this field: dataset scale, data imbalance, and domain
shift. Besides, the manual annotation requirement to perform
segmentation tasks is still a challenge, specially in large multi-
site datasets. A possible solution would be the development
of semi-supervised and unsupervised approaches, minimizing
the usage of such labels. Overall, current issues related to poor
reproducibility, specially for images from different domains
(sites), impact the further applicability of DL models in a
clinical environment.

4.2. Classification
The usage of multi-domain data for brain disease classification
has recently attracted increasing attention because many
participants from multiple domains could be beneficial for
investigating the pathological changes in brain MR imaging,
improving the results reliability and generalization capability.
Although several DL methods have been developed, they usually
assume that the source classifier can be directly transferred to the
target domain (i.e., mapped between domains). Such methods
used domain-invariant features, ignoring the domain shift in
data distributions.

Kondrateva et al. (2021) analyzed and compared different
MR imaging studies that tackle the domain-shift problem.
They focused on advanced data processing, auto-encoding
neural networks and their domain-invariant variations, model
architecture enhancing, and feature training, as well as a
prediction in a domain-invariant latent space approaches.
They discovered that data augmentation before training (a
conventional for most segmentation models for MR imaging)
was the most widely used approach. Other commonly used
approaches included adaptive receptive fields (i.e., deformable
convolutions), as well as specialized loss functions. Authors
also highlighted domain-invariant auto-encoding models that
were found to be the most rapidly developing approach in
medical segmentation for addressing the domain-shift problem.
Key limitations included data normalization techniques like z-
normalization and histogram matching (conventionally used in
manyMR imaging studies). Another limitation was related to the
usage of DL-style transfer in CT andMR imaging, that was found
to be unstable.

A simpler approach to reducing the impact of domain
shift caused by varying acquisition parameters and processing
pipelines was proposed by Hofer et al. (2017). Their proposed
approach performed adaptation in feature space directly
to overcome the deleterious effects of domain shift. They
evaluated their approach using volumetric features to distinguish
neurodegenerative diseases and reported results using three
different datasets. They compared two different scenarios: (1)
multi-site learning and (2) the use of pre-trained classifiers across
different datasets. The proposed adaptation techniques for both
scenarios performed similarly to the single-data case. While the
proposed model was simple and can be easily estimated, in
applications that the data cannot be modeled using Gaussian
distributions, additional complexity may be required.

Islam and Zhang (2018) proposed a classification considering
data variability applied to AD diagnosis, using an ensemble
of deep CNNs. Instead of implementing a binary classification
problem, they proposed to identify different stages of AD
and obtained superior performance for diagnosing early-stage
disease. They conducted experiments to demonstrate that their
proposed model outperformed comparative baselines on the
OASIS dataset (Fillmore et al., 2015). Even though their
proposed model has been tested only on AD, the translation
to other medical imaging classification is expected to be
straightforward, showing potential for application in areas with a
limited dataset.
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Another AD classification approach was proposed by Jain
et al. (2019) based on transfer learning (using VGG16 Simonyan
and Zisserman, 2015 trained on ImageNet dataset Deng et al.,
2009 as the feature extractor). The authors, using the ADNI
dataset (Wyman et al., 2013), demonstrated that even though
VGG16 was trained on general images (natural images), it
was still able to extract useful features to support the AD
brain MR imaging classification task. The model compared
favorably to other classification model. In future studies, Jain
et al. (2019) will investigate the removal of pre-processing steps,
such as skull striping and intensity normalization, and fine-
tuning the pre-training convolutional layers of the base model to
improve performance.

Finally, Zhang et al. (2019) used structural brain MR imaging
with an unsupervised model for brain disease identification.
An unsupervised conditional consensus adversarial network
(UCAN) for deep domain adaptation was used to learn a disease
classifier trained from labeled source domain data and then adapt
it to a different unlabeled target domain. The proposedmodel has
three main components: (1) a module to extract features from
the input MR imaging, (2) a module to perform cycle feature
adaptation, supporting feature and classifier adaptation between
the two domains (source and target), and (3) a classifier for
disease identification. Experiments were performed on the ADNI
dataset (Wyman et al., 2013) to analyze the effectiveness of the
UCAN method compared to related approaches, showing better
performance. In the experiments, the three orthogonal image
views were applied to generate a prediction for each patient,
using majority voting to combine the three results. The best
performance was achieved by using only the sagittal view. This
study reports the first use of a feature extraction module to learn
representations to input MR imaging, followed by a cycle feature
adaptation module to harmonize features and classifiers of the
source and target domains. Zhang et al. (2019) suggested as
relevant future work to use three-dimensional (3D) convolution
as opposed to the computational easier two-dimensional (2D)
convolution, taking advantage of the global structure information
of 3D MR image volumes.

The work presented in this section aims to minimize the usage
of pre-processing techniques, developing more complex models
to tackle batch effects related to varying acquisition parameters
in multi-site data, using domain adaptation strategies. Most of
the classification approaches on multi-site data rely on accessing
labeled data in all domains (source and target) when training the
models, however, labels in target data may not be available. So in
future works, there is a requirement for the development of DL
models (Song et al., 2021), specially domain adaptation strategies
to tackle data variability, applied for brain MR imaging using less
manual annotation.

5. DISCUSSION

We reviewed the literature describing the development and
evaluation of DL models in human brain structural MR
imaging (section 2). We first focused on issues related to
data access, including summarizing key, broadly used, public

datasets, and discussing emerging ethical and privacy issues.
DL models that employed multi-site datasets were organized
into approaches that use either: (1) Data Harmonization or
(2) Domain Adaptation strategies. In the first approach, data
harmonization (section 3), the impact of batch effects is reduced
by standardizing/harmonizing images or by minimizing
acquisition-based image variation. Domain adaptation
(section 4), in contrast, employed models that implicitly
handle batch effects resulting from different data sources and
processing pipelines. For both data harmonization and domain
adaptation approaches, we then described key advanced for both
segmentation and classification implementations. In general,
these methods provide either (1) predictions related to the
occurrence of diseases or (2) analyze brain structures, typically
in both patients with brain pathology and HC participants.

While there are numerous studies describing segmentation
and classification tasks that use brain MR images, one of
the main challenges in this area is the successful translation
of these techniques to clinical practice. A re-occurring issue
frequently preventing clinical adoption relates to poor capacity
for generalization with many of the proposed models. Often this
limitation is due to a poor management of variability inherent
to different datasets. We identified batch effect and used it to
describe variability that if improperly managed contributed to
poor model generalization.

5.1. Identified Major Challenges
We identified major challenges when developing DL models
and multi-site brain structural MR datasets. These challenges
fall into four categories: (1) difficulties with identifying the
appropriate literature, (2) problems with accessing appropriate
datasets, (3) a general lack of annotation of large datasets,
and (4) understanding the inherent trade-off between data
harmonization and domain adaptation approaches.

One of the initial challenges when reviewing the literature
was selecting appropriate search terms and keywords. We found
multiple terms and field-specific jargon that were used to define
the same concepts, e.g., dataset bias, domain shift, domain
adaptation, vs. domain transfer. In practice, we found little
standardization in the literature, making it challenging to identify
the appropriate relevant studies.

Data access issues included the observation that many studies
did not exclusively use publicly available datasets, but at times
relied on private (proprietary) datasets. This observation poses a
difficulty when trying to replicate findings. A further challenge
when working with brain structural MR images is the limitation
of accessing relative small volumes of data. Data augmentation
approaches that realistically mimic variations in brain MR
imaging data can alleviate the need for larger datasets, and
transfer learning could be used to facilitate the training by using
other already well-performing DL models (trained with HC
participants and/or patient brain MR imaging data). Transfer
learning in general improved the generalization of these models
across datasets with less effort than learning from scratch (Akkus
et al., 2017). Even after using these and other similar strategies,
the limitation of small datasets remains a concern. Related
somewhat to data size limitations are the development of models
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that can process 3D (or volumetric) data. The implementation
of 3D models were generally restricted to 2D realizations where
a series of image slices were processed (Swati et al., 2019).
Such 2D models take advantage of the many image slices per
image volume to increase the apparent data size. However, 2D
implementations lose the volumetric information that may be
relevant to the task of interest. Data unbalance and the presence
of poor quality samples (i.e., image noise data, image artifacts
such as from participant motion) also represent challenges in the
development of reliable DL approaches.

The absence or poor data annotation (or labeling) represents
a key challenge in the development of supervised DL models.
DL models that are highly robust to variations in the labeling
quality of brain MR imaging or have unsupervised learning
capability that lessen the requirement on labels are needed (Sajja
et al., 2006). Retraining a supervised model with data from
each new domain is not feasible, simply because it requires
manual annotation from experts (Ackaouy et al., 2020). Self-
learning and unsupervised learning are promising models that
may be used to overcome limitations related to poor or missing
data annotation.

An advantage to more advanced models is that they can
explicitly handle batch effects, thus presenting consistent results
over different datasets (Yan et al., 2020). This trade off
is reflected in general between simpler Data Harmonizing
methods vs. the more complex domain adaptation methods that
implicitly account for variability. However, the development
of the more complex models may impose another challenge
that is related to decreasing model interpretability (Yosinski
et al., 2015; Yamashita et al., 2018). In most situations, these
models are considered to be “black boxes,” potentially limiting
their application in the clinical environment (Ho et al., 2019).
However, there are techniques that can overcome this limitation
and provide further interpretation and understanding of more
advanced DL models. Layer-wise relevance propagation, for
example, is one technique that maps an abstract concept (e.g.,
features associated with a predicted class) into a domain that a
human observer can visualize (Montavon et al., 2018).

The translation from models trained on one brain pathology
to other brain pathologies is another challenge in this area. There
is a specific effort to avoid using application-related information
when designing the DL models, however, it is still not clear how
well the findings of specific studies can generalize to the studies
of other brain diseases (Tohka et al., 2016). This unknown is
highly relevant and needs to be considered in the translation to
clinical practices.

5.2. Recommendation for Future Studies
Future studies should extend the evaluation of DL approaches
to structural MR data that were not present during the initial
training phase (Karani et al., 2018). Application-specific DL
models are emerging, and new methods are continuously
explored and introduced. The selection of the most appropriate
technique for a given application is a difficult task. In
many cases, a combination of several techniques may be
necessary to obtain reliable and generalizable performance.
Domain adaptation approaches that employ transfer learning

are preferred to training models from scratch (Ghafoorian
et al., 2017). Commonly, the integration of different datasets
(acquired from different research centers or scanners, or over
time), if appropriately processed, can help to improve the model
performance, presenting consistent results when compared with
models developed using single-site data. The study of DL models
developed using multi-site data, specifically the understanding
of variability and bias effects, is an initial step to help translate
medical image DL applications to the clinical setting (Despotovic
et al., 2015).

Current state-of-the-art work in this area are focused
on domain-adaptation techniques, mostly using adversarial
approaches. While a pure adversarial setting may be ineffective
(Orbes-Arteaga et al., 2019), improved performance across
all models was obtained when combining it with other
task-specific strategies.

A possible approach to handle classification or segmentation
tasks on structural brain MR is to perform a fully 3D network,
and using adversarial discriminative networks (Dewey et al.,
2019). This method presented great results to accomplish
classification studies, however, it requires retraining on the target
domain images. This finding is a limitation when translating to
the clinic, where acquisition parameters can change frequently.

There are key studies advancing domain adaptation methods
including the development of new optimized strategies that
could be translated to neuroimaging. Ajakan et al. (2014)
proposed a representation learning algorithm to perform domain
adaptation. Theirmodel is trained to perform a classification task,
while minimizing the influence of the domain the images were
acquired from. Experiments performed using unlabeled target
domain data (minimizing the requirements for data annotation),
had superior results when compared to standard neural networks
or a support vector machine approaches.

Zhao et al. (2019) developed an unsupervised domain
adaptation approach using classification and regression settings,
aiming to present reliable results in multiple domains. The
proposed multi-source domain adversarial network (MDAN)
is not limited to single source and single target domain
applications as other domain adaptation approaches. The
authors presented improved findings in non-medical imaging
applications like sentiment analysis, digit classification, and
vehicle counting. Further, these and similar strategies present key
required characteristics for medical imaging applications, such
as minimizing the usage of manual annotation (unsupervised
approaches or unlabeled target data domain), and present reliable
results across multiple domains found in clinical environments
and clinical trials. The translation of domain adaptation models
like MDAN for the development of DL tools using structural
brain MR may overcome the current challenges in this area,
specifically in multi-site studies.

Another suggestion for future work is to explore multi-
channel CNNs or a cascade of CNNs working in parallel
with individual image sequences. The individual outputs could
then be combined using a customized bagging strategy (Jollans
et al., 2019). The usage of multiple data points from individual
study participants provides new and potentially complementary
information to perform classification and segmentation tasks.
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The combination of data harmonization (to eliminate
poor quality data and explicitly minimize batch effects
by standardizing data) followed by application of domain
adaptation strategies (to implicitly manage batch effects) may be
the best solution to improve model reliability and reproducibility
in large heterogeneous studies (see solid line in Figure 3). Such
approaches warrant further investigation.

Another pertinent topic in the suitability of DL models for
human data across diverse populations. Issues of model bias
and fairness can result from datasets lacking diversity. Many
current studies fortunately enhance data diversity by including
both male and female participants over a wide age range. Other
studies include HC and patient participants. Future studies must
consider, identify and minimize population bias and, thus, assure
non-discriminatory decision making.

Although DL greatly improves the performance of automatic
computer-based methods, it is still challenging to directly
use in clinical analysis. MR images can have highly variable
characteristics across patients, MR imaging scanners, and
imaging protocols. Collecting large-scale datasets to tap the
potential of DL can help accelerate its application in clinical
medicine, but there is still a lot of room for improvement
for such methods. The method with better performance and
stronger robustness are undoubtedly beneficial to the doctor’s
pre-diagnosis and post-treatment of the patient’s condition (Zeng
et al., 2020).

6. CONCLUSION

MR is a flexible medical imaging modality, but often lacks
reproducibility or consistency between protocols and scanners.
Hence, early diagnosis of brain disease using computer-aided
systems, while of great importance and extensive research
amongst researchers, is challenging. DL-based approach is
garnering much attention, primarily due to its state-of-the-art
performances in a variety of classification and segmentation
tasks. Several recent studies, that have used brainMR images with
DL architectures, have shown promising results for in several
brain diseases and disorders. However, the most common issue
when using DL architectures like CNN is that they require a
large amount of data for training. Aggregating or combining data
across different scanners, should prove even better at identifying
scanner effects as between-scanner batch effects is generally
much larger than within-scanner variability (Li et al., 2020), and
thus improve generalization. While many datasets are publicly
available, most algorithms are still trained on a single dataset and
often suffer the problem of limited sample sizes and are adversely
impacted by data unbalanced.

DLmethods have demonstrated good performance in medical
image analysis. Yet only a few applications have successfully
being translated and are now in clinical use. One of the reasons
for this poor translation is the poor understanding of batch
effects. We have reviewed the development of DL models that
were trained with data acquired on different scanners or on
the same scanners but with different acquisition parameters.
Addressing these differences across these studies is important to

evaluate the feasibility of using such models on different datasets,
and improving eventual translation to the clinical environment.

We have summarized DL models as they are applied to large
and heterogeneous brain imaging datasets by examining: data
access, data harmonization, and domain adaptation methods.
We discussed the emerging, more complex, DL models that
have been developed to implicitly handle data variability and
presented the main challenges in this research area. Domain-
adaptation strategies, such as using adversarial networks, were
showed to be one of the main strategies to address the effects of
bias and variability on multi-site brain MR imaging datasets.
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