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Abstract: Millimeter-wave and terahertz frequencies offer unique characteristics to simultaneously
obtain good spatial resolution and penetrability. In this paper, a robust near-field monostatic focusing
technique is presented and successfully applied for the internal imaging of different penetrable
geometries. These geometries and environments are related to the growing need to furnish new
vehicles with radar-sensing devices that can visualize their surroundings in a clear and robust way.
Sub-millimeter-wave radar sensing offers enhanced capabilities in providing information with a high
level of accuracy and quality, even under adverse weather conditions. The aim of this paper was to
research the capability of this radar system for imaging purposes from an analytical and experimental
point of view. Two sets of measurements, using reference targets, were performed in the W band
at 100 GHz (75 to 110 GHz) and terahertz band at 300 GHz (220 to 330 GHz). The results show
spatial resolutions of millimeters in both the range (longitudinal) and the cross-range (transversal)
dimensions for the two different imaging geometries in terms of the location of the transmitter and
receiver (frontal or lateral views). The imaging quality in terms of spatial accuracy and target material
parameter was investigated and optimized.

Keywords: imaging; millimetric wave; terahertz; measurements

1. Introduction

The progressive shift toward millimetric and terahertz frequencies is opening up new possibilities
for the use of electromagnetic waves to optically explore opaque metallic or non-metallic objects
and recover their shape, as well as provide the characteristics of penetrable non-metallic objects.
The applications cover two main areas. The first is as a high-resolution synthetic aperture radar
with imaging capabilities for use as a new sensing device in the next generation of vehicles [1].
The second area is related to imaging applications for object characterization, such as the non-destructive
visualization of structures, the composition of chemical compounds, the identification of dangerous
products, and the identification of hidden objects or pathological parameters in biological tissues.
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Although the resolution can be exceeded by optically based systems, the terahertz frequency provides
resolutions on the order of millimeters, which is enough for many applications, with the advantage of
a better penetrability in certain cases [2].

Considering the applications identified previously, the contribution of the following works that
provided background about the state of the art is relevant. In Reference [3], a synthetic aperture radar
(SAR) was used for an imaging system using a specific algorithm, demonstrating the capability of
recovering scattering information from a system operating at 36.5 GHz. In Reference [4], a terahertz
inspection system for radome polymer object inspection operating from 70 to 110 GHz and from 110 to
170 GHz was presented with very good resolution results, proposing the use of higher frequencies
around 300 GHz for better resolution. In Reference [5], a terahertz three-dimensional (3D) linear
frequency modulated (LFM) SAR imaging system for security detection at the 340 GHz band was
tested using a two-dimensional (2D) Fourier transform. In Reference [6], a radar operating at 522 GHz
was presented in order to explore this band. Finally, in Reference [7], a new reconstruction technique
operating in the time domain and in the microwave and millimeter wave band was presented.

In this context, imaging radars are capable of obtaining the spatial distribution of the reflectivity
of an object. This technique enables the material characterization and non-destructive evaluation of
objects. Additionally, this radar system can also capture the image of an object that may be optically
blocked by one or more barriers, such as in radars penetrating the ground, the visualization of hidden
objects, and vision through walls. Millimeter-wave (mmW) systems, that is, systems operating in the
W band and terahertz frequency band, combine the penetrability potential and the required resolution
to accomplish the exploration of opaque metallic or non-metallic objects, as well as recover the shape
and characteristics of non-metallic objects. The measurements were performed using a vector network
analyzer (VNA), connecting each port to specific antennae operating as the transmitter (Tx) and the
receiver (Rx), with the aim of obtaining the scattering parameters, working in the frequency domain [8].

Most of the current mmW automotive radar systems work in the W band (70–110 GHz), while
future systems may extend to the upper part of the extremely-high-frequency (EHF) (30–300 GHz)
region. In order to explore the capabilities of operative radar systems at those high frequencies, it
becomes necessary to study the scattering and imaging performance of some of the basic geometries
found in vehicular scenarios. In terms of scattering, when moving toward these higher frequencies,
such as 300 GHz, the smooth surface requirements of λ/32 may represent 30 microns, and sensitivity to
low-contrast material is a key item to test for imaging systems. Subsequently, material rugosity and
low-permittivity materials should be tested in order to approach realistic conditions in the experiments.

This paper presents the principle of operation of a mmW imaging radar system that allows the
analytical and experimental assessment of very flexible geometries adaptable to different possible
realistic situations, as well as an image reconstruction from the frontal and lateral views of moving
vehicles using low-permittivity targets. Then, the use of a double focal system is proposed that is
independent of the transmitter and receiver. This scanning system can be used in a wide variety of
geometries applying near-field techniques with synthetic aperture processing.

The aim of this work is to perform a detailed review of the use of a monostatic geometry as
opposed to previous systems, such as those based on the approximation of multiple plane waves [8].
To achieve this goal, a single-frequency system developed previously [9] is extended to the mmW and
terahertz frequency band to exploit the benefits of these new frequencies.

This paper is organized as follows: Section 2 explains the theoretical formulation related to imaging
techniques using a near-field approach and synthetic aperture. Section 3 presents the experimental
results for the test cases. Section 4 discusses the results. Section 5 states the conclusions and summarizes
the contribution.
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2. Materials and Methods

2.1. Formulation

The near-field imaging system presented here is based on a flat synthetic aperture radar system
that combines a Tx (transmitter) antenna and an Rx (receiver) antenna placed close together. There are
two different arrangements for the movement of the Tx–Rx set around the object, as shown in Figure 1.
The measurement geometry is based on the Tx antenna and the Rx antenna maintaining a fixed relative
position relative to the other during the exploration process. This is a monostatic measurement with
a certain bi-static angle. In the linear geometry, the Tx–Rx set explores in the vertical plane, i.e., the
zx plane in Figure 1, while, in the circular geometry, the Tx–Rx set is moved around the object at a
constant distance rt.
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The goal is to obtain an image of the spatial distribution of the contrast of the object being tested,
defined as c(
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r ) is the dielectric permittivity of the object and εt(
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corresponds to the background.
Let us consider an incident or illuminating field polarized along the y-axis (vertical axis) on a

cylindrical object that is invariant along the vertical axis. In this way, the problem can be treated as
a scalar problem. We denote the field produced by a transmitting element located at r →_(t_i) at a
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can be expressed as
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This equivalent current can be understood as the source of the scattered field produced by the
object and as a “trace” or image of the original object.

As shown in Figure 1, a Tx antenna, an Rx antenna, and the frequency converters are moved using
a circular geometry around a circle of radius rt, or using a linear geometry, along a set of positions
(Nx, Nz) along the x- and z-axes, respectively, by collecting a two-dimensional array of monostatic
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measurements. Linear geometry is one approach of the configurations used for a radar system placed
in a vehicle.

The scattered field generated by the equivalent current
→

J eq(
→
r t, f ;

→
r ti) at each point

→
r ti . of the

target and measured in the Rx antenna at each position is written as

→

Es(
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∫
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∣∣∣∣→r Ri −
→
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∣∣∣∣, f
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where G(
∣∣∣∣→r Ri −

→
r t

∣∣∣∣, f ) is Green’s function for the corresponding geometry. In the case of a 3D geometry,

G(r) = e− jkbr

r , where kb = ω
√
µ0ε0εb. Under the Born hypothesis or a point-like distribution of scatterers,

the illuminating field within the target is approximated by the incident field. Using low-directivity
antennas that uniformly illuminate the target, the scattered field measured by the Rx antenna at each
position is found as

→

Es(
→
r R j , f ;

→
r ti) = −k2

b( f )Ad

∫
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∣∣∣∣, f )dV (3)

where Ad is a complex constant that considers the different constant parameters of the Tx antenna and
the Rx antenna.

The reconstruction process is based on an extension of the multi-frequency case of the bi-focusing
technique presented in References [10–12]. The contrast factor c(

→
r ), averaged over the mmW and

terahertz frequency bands and over the whole reconstruction space, is written as

c(
→
r ) = Ai

fmax∑
fmin

NT−R∑
i=1

→

Es(
→
r R j , f ;

→
r ti)

k2
b( f )

e jkb( f )(|
→
r t−
→
r ti |+|

→
r Ri−

→
r t |) (4)

where Ai is a complex constant that considers all factors of the system’s Tx–Rx chain. The use of fast
Fourier transform (FFT) to perform the summations in Equation (4) enables the calculation times to
be reduced.

2.2. Measurement Equipment

The measurements were performed using a commercial network analyzer model ZVA 67
manufactured by Rohde Schwarz. Additionally, the VNA ports were connected to the Tx antenna and
Rx antenna through frequency converters operating from 75 to 110 GHz and from 220 to 330 GHz [13]
to allow us to extend the frequency band. The set-up was based on that developed in Reference [14],
where a bi-static radar was implemented, using one of the heads to transmit and one of the heads to
receive, and measuring the scattering parameter or S21. Each head was composed of one antenna and
one frequency converter.

2.3. Measurement Scheme

The aim of this work is to evaluate the capabilities of a millimeter-wave near-field synthetic
aperture imaging radar to accurately reconstruct reference targets under the circular and linear scenarios
presented in Figure 1.

The linear measurement geometry simulates the point of view of an ultrawide-band (UWB)
millimeter-wave and terahertz monostatic near-field synthetic aperture imaging system installed in a
vehicle in movement. The linear geometry matches the lateral view of the vehicle when moving parallel
to a sidewalk or parking area. The object is placed atop a tripod located 1 m from the Tx antenna and
Rx antenna. The Tx antenna and its frequency converter are separated from the Rx antenna and its
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frequency converter by 0.112 m, and both elements are mounted on a tray that moves together using a
linear positioner [15].

The circular measurement geometry simulates when the vehicle partially turns around an object,
such as at a corner or a roundabout. It is approached with a partial rotation of 340◦.

2.4. Measurement Configuration

The measurements were performed by sweeping the frequency band from 75 GHz to 110 GHz
and from 220 GHz to 330 GHz with the two different heads as frequency converters. The models
were an R&S (Germany)®ZVA-Z110E Converter, W-Band WR-10, and an R&S (Germany)®ZVA-Z325
Converter, J-Band WR-03 [13].

Tables 1 and 2 summarize the vector network analyzer configuration values for 100 GHz and
300 GHz, respectively.

Table 1. The 100 GHz parameters. IF—intermediate frequency.

Parameter Value

Initial frequency 75 GHz
Final frequency 110 GHz

Number of sampling points 8192
IF bandwidth 1 kHz
Output power 0 dBm

Table 2. The 300 GHz parameters.

Parameter Value

Initial frequency 220 GHz
Final frequency 330 GHz

Number of sampling points 8192
IF bandwidth 30 Hz
Output power 0 dBm

For 100 GHz, commercial horn antennas (model 27240-20, manufactured by Flann Microwave
LTD [16]) were used as the Tx and Rx antennae (one for each purpose). Their frequency range is
from 73.8 GHz to 112 GHz, with a gain and E and H plane beamwidth of 18.12 dBi, 22.9◦, and 22.3◦,
respectively, at 73.8 GHz, and 21.41 dBi, 15.1◦, and 14.7◦ at 112 GHz.

For 300 GHz, the 32240-25 model was used, with a frequency range between 217 GHz and
330 GHz, with a gain and E and H plane beamwidth of 23.70 dBi, 11.9◦, and 11.9◦, respectively, at
217 GHz, and 26.99 dBi, 7.8◦, and 7.8◦ at 330 GHz.

The measurement time, sweeping 8192 frequencies, was 5 s per scanning point. The separation
between each frequency complied with the sampling criteria defined in Reference [12].

2.5. Measured Objects

The linear measurement geometry was tested using four objects: a “post-it” pack (made of paper),
a green cube (non-solid and made of plastic), an empty cardboard box (made of paperboard), and the
same cardboard box with a plastic ball inside. The objects were made of non-metallic materials to
allow us to check the performance in terms of the sensitivity of this imaging system under the worst
conditions at different frequencies. Then, objects made of low-contrast material were selected, such
as wax candles ε′r = 2.5, paper ε′r = 3.7, and a plastic ball ε′r = 2.2 to 2.6 [17]. Table 3 identifies the
respective objects at both frequencies, the distance d in the x-axis used to explore the object at both
frequencies, the number of observed positions in the x-axis, and the object size.
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Table 3. Measurement configuration for linear geometry.

Distance d (cm) in
x-Axis

Positions in x-Axis
100 GHz

Distance d (cm) in
x-Axis

Positions in x-Axis
300 GHz

Size (cm)
Height ×Width

Post-it 21.1 24.5 7.8 × 7.8
Green cube 21.1 24.5 7 × 7
Box (empty) 240 501 6.5 × 8.8
Box with ball 240 501 6.5 × 8.8

Figure 2 shows the arrangement for the linear measurement of the three objects.
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Additionally, to complete the linear measurements, cylindrical wax candles of different sizes were
used as targets. Wax candles with εr = 2.5, tgδ = 0.02 [17] were placed 100 cm from the measuring
array, as depicted in Figure 3. The number of scanning points was 940 points, with a separation
between each scanning point of 1 mm.

The circular measurement geometry was tested using candles as targets due to their geometry.
Figure 4a depicts the two different schemes used for measuring. Figure 4b shows an image of the two
candles installed in the supporting systems. The number of scanning points was 340 points with a
separation of 1◦. Then, there was a partial rotation with the aim of checking this lack of information
about the object and the final performance.
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3. Results

Related to the tested objects and the results to be presented, it is clarified that each object was
selected to be measured in one specific measurement geometry due to its specific characteristics.
The rationale for assigning each object to a specific measurement geometry was the following:

- Linear measurement using cardboard box with a ball, green cube, and post-it. The most
representative result was the cardboard with a ball inside. The main idea of the linear measurement
of the box with a ball inside was to confirm that this imaging system is capable of detecting and
displaying the box, as well as the presence of something inside (Figures 5, 8 and 9). The other two
objects were measured but they were considered not so relevant to include in this section.

- Linear measurement of four wax candles (Figure 6). Wax candles are low-permittivity objects, and
the sensitivity of the imaging system was tested. The linear measurement is one of the potential
geometries when the imaging system is installed in a vehicle.

- Circular measurement of wax candles (Figure 7). The reason for testing the circular measurement
of candles is to test the approach of gathering information around the object to be reconstructed
using the imaging algorithm.
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Figure 9. Focused power map of the ball inside a box at 300 GHz: (a) raw image; (b) raw image overlaid
with the box to show accuracy.

For the linear measurement geometry, the obtained results are presented for the box with a ball
inside (Figure 5) and the four candles (Figure 6).

Figure 8 shows the box-focused power map for 100 GHz, and Figure 9 shows the same for
300 GHz, with the raw image and the image identifying the box.

Figure 7 displays the reconstructed image for the circular geometry using a single candle with a
diameter of 4 cm and another measurement of two candles close together.

4. Discussion

For the imaging geometries, real vehicular movements may be linear (straight streets) or circular
(i.e., intersections or roundabouts). In order to approach realistic conditions, a set of experimental
measurements was performed with low-permittivity targets (wax ε′r = 2.5, paper ε′r = 3.7, plastic
ball ε′r = 2.2 to 2.6, surface roughness ∼ 100 µm) for the two basic linear and circular geometries.
The sensitivity of the imaging system to low-contrast materials was tested in these measurements.
The objects were non-metallic low-relative-permittivity-environment objects, whereby the permittivity
was in the 2–4 range. In order to obtain a good resolution and good performance with low-permittivity
objects, an absolute bandwidth of 35 GHz was utilized, corresponding to a fractional bandwidth of
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38% at 100 GHz. At 300 GHz, the absolute bandwidth was 110 GHz with a fractional bandwidth of
40%. These figures of absolute and fractional bandwidth confirm the ultrawide-band characteristic of
the tested imaging system [12].

Figures 8 and 9 show that the imaging algorithm accurately reconstructs the box faces parallel
to the x-dimension. It is not possible to obtain images from the box faces parallel to the y-axis as
this area was not illuminated by the measurement heads. The box dimensions were measured, as
shown in Figures 8 and 9, and the values matched the actual dimensions of the box. As expected,
the measurement conducted at 300 GHz system showed better performance in terms of resolution,
providing a more accurate image, as seen in Figure 9. The improved performance for the transverse
resolution, along the x-axis, of the system operating at 300 GHz versus the system operating at 100 GHz
was due to the shorter wavelength in the upper frequency, but the most important difference was the
bandwidth, defined as the difference between the final frequency and the initial frequency for each
case. In the 100 GHz measurements, the bandwidth was 35 GHz, meaning that the radar swept 35 GHz
to obtain the scattered fields of the object. Meanwhile, in the 300 GHz measurements, the bandwidth
was 110 GHz, improving the resolution.

Concerning the identification of the ball inside the box, the reconstructed image (see Figure 8)
showed spots/lines inside the box for the 100 GHz and 300 GHz systems. These spots represent the
front view of the ball. The ball geometry scattered the energy in all directions, and the measurement
system only captured the energy that returned to the bi-static radar. It was not possible to reconstruct
the circular shape using a linear measurement geometry.

Continuing with the linear measurement geometry, Figure 6 shows the image of the four candles.
For this linear lateral case, the four candles were identified in the image, obtaining an image that shows
the faces exposed to the radar system.

Figure 7 displays the reconstructed image for the circular geometry using a single candle with
a diameter of 4 cm and another measurement of two candles close together. For the two circular
measurement geometry cases shown in Figure 7, it was possible to identify the candle contour through
the image provided by the radar at 100 GHz. The quasi-monostatic geometry improved the image
contour accuracy. The image of the inside part of the candle was rough because the penetrability of
wax at mmW frequencies is around several wavelengths, giving a penetrability of 2 mm at 100 GHz.
The image resolution was consistent with the wavelength used in the measurements, as could be
observed here.

Comparing the results obtained for the linear lateral view and the circular frontal view, the objects’
contours were detected with a higher level of accuracy for the circular frontal measurement scenario
because the target was observed from a different angle of view, thereby obtaining more information.

5. Conclusions

This paper presented a linear and circular UWB millimeter-wave and terahertz monostatic
near-field synthetic aperture imaging system for the exploration of optically opaque non-metallic
targets [12,18]. The developed and applied system was shown to be capable of providing images using
linear and circular measurement geometries that match the frontal and lateral views in vehicles.

Subsequently, this paper proposed and proved the robustness of the UWB millimeter-wave and
terahertz monostatic near-field synthetic aperture imaging system in the frequency domain [8–12]
(Equation (4)) as an imaging technique, using 35 GHz and 38% absolute and fractional bandwidths at
100 GHz, as well as 110 GHz, and 40% absolute and fractional bandwidths at 300 GHz. The proposed
expression (Equation (4)) takes into account the impact of the frequency ( f 2 is introduced) on the
coherent imaging reconstruction, which proves both its accuracy and its capability to deal with realistic
surfaces (with a roughness above λ/10). While the introduction of the frequency dependence k2

b( f ) in
the denominator of Equation (4) may be proven from a wrapping geometry [10], its effect on more
limited scanning geometries was not properly studied previously in detail with the approach presented
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in this paper. Thus, this paper develops the possibility to have two separated broadband interrogating
frequency bands (100 and 300 GHz) with the aim of providing a unique capability to test for its effect.

To the authors’ best knowledge, there are no previous experimental results that proved
a high relative frequency-dependent reconstruction at these frequency ranges with real
surface roughness objects using low-contrast materials. These materials are non-metallic
low-relative-permittivity-environment objects that match the realistic approach in vehicular scenarios.

For the linear geometry, the technique was tested to obtain internal images of penetrable geometries
(Figures 8 and 9) at 100 GHz (75–110 GHz) and at 300 GHz (220–330 GHz). The results show that the
radar is capable of rebuilding the surfaces exposed to the radar sweep. The best images were obtained
at the 300 GHz band due to its shorter wavelength and the bandwidth (frequency sweep).

The linear and circular measurement scenario results for different sizes of candles, representing
different urban objects, provide confidence regarding the feasibility of using this system and techniques
in sensing applications operating at the 100 GHz band and the 300 GHz band, depending on the
final application.
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