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Abstract Monoacylglycerol lipase (MAGL) is a pivotal enzyme in the endocannabinoid system, which

metabolizes 2-arachidonoylglycerol (2-AG) into the proinflammatory eicosanoid precursor arachidonic

acid (AA). MAGL and other endogenous cannabinoid (EC) degrading enzymes are involved in the fibro-

genic signaling pathways that induce hepatic stellate cell (HSC) activation and ECM accumulation during

chronic liver disease. Our group recently developed an 18F-labeled MAGL inhibitor ([18F]MAGL-4-11)

for PET imaging and demonstrated highly specific binding in vitro and in vivo. In this study, we deter-

mined [18F]MAGL-4-11 PET enabled imaging MAGL levels in the bile duct ligation (BDL) and carbon

tetrachloride (CCl4) models of liver cirrhosis; we also assessed the hepatic gene expression of the en-

zymes involved with EC system including MAGL, NAPE-PLD, FAAH and DAGL that as a function

of disease severity in these models; [18F]MAGL-4-11 autoradiography was performed to assess tracer

binding in frozen liver sections both in animal and human. [18F]MAGL-4-11 demonstrated reduced

PET signals in early stages of fibrosis and further significantly decreased with disease progression

compared with control mice. We confirmed MAGL and FAAH expression decreases with fibrosis
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severity, while its levels in normal liver tissue are high; in contrast, the EC synthetic enzymes NAPE-PLD

and DAGL are enhanced in these different fibrosis models. In vitro autoradiography further supported that

[18F]MAGL-4-11 bound specifically to MAGL in both animal and human fibrotic liver tissues. Our PET

ligand [18F]MAGL-4-11 shows excellent sensitivity and specificity for MAGL visualization in vivo and

accurately reflects the histological stages of liver fibrosis in preclinical models and human liver tissues.

ª 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Liver fibrosis is a consequence of sustained injury from a variety
of origins, including chronic viral infection, cholestatic liver dis-
ease, alcohol abuse, and nonalcoholic steatohepatitis (NASH)1.
Fibrosis of the liver is associated with the excessive extracellular
matrix (ECM) protein accumulation and formation of a fibrous
scar2. As scarring progresses, subsequent growth of nodules from
regenerating hepatocytes results in ultimately liver cirrhosis,
which is the end consequence of progressive fibrosis and attended
by high morbidity and mortality. Because patients with liver
fibrosis are at high risk for the development of cirrhosis, the use of
non-invasive imaging modalities such as molecularly targeted
positron emission tomography (PET) to detect early stage liver
fibrosis and/or monitor targeted therapy at the cellular level may
be of great translational value3. Until now, liver biopsy has been
the gold standard for identifying liver fibrosis but has well-known
limitations. Other procedures include ultrasonography and elas-
tography still suffer from low sensitivity and specificity4.
Accordingly, the development of novel PET imaging agents with
alternative binding mechanisms and/or differential signaling
transduction pathways is of particular interest for the physiologic
processes and treatment of liver fibrosis.

Recent clinical observations and experimental studies have
demonstrated that the endocannabinoid system, including
cannabinoid receptors, endogenous cannabinoid (EC) ligands and
degrading enzymes, such as monoacylglycerol lipase (MAGL)
and fatty acid amide hydrolase (FAAH), are involved in the
fibrogenic signaling pathways that induce hepatic stellate cell
(HSC) activation and ECM accumulation during chronic liver
disease5e13. However, the contribution of MAGL to fibrosis in
chronic liver injury has been poorly understood. MAGL is a
pivotal enzyme in the endocannabinoid system, which metabo-
lizes 2-arachidonoylglycerol (2-AG) into the proinflammatory
eicosanoid precursor arachidonic acid (AA). 2-AG, a natural
ligand for cannabinoid receptors, is likely to be a fibrogenic
mediator because its hepatic levels are selectively increased in
preclinical liver fibrosis models. In addition, recent studies have
demonstrated that MAGL plays an important role in liver injury/
inflammation, liver steatosis and liver fibrosis by modulating
endocannabinoid receptor (CB1/2) signaling or eicosanoid syn-
thesis11e14. Giannone et al.9 found that hepatic MAGL gene
expression was downregulated in carbon tetrachloride (CCl4)
induced liver fibrosis, and CB1 receptor antagonists upregulated
CB2, reversed EC enzyme MAGL levels and induced fibrosis
regression. Therefore, these findings suggest that MAGL can
become an important therapeutic drug target for liver disease.
Our group recently developed an 18F-labeled MAGL inhibitor
([18F]MAGL-4-11) for PET imaging and demonstrated highly
specific binding in vitro and in vivo15. In this work, the goals of
our investigation were (i) to determine the hepatic gene expression
of the enzymes involved with EC system as a function of disease
severity in the bile duct ligation (BDL) and carbon tetrachloride
(CCl4) models of liver cirrhosis; (ii) to show that [18F]MAGL-4-
11 PET enabled imaging MAGL in these models and, (iii) to
demonstrate that [18F]MAGL-4-11 PET uptake and binding
correlated with the degree of liver cirrhosis in pre-clinical and
clinical liver sections. To our delight, our results indicate that [18F]
MAGL-4-11 PET is able to image MAGL function and expression
in vivo in preclinical mouse models and human tissues of liver
fibrosis, the results of which would improve our understanding of
its role in liver pathology and facilitate drug discovery for liver
fibrosis treatment.

2. Materials and methods

2.1. Experimental protocol of liver fibrosis

Carbon tetrachloride (CCl4 treatment): CD1 male mice at 10
weeks of age were given intraperitoneal (i.p.) injection of carbon
tetrachloride biweekly (CCl4, Sigma) with the following formu-
lation and dose (20% solution of CCl4 in olive oil mixture; in-
jection dose 0.2 mL/kg) for 12 weeks. Control mice were treated
with the same isovolumetric dose of vehicle (olive oil) as i.p.
injection. Bile duct ligation (BDL) surgery: the common bile duct
was mobilized and dissected between two sutures following
midline laparotomy. Sham mice treated with midline laparotomy
without, scission procedure. All procedures were approved by the
Massachusetts General Hospital IACUC committee.

2.2. Micro-PET/CT imaging scanning and analysis

[18F]MAGL-4-11 synthesis was performed at MGH Cyclotron
Facility. PET imaging and quantification were performed as pre-
viously described. Briefly, control, CCl4 and BDL groups were
anesthetized with 5% isoflurane gas before 0.1 cc of 3.5e3.7 MBq
of [18F]MAGL-4-11 intravenous injection, and kept thereafter
with 1%e2% (v/v) isoflurane. PET/CT was performed for 30 min
after intravenous injection of tracer on a Focus 220 preclinical
PET system (Siemens) and the CereTom NL 3000 CT scanner
(Neurologica). PET/CT image was co-registrated semi-automati-
cally using ASIProVM and Inveon Research Workplace (Siemens
Medical Solutions). The magnitude of hepatic [18F]MAGL-4-11
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activation was expressed as %ID/g which was defined as the
average [18F]MAGL-4-11 activity in each volume of interest
(VOIs) divided by injected dose.

2.3. Liver histology

The paraffin liver tissues were prepared in 5 mm sections and
stained with hematoxylin and eosin according to the manufac-
turer’s procedure (Sigma). Under blinding protocols (BLD and
sham samples were unknown to experimenters), the extent of
necrosis and inflammation was examined. To detect hepatic
fibrosis accumulation, Sirius red staining was conducted with
paraffin liver sections with the use of Sirius red F35B to stain
collagen, hematoxylin was used counterstained nuclear.

2.4. Measurement of hydroxyproline

The levels of liver hydroxyproline were determined using the
Hydroxyproline Assay Kit (Sigma, St. Louis, MO, USA) and the
hydroxyproline content was expressed as mg/g of liver.

2.5. Immunofluorescent staining

Immunofluorescent staining was performed as previously
described16. Following deparaffinization, antigen retrieval buffer
was added to the microwaveable vessel. Liver sections were
treated with PBS (containing 1% BSA) and 0.3% Triton X-100
after antigen recovery. Primary antibodies anti-MAGL (Abcam),
anti-a-SMA (Abcam), anti-CD45 (Abcam) and anti-CD68 (Cell
Signaling) were incubated with sections at 4 �C overnight. Sec-
tions were rinsed by PBS and secondary antibodies with Alexa
Fluor 488 or Alexa Fluor 594 (Abcam) were incubated for 60 min
at room temperature. VECTASHIELD antifade mounting medium
with DAPI (Vector Labs) was used for DAPI counterstain and
mounting.

2.6. RNA extraction, cDNA synthesis and qPCR

Total RNAwas extracted by Qiagen’s RNeasy Mini kit. cDNAwas
synthesized using the RT-for-PCR kit. Gene expression levels
were measured using ABI QuantStudio three system (Applied
Biosystems) and Power Up SYBR green master mix (Thermo
Fisher Scientific). The primer sequences are listed in Supporting
Information Table S1. The results were processed as relative
values of mRNA levels based on DDCT method.

2.7. Western blot analysis

Proteins were extracted using radioimmunoprecipitation assay
(RIPA) buffer and a protease inhibitor cocktail (Sigma Life Sci-
ence) from liver tissues and each concentration was measured by
BCA Protein Assay Kit (Thermo scientific). Protein samples were
loaded on precast gels and blotted onto Blot two Dry Blotting
System (Thermo scientific). The membranes were treated with 5%
skim milk and incubated with the different primary antibodies
anti-MAGL (Abcam), anti a-SMA (Abcam) and anti-b-actin
(Sigma Life Science) at 4 �C overnight. After TBST wash,
membranes reacted with secondary antibodies. Protein bands were
quantified using ChemiDoc Touch Gel Imaging System (Bio-
Rad). The immunoblot band analysis for determining intensity
was imaged using Image lab (Bio-Rad).
2.8. Autoradiography

Frozen sections of OCT-embedded liver tissue were cut (20 mm
thick sections) using cryostat (Microm Typ HM 500; Microm).
Briefly, frozen sections were activated in Tris-HCl (pH 7.4), then
incubated with [18F]MAGL-4-11 in the buffer. Sections were
exposed to storage phosphor screens (GE) for 2 h. The screen was
read with a GE Typhoon system at a resolution of 20 mm � 20 mm.
Autoradiographic images were then analyzed using Image Quant
image analysis software (Molecular Dynamics).

2.9. Patients liver specimens

Liver specimens were obtained from patients diagnosed with liver
fibrosis (F1 n Z 3 and F2 n Z 3) and health patients (F0 n Z 3).
This study was approved by the IRB of Massachusetts General
Hospital (USA, Table S1).

2.10. Statistical analysis

The results are expressed as means � SE and statistics were
analyzed with Student’s t-tests or one-way ANOVA with Tukey’s
post hoc test. Differences were considered to be significant at
*P < 0.0, **P < 0.01 or ***P < 0.001, n Z 3e6/group.

3. Results

3.1. The development of hepatic injury and fibrosis in distinct
mouse models

Morphological analysis by H&E staining demonstrated that the
administration of CCl4 to mice caused hepatic inflammation with
hepatocyte ballooning and aggregation of lymphocytes at 6 weeks,
and irregular necrosis at 12 weeks (Fig. 1A). The liver fibrosis
stages were determined by Sirius red (SR) staining: the mild stage
of the fibrosis process (1e6 weeks) was characterized by a mild
form consists of deposition of collagen fibers in the pericentral
lobular region; the severe stage of fibrosis process (6e12 weeks)
was characterized by an advanced accumulation of broad collagen
fibers (Fig. 1A and C). For the BDL-induced biliary fibrosis
model, mice presented with remarkable liver inflammation and
fibrosis. The accumulation of inflammation and collagen was
noted in livers at 10 and 21 days after BDL treatment (Fig. 1B).
SR staining showed an increase positive collagen area at 10 and 21
days after BDL (Fig. 1B and C). These were also supported by the
findings that serum hydroxyproline levels were increased in CCl4
and BDL mice (Fig. 1D).

3.2. PET/CT imaging and quantitation of [18F]MAGL-4-11 in
fibrotic livers

To determine MAGL levels during fibrosis, MAGL-PET/CT were
carried out from 0 to 30 min following [18F]MAGL-4-11 injection
in 6- & 12-week CCl4-treated mice, 10-day & 21-day BDL-treated
mice or normal control mice. Fig. 2A represents summed trans-
verse PET/CT images (0e30 min) of normal, 6-week CCl4 & 12-
week CCl4 livers, while Fig. 2C shows similar images for sham,
10- & 21-day BDL livers. The tracer uptake was gradually
declined with disease progression. Declined uptakes of [18F]
MAGL-4-11 were found with mild fibrosis in 6-week CCl4-treated
and 10-day BDL-treated livers compared with controls/shams.
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Figure 1 Pathological features of liver fibrosis in the CCl4 or BDL model. (A, B) Representative images of hemaxotoxylin and eosin (H&E)

and Sirius red staining of liver sections in mice exposed to CCl4 (6 and 12 weeks) and BDL (10, 21 days). Scale bars: 100 mm, original mag-

nifications: H&E 10 � , SR 10 �. (C) The quantification of the Sirius red collagen positive fibrosis area in sections. P values are relative to

control/sham. (D) Serum hydroxyproline levels for CCl4 and BDL mice. Graph represents mean � SEM. *P < 0.05, **P < 0.01, and

***P < 0.001, n Z 6 animal/group. ANOVA, analysis of variance.
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Significantly lower levels of radioactivity were observed in 12-
week CCl4-treated and 21-day BDL-treated livers. Time-activity
curves (TACs) were analyzed by drawn interest area for [18F]
MAGL-4-11 in the livers between 0 and 30 min. Fig. 2B and D
shows TACs which radioactivity is expressed as %injected dose
per gram (%ID/g).

3.3. Expression of MAGL protein and key enzymes in EC
metabolism

To further confirm the PET imaging results, the relationship be-
tween hepatic MAGL level and fibrosis extent, MAGL proteins
Figure 2 Representative PET/CT images of livers in CCl4 and BDL mic

week & 12-week CCl4 and control mice. (B) Time‒activity curves (TAC

injection, n Z 4 animal/group. (C) Representative transverse PET images

activity curves (TACs) of [18F]MAGL-4-11 for BDL treated livers from 0
level were conducted by Western blots in the CCl4 and BDL
models (Fig. 3A and B). CCl4 and BDL treatment groups had
weaker hepatic MAGL expression compared with control and
sham groups. With disease progression, MAGL expression was
significantly decreased in both CCl4 and BDL-treated livers.

To study the underlying mechanism of liver fibrosis associated
with MAGL, gene expression of MAGL, FAAH, diacylglycerol
lipase (DAGL), phospholipase D (PLD) and cannabinoid receptor
type I (CB1) were analyzed by RT-PCR (Fig. 3C). gene expression
of the hepatic degradative enzymes MAGL and FAAH gene
expression was decreased after CCl4 and BDL treatment. In
contrast, mRNA levels of the biosynthetic enzymes DAGL,
e. (A) Representative transverse PET images of [18F]MAGL-4-11 in 6-

s) of [18F]MAGL-4-11 for CCl4 treated livers from 0 to 30 min after

of [18F]MAGL-4-11 in 10 & 21-day BDL and sham mice. (D) Time‒

to 30 min after injection, n Z 4 animal/group.



Figure 3 Hepatic expression of MAGL and key genes in CCl4 and BDL models. (A, B) The MAGL protein level was examined in liver tissues

from CCl4 and BDL. (C) Hepatic mRNA expression levels of MAGL, FAAH, CB1, PLD and DAGL by RT-PCR. P values are relative to control/

sham. Graph represents mean � SEM. *P < 0.05, **P < 0.01, and ***P < 0.001, n Z 6 animal/group. ANOVA, analysis of variance.
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NAPE-PLD were upregulated during disease progression in both
models. Finally, gene expression of the CB1 receptor were clearly
upregulated in fibrotic livers.

3.4. [18F]MAGL-4-11 autoradiography and MAGL distribution
in mouse fibrotic livers

To evaluate that our PET tracer, [18F]MAGL-4-11, bound hepatic
MAGL as predictor in liver fibrosis models, [18F]MAGL-4-11
autoradiography binding was correlated with MAGL expression
by immunofluorescent staining (Fig. 4). In the CCl4 (Fig. 4A) and
BDL model (Fig. 4B), radioactivity was decreased with fibrosis
progression and consistent with immunofluorescent staining for
MAGL levels (red). Immunofluorescence for a-SMA expression
(green) tracked with fibrosis progression [18F]MAGL-4-11
radioactivity from CCl4 and BDL liver sections was strongly
correlated with MAGL protein expression (Fig. 4C), which was
assessed by analysis of the same sections (Fig. 4D, R2 Z 0.967,
P < 0.001, CCl4; R

2 Z 0.907, P < 0.001, BDL).

3.5. [18F]MAGL-4-11 autoradiography and MAGL distribution
in human specimens

To further verify whether our findings are consistent with clinical
situation, we performed autoradiography studies of [18F]MAGL-
4-11 on human liver specimens obtained from normal and patients
with hepatic fibrosis. Fig. 5A shows the [18F]MAGL-4-11 auto-
radiography binding in liver sections, with a decrease radioactivity
sensitivity from mild to severe fibrosis. Fig. 5A also exhibits the
results of MAGL immuno-fluorescence (red) and a-SMA (green)
staining of liver samples indicated in the white box (top). Liver
fibrotic and cirrhotic patients showed the expected hepatic a-SMA
expression upregulation, but downregulation of MAGL expression
was observed with disease progression, confirmed by the results
obtained by autoradiography. Uptake of [18F]MAGL-4-11 in
human liver fibrosis samples decreased with reduced MAGL
expression in a linear manner, as measured by [18F]MAGL-4-11
autoradiographic and MAGL fluorescence signal quantification
(R2 Z 0.967, P < 0.001, Fig. 5B and C).

4. Discussion

The EC system is involved in the ECM deposition during chronic
liver diseases, and MAGLeone of the most important
endocannabinoid-degrading enzymeseplays a critical role in EC
metabolism17,18. There has been a growing body of evidence
implicating MAGL as an antifibrotic drug target. Inhibition of
MAGL produced a profound treatment effect towards hepatic
inflammation and fibrosis in different experimental models of
chronic liver injury11e13,19. Therefore, clinically relevant imaging
agents and modalities for direct and noninvasive imaging of
MAGL are an urgent topic of great interest and importance. To the
best of our knowledge, we demonstrate the first study that sys-
tematically validates MAGL-targeted PET/CT imaging of liver
fibrosis in preclinical liver fibrosis models and clinical specimens.
Our study is novel, since it demonstrates MAGL function and
expression changes associated with liver fibrosis progression using
a non-invasive and longitudinal imaging method. These findings
have been confirmed by histopathology, immunohistochemistry,
and autoradiography in preclinical and clinical fibrotic liver
specimens.

To date, there have been few reports studying hepatic MAGL
gene and protein expression in liver fibrosis mouse models9;
therefore, we utilized two widely-used murine fibrosis models,
namely the CCl4 septal fibrosis and the BDL biliary fibrosis
models, to demonstrate MAGL expression in this study.



Figure 4 In vitro [18F]MAGL-4-11 autoradiographic and MAGL immunofluorescent analysis of liver sections from CCl4 and BDL mice. (A)

Representative autoradiogram of [18F]MAGL-4-11 and double immunohistochemistry of MAGL (red) and a-SMA (green) in CCl4 liver sections.

(B) Representative autoradiographic [18F]MAGL-4-11 images and double immunohistochemistry of MAGL (red) and a-SMA (green) in BDL

liver sections. (C) Radioactivity and MAGL fluorescence intensity in CCl4 and BDL mice liver sections. Graph represents mean � SEM.

*P< 0.05, **P< 0.01, and ***P< 0.001, nZ 3 animal/group. (D) Correlation between MAGL expression and [18F]MAGL-4-11 uptake in CCl4
and BDL mice liver sections, n Z three animal/group.
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Continuous administration of CCl4 induces toxin-mediated
experimental liver fibrosis20,21, while BDL mimics cholestatic
liver injury and biliary fibrosis in patients22. Given that CCl4 and
BDL models produce effects through distinct mechanisms, we
asked whether MAGL gene/protein expression corresponded with
disease pathological severity in each of these fibrotic models, and
whether we could measure these changes noninvasively though
Figure 5 In vitro [18F] MAGL-4-11 autoradiography and distribution

sentative autoradiographic [18F] MAGL-4-11 images and double immunoh

mild and severe fibrosis. (B) Radioactivity and MAGL fluorescence intensit

of [18F]MAGL-4-11 and liver MAGL expression in human liver sections,
PET imaging. [18F]MAGL-4-11 is a specific PET ligand for im-
aging MAGL recently developed by our group14 and is evaluated
in liver fibrosis models in this work.

Here we demonstrated [18F]MAGL-4-11 PET imaged MAGL
levels correlated well with mild and severe fibrosis stages in two
models, which demonstrated reduced PET signals in early stages
of fibrosis and further significantly decreased with disease
of MAGL with liver sections of human fibrotic patients. (A) Repre-

istochemistry of MAGL (red) and a-SMA (green) in subjects with no,

y in human liver sections. (C) Correlation between ex vivo liver uptake

n Z three human/group.
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progression compared with control mice. Nonspecific uptake in
surrounding tissues (such as muscle, heart, and bone) was similar
and low in both fibrotic and control mice. Characteristic high
accumulation was also identified in brown adipose tissue (BAT)
and kidneys, in agreement with the tissue expression of MAGL
described in previous studies23,24 (Supporting Information
Fig. S2). In vitro autoradiography further supported that [18F]
MAGL-4-11 bound specifically to MAGL in fibrotic liver tissue.
Collectively, our data indicate that [18F]MAGL-4-11 specifically
and accurately reflects MAGL expression and pathological
changes in preclinical fibrosis livers. To demonstrate its clinical
translation potential, we tested PET ligand [18F]MAGL-4-11 in
fibrotic human liver tissue in a variety of clinical stages by
autoradiography, and correlated ligand uptake with immunofluo-
rescence staining for MAGL and a-SMA. These studies confirm
the specificity of [18F]MAGL-4-11 for MAGL in fibrotic human
liver. This is the first time that we demonstrate MAGL expression
decreases proportionally with fibrotic stages in human tissue and
confirm that our PET imaging marker was sensitive and specific
for detection of MAGL level changes.

Previous published studies demonstrated MAGL is a crucial
target in liver inflammation and fibrosis25. In the present study, we
found MAGL expression decreases with fibrosis severity, while its
levels in normal liver tissue are high. As another EC degradative
enzyme, FAAH revealed a similar pattern of downregulation with
MAGL, which is consistent with previous reports in CCl4 and BDL
models9,10. In contrast, the EC synthetic enzymes NAPE-PLD and
DAGL are enhanced in these different fibrosis models. These
increased EC enzymes are associated with robust increases in
expression of CB1 receptors, which mediate profibrotic effects6.
Recently, several research groups have independently identified and
evaluated the therapeutic effects of MAGL-targeted treatment in
liver injury/inflammation and fibrosis11e13 via enhancement of
endocannabinoid signaling and/or suppressing inflammatory
eicosanoid production. In light of the ability of [18F]MAGL-4-11
PET to accurately characterize MAGL biological activity in vivo,
we have confidence that PET imaging will not only enable the
detection and identification of molecular changes of MAGL asso-
ciated with fibrosis progression, but also substantially improve our
mechanistic understanding of this important degrading enzyme in
liver pathology to assist drug discovery of MAGL-based thera-
peutics. Although the present study suggests promise for human
use, in vivo [18F]MAGL-4-11 PET imaging has been limited to
small animal experimental models, has not yet entered into clinical
application, and will therefore require further refinement.
5. Conclusions

In summary, our PET ligand [18F]MAGL-4-11 shows excellent
sensitivity and specificity for MAGL visualization in vivo and
accurately reflects the histological stages of liver fibrosis in pre-
clinical models and human liver tissues. Further development and
validation are warranted to explore the translational value of
MAGL-PET imaging in vivo in clinical liver fibrosis progression
and to facilitate drug discovery towards MAGL-targeted thera-
peutic for liver disease.
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