
 1

Title: Human Vascularized Macrophage-Islet Organoids to Model Immune-1 

Mediated Pancreatic β cell Pyroptosis upon Viral Infection  2 

Authors: Liuliu Yang1, 2, 3, 4, 16, *, Yuling Han1, 2, 5, 6, 7, 16, Tuo Zhang8, 16, Xue Dong1, Jian 3 

Ge9, Aadita Roy1, Jiajun Zhu1, 2, Tiankun Lu1, 2, J. Jeya Vandana1, 2, Neranjan de Silva1, 4 

2, Catherine C. Robertson10, Jenny Z Xiang8, Chendong Pan8, Yanjie Sun8, Jianwen Que9, 5 

Todd Evans1, 2, Chengyang Liu11, Wei Wang11, Ali Naji11, Stephen C.J. Parker10,12,13, 6 

Robert E. Schwartz14, 15, *, Shuibing Chen1, 2, 17, * 7 

 8 

Affiliations: 9 

1 Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, 10 

USA 11 

2 Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 12 

10065, USA 13 

3 State Key Laboratory of Experimental Hematology, National Clinical Research Center 14 

for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood 15 

Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical 16 

College, Tianjin 300020, China 17 

4 Tianjin Institute of Health Science, Tianjin 301600, China 18 

5 Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of 19 

Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 20 

Beijing 100101, China 21 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.05.606734doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606734
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

6 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, 22 

China 23 

7 Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China 24 

8 Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA 25 

9 Columbia Center for Human Development, Department of Medicine, Columbia 26 

University Irving Medical Center, New York, NY 10032, USA 27 

10 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann 28 

Arbor, MI, USA  29 

11 Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, 30 

Pennsylvania 19104, USA 31 

12 Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA 32 

13 Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA 33 

14 Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell 34 

Medicine, 1300 York Ave, New York, NY, 10065, USA 35 

15 Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 36 

1300 York Ave, New York, NY, 10065, USA. New York 10021, USA 37 

16 These authors contributed equally 38 

17 Lead contact 39 

 40 

* Email address(es) of corresponding authors:  41 

liy4003@med.cornell.edu (L.Y.),  42 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.05.606734doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606734
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

res2025@med.cornell.edu (R.E.S.),  43 

shc2034@med.cornell.edu (S.C.)   44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.05.606734doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606734
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

SUMMARY 45 

There is a paucity of human models to study immune-mediated host damage. Here, we 46 

utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in 47 

COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory 48 

macrophages. Single cell RNA-seq analysis of human islets exposed to SARS-CoV-2 or 49 

Coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages 50 

and β cell pyroptosis. To distinguish viral versus proinflammatory macrophage-mediated 51 

β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized 52 

macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression 53 

and function in both β cells and endothelial cells compared to separately cultured cells. 54 

Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. 55 

Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in 56 

proinflammatory macrophage-mediated β cell pyroptosis. This study established hPSC-57 

derived VMI organoids as a valuable tool for studying immune cell-mediated host damage 58 

and uncovered mechanism of β cell damage during viral exposure.  59 
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INTRODUCTION 60 

A strong connection between Coronavirus disease 19 (COVID-19) and diabetes is now 61 

recognized. Since the beginning of the pandemic, there have been reports of new-onset 62 

diabetes1-5 and exacerbated complications in patients with pre-existing diabetes. 63 

Moreover, a rise in type 1 diabetes (T1D) incidence has been observed4,6. A study from 64 

the Centers for Disease Control and Prevention reported that persons aged <18 years 65 

with COVID-19 were more inclined to receive a new diabetes diagnosis compared to 66 

those without COVID-19. Studies reported a heightened T1D and type 2 diabetes (T2D) 67 

incidence rates after the beginning of pandemic, surpassing pre-pandemic period7,8,9. In 68 

addition to SARS-CoV-2, a number of studies suggests the correlation between viral 69 

infections and T1D10, including enteroviruses11, such as coxsackievirus B12,13, as well as 70 

rotavirus14, mumps virus15, and cytomegalovirus16. Coxsackievirus B4 (CVB4), a positive-71 

sense single-stranded RNA virus, isolated from newly diagnosed T1D patients could 72 

infect and induce destruction of human islet cells in vitro17.   73 

 74 

In infectious diseases, multiple mechanisms contribute to the observed host injury. Our 75 

group and others discovered that SARS-CoV-2 infection induces the transdifferentiation 76 

of human β cells18 and damage of β cells19,20. In addition, the accumulation of 77 

macrophages has been reported in the lungs21 and heart22 of COVID-19 patients. Further 78 

insight would benefit from robust human models to explore immune cell-mediated host 79 

damage. Human pluripotent stem cells (hPSCs)23 provide a powerful in vitro platform for 80 

studying disease mechanisms, developing cell therapy approaches and drug screening24-81 

26. Many efforts have applied hPSC-based platforms to study SARS-CoV-2 tropism27 and 82 
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host responses. Recently, we performed a 2D co-culture system utilizing hPSC-derived 83 

cardiomyocytes and macrophages and identified a Janus kinase (JAK) inhibitor that 84 

effectively thwarts macrophage-mediated damage to cardiac cells22.  85 

 86 

In this study, we applied spatial multi-omics assays to comprehensively analyze 87 

pancreatic autopsy samples of COVID-19 patients and identified the accumulation of 88 

proinflammatory macrophages in COVID-19 samples. Single cell RNA-seq analysis 89 

confirmed the activation of proinflammatory macrophages and enrichment of the 90 

pyroptotic pathway in β cells of human islets exposed to SARS-CoV-2 or CVB4 viruses. 91 

Next, we developed a vascularized macrophage-islet (VMI) organoid model containing 92 

hPSC-derived endocrine cells, macrophages, and endothelial cells and found that 93 

proinflammatory macrophages induced β cell pyroptosis through the secretion of IL-1β 94 

and interaction with β cells via the TNFSF12-TNFRSF12A pathway. This study not only 95 

establishes a VMI organoid model to study macrophage-mediated host damage, but also 96 

identifies the previously unknown role of TNFSF12-TNFRSF12A-mediated pyroptosis in 97 

β cell damage in infectious diseases.   98 
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RESULTS 99 

Spatial multi-omics analysis to identify the activation of proinflammatory 100 

macrophages in pancreatic autopsy samples of COVID-19 patients. 101 

To systematically analyze the pancreatic damage of COVID-19 patients, we collected 102 

pancreatic autopsy samples from 7 COVID-19 patients and 8 age and gender-matched 103 

control subjects (Table S1). GeoMx multi-omics assays were applied to analyze two 104 

adjacent tissue sections of each donor, providing paired analysis of changes at both 105 

transcriptome and protein levels (Figure S1A). For GeoMx analysis, we selected 6 106 

regions of interests (ROIs) in the islet area, 3 ROIs in ductal area and 3 ROIs in exocrine 107 

area per sample (Figure 1A and Figure S1A). Through morphology marker staining 108 

(INS/Pan-CK/TOTO-3), we observed no obvious change of islet areas, but lower 109 

percentage of INS+ cells within islets of COVID-19 samples compared to control samples 110 

(Figures 1B and 1C), which is consistent with the previous reports18. 3D PCA analysis 111 

of whole transcriptome sequencing data from ROIs in the islet areas showed distinct 112 

transcriptional profiles in COVID-19 samples separated from control samples (Figure 1D). 113 

Pathway analysis of differentially expressed (DE) genes between ROIs in islet areas from 114 

COVID-19 and control samples highlighted viral infection associated pathways, such as 115 

viral mRNA translation, influenza infection, interferon α/β signaling pathways and stress 116 

associated pathways, such as cellular response to stress or external stimuli pathways, 117 

and toll-like receptor 2 cascade pathway (Figure 1E). Consistently, PCA of ROIs in ductal 118 

and exocrine areas also showed separation between COVID-19 and control samples 119 

(Figures S1B and S1C). Moreover, pathway analysis of DE genes between ROIs in 120 
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ductal and exocrine areas in COVID-19 and control samples also revealed the enrichment 121 

of interferon signaling pathways in COVID-19 samples (Figures S1D and S1E).  122 

 123 

To further analyze the changes in immune cell composition, we conducted CIBERSORT 124 

analysis of transcriptome profiles from COVID-19 and control samples. Within the ROIs 125 

in islet area of the 7 COVID-19 samples, we found 4 samples (#4-#7) enriched with 126 

proinflammatory macrophages, and 2 samples (#2-#3) enriched with monocytes (Figure 127 

1F). The enrichment of monocytes or proinflammatory macrophages were not dependent 128 

on the pre-existing type 2 diabetes condition of the subjects (Figure S1F). Consistently, 129 

we detected enrichment of proinflammatory macrophages in ductal ROIs in 4 (#4-#7) out 130 

of 7 COVID-19 samples, and monocyte enrichment in ductal ROIs in 1 (#3) out of 7 131 

COVID-19 samples (Figure S1G). In exocrine ROIs, we observed enrichment of 132 

proinflammatory macrophages in 4 (#4-#7) out of 7 COVID-19 samples (Figure S1H). 133 

 134 

We further conducted GeoMx protein assays and found that macrophages were enriched 135 

in islet ROIs of COVID-19 samples compared to control samples (Figure 1G and 1H); 136 

while T cells, NK cells, B cells and neutrophils were not enriched (Figure S1I). Moreover, 137 

the proteins related to T cell activation were not increased in islet ROIs of COVID-19 138 

samples compared to control samples (Figure S1J). Notably, CD44, previously reported 139 

to regulate the TLR2-mediated macrophage activation and proinflammatory 140 

responses28,29, was also found to be significantly increased in ROIs in islet, ductal, and 141 

exocrine areas of COVID-19 samples (Figure 1G and Figure S1K). CD163, which 142 

functions as the scavenger receptor is highly upregulated in infiltrating macrophages in 143 
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sites of inflammation30,31. Soluble CD163, was also identified as a biomarker of 144 

macrophage activation and associated with type 2 diabetes mellitus (T2DM), insulin 145 

resistance, and β cell dysfunction32. Finally, immunohistochemistry validated the 146 

accumulation of both CD163+ macrophages and CD80+ proinflammatory macrophages in 147 

pancreatic tissues of COVID-19 patients (Figures 1I-1J and Figures S1L-S1M).  148 

 149 

Single cell RNA-seq analysis identifies activation of proinflammatory macrophages 150 

and β cell pyroptosis in SARS-CoV-2 or CVB4 exposed human islets. 151 

To further explore the status of macrophages upon virus exposure in human islets, we 152 

performed single cell RNA-seq (scRNA-seq) of human islets upon exposure of SARS-153 

CoV-2 or CVB4. UMAP analysis revealed nine cell clusters within human islets (Figures 154 

S2A and S2B). In our previous publication, we have already characterized the SARS-155 

CoV-2 infected human islets33. Here, we further characterized the CVB4 infected human 156 

islets. UMAP and violin plot showed the high expression of CVB4 virus polyprotein in 157 

endocrine cells (β cells, α cells and δ cells), as well as mesenchymal cells, immune cells, 158 

and endothelial cells (Figures S2C and S2D). Immunostaining confirmed the 159 

colocalization of enterovirus (CVB4) and endocrine cell markers, including INS (β cells), 160 

GCG (α cells) and SST (δ cells) (Figures S2E-S2I). 161 

 162 

We then focused on the immune cell population and performed sub-clustering analysis, 163 

identifying five sub-clusters (Figure 2A). UMAP and violin plots confirmed the expression 164 

of marker genes for each subpopulation (Figure 2B). We compared the transcriptional 165 

profiles of macrophages and found increased expression of proinflammatory 166 
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macrophage-associated genes, including IL1B, IL6, CXCL8 and TNF in macrophages of 167 

human islets upon SARS-CoV-2 exposure (Figure 2C). Immunostaining also confirmed 168 

the activation of proinflammatory macrophages in human islets upon SARS-CoV-2 169 

infection (Figures 2D-2E and Figures S2J-S2M). We further analyzed several cell death-170 

associated pathways within β cell cluster of human islets exposed to SARS-CoV-2 virus. 171 

Interestingly, we found the activation of pyroptosis and apoptosis pathways in β cells of 172 

human islets exposed to SARS-CoV-2 (Figure 2F). Our previous studies have reported 173 

the activation of apoptosis of SARS-CoV-2 infected β cells27. In the current study, we 174 

focused on β cell pyroptosis. Dot plot analysis showed increased expression levels of 175 

pyroptosis-associated genes in both SARS-CoV-2+ and SARS-CoV-2- β cells of human 176 

islets exposed to SARS-CoV-2 (Figure 2G and Figure S3A). Immunostaining further 177 

confirmed the increased expression of cleaved caspase1 (CASP1) in β cells of human 178 

islets upon SARS-CoV-2 infection (Figures 2H and 2I). In addition, we found enrichment 179 

of pyroptosis pathway in other endocrine cell clusters (α and δ cell clusters) of human 180 

islets exposed to SARS-CoV-2 (Figure S3B). Moreover, autophagy pathway was 181 

enriched in mesenchymal cell cluster; while ferroptosis and apoptosis pathways were 182 

enriched in endothelial cell cluster of human islets exposed to SARS-CoV-2 (Figure S3B). 183 

 184 

Next, we analyzed human islets exposed to CVB4 virus. Similar with SARS-CoV-2 virus,  185 

CVB4 virus exposure also induced activation of proinflammatory macrophages (Figures 186 

2J-2L and Figures S3C-S3F). Furthermore, dot plots showed increased expression of 187 

pyroptotic pathway associated genes in both CVB4+ and CVB4- β cells of human islets 188 

upon CVB4 infection (Figure 2M and Figure S3G). Finally, immunostaining confirmed 189 
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the increased expression of CASP1 in β cells of human islets upon CVB4 infection 190 

(Figures 2N and 2O). Together, these data demonstrate the activation of 191 

proinflammatory macrophages and β cell pyroptosis in human islets exposed to SARS-192 

CoV-2 or CVB4 viruses. 193 

 194 

To further analyze the changes of immunogenicity profiles of β cells in response to viral 195 

infection, we analyzed the expression of HLA molecules and autoantigen associated 196 

genes. We observed a pattern of the increased expression of HLA class I genes in β cells 197 

of human islets exposed to SARS-CoV-2 versus mock (Figure S3H). In contrast, there 198 

was a trend of reduced expression of HLA class I genes in β cells of human islets exposed 199 

to CVB4 versus mock (Figure S3I). In terms of autoantigen expression, we observed a 200 

similar increase in the expression of GAD2 and IAPP in β cells of human islets exposed 201 

to SARS-CoV-2 or CVB4 compared to mock conditions. For CHGA and SLC30A8, we 202 

noted different trends of expression, which increased in β cells of human islets exposed 203 

to SARS-CoV-2 but decreased in β cells of human islets exposed to CVB4 (Figures S3J 204 

and S3K). Moreover, we also examined the genes related to antigen presentation and 205 

found an increased expression of antigen presentation associated genes in β cells of 206 

human islets exposed to SARS-CoV-2 and a reduced expression of them in β cells of 207 

human islets exposed to CVB4 (Figures S3L and S3M). 208 

 209 

Construction of a vascularized macrophage-islet organoid.  210 
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To determine whether β cell pyroptosis is caused by proinflammatory macrophages 211 

activation, we constructed a vascularized macrophage-islet organoid (VMI organoid) 212 

model (Figure 3A). First, we differentiated MEL-1INS/GFP hESCs into pancreatic endocrine 213 

cells (Figure S4A). At day 16, we detected the robust generation of INS+ β cells, GCG+ 214 

α cells and SST+ δ cells (Figure S4B). H9 hESCs were differentiated toward 215 

macrophages which expressed CD11B, CD14 and CD206, but not CD80 (Figures S4C-216 

S4D). Functional assays confirmed that hESC-derived macrophages can engulf bacteria, 217 

indicating that they exhibited phagocytic activity which similar to primary human 218 

macrophages (Figure S4E). Human islets are highly vascularized and endothelial cells 219 

play an important role in systemic inflammatory responses34,35, as well as pancreatic cell 220 

development36-38. Thus, we decided to add endothelial cells to VMI organoids. ETV2 was 221 

reported to promote the development of endothelial cells39,40. Here, we overexpressed 222 

ETV2 to promote the differentiation and function of endothelial cells from H1 hESCs40-42 223 

(Figure S4F). qRT-PCR confirmed the overexpression of ETV2 in H1 hESCs (Figure 224 

S4G) and immunostaining confirmed that differentiated endothelial cells expressed 225 

PECAM1 (CD31) (Figure S4H).  226 

 227 

After optimizing the culture medium and cell ratio, we mixed the hESC-derived endocrine 228 

cells, unstimulated macrophages, and endothelial cells in three-dimension (3D) culture to 229 

form organoids (Figure 3A). The VMI organoids exhibited similar size and morphologies 230 

as primary human islets (Figure 3B). To perform live imaging of the VMI organoid, we 231 

labeled cells with fluorescent reporters or CellTrace dye. Pancreatic endocrine cells were 232 

derived from MEL-1INS/GFP hESCs, allowing real-time monitoring of INS-GFP+ β cells. 233 
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Macrophages were derived from RFP labelled H9 (RFP-H9) hESCs and purified using 234 

magnetic sorting before organoid formation. Additionally, H1 hESC-derived endothelial 235 

cells were selected by magnetic sorting and the purified endothelial cells were labelled 236 

with CellTrace proliferative far-red dye before forming 3D organoids. 3D confocal images 237 

confirmed the presence of INS-GFP+ β cells, RFP+ macrophages, and far red+ endothelial 238 

cells in VMI organoids (Figure 3C and Supplemental Video 1). Immunostaining of VMI 239 

organoids confirmed the presence of INS+ β cells, CD68+ macrophages and PECAM1+ 240 

endothelial cells (Figure 3D and Supplemental Video 2). Most of the INS+ β cells in VMI 241 

organoids co-expressed NKX6.1, a key transcription factor of β cells (Figure S4I and 242 

Supplemental Video 3). Immunostaining further confirmed the presence of GCG+ α cells 243 

and SST+ δ cells in VMI organoids (Figure 3E and Supplemental Videos 4-5).  244 

 245 

Next, we used different assays to determine whether the cells in VMI organoids closely 246 

resembled the cells in primary islets. Initially, electron microscopy (EM) was used to 247 

observe fenestrae, which are transcellular pores found in endothelial cells facilitating the 248 

transfer of substances between blood and the extravascular space43. Indeed, the 249 

fenestrations were detected in the endothelial cells of both primary human islets and VMI 250 

organoids, but not in separately cultured endothelial cells (Figure 3F). We performed an 251 

acetylated-low density lipoprotein (Ac-LDL) uptake assay to assess the function of 252 

endothelial cells in VMI organoids. Ac-LDL can bind to the receptor on the surface of 253 

vascular endothelial cells, facilitating the delivery of cholesterol via endocytosis44,45. We 254 

found co-localization of Ac-LDL with PECAM1+ endothelial cells (Figure S4J). Then, we 255 

performed dynamic glucose-stimulated insulin secretion (GSIS) to examine the secretion 256 

of insulin upon glucose or KCl stimulation. We found increased insulin expression in VMI 257 
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organoids than separately cultured hESC-derived endocrine cells under both high 258 

glucose and KCl stimulation conditions. The amount of insulin secreted upon KCl 259 

stimulation was significantly higher in VMI organoids than separately cultured hESC-260 

derived endocrine cells (Figure 3G). Besides, we also found a decrease of GCG 261 

secretion in VMI organoids compared to separately cultured endocrine cells (Figure S4K). 262 

To further elevate the function of β cells upon low glucose and high glucose stimulation, 263 

we performed dynamic calcium Flu4 imaging. We detected dynamic calcium mobilization 264 

in cells of VMI organoids upon high glucose stimulation (Figure S4L and Supplemental 265 

Video 6). Together, the data indicate that the pancreatic β cells and endothelial cells in 266 

VMI organoids are functionally more mature than cells that are cultured separately.  267 

 268 

Finally, we exposed the VMI organoids with CVB4 virus and found macrophages 269 

engulfing the damaged β cells upon virus infection (Figure 3H and Supplemental Video 270 

7). To examine monocyte infiltration, we created organoids containing endocrine cells and 271 

endothelial cells (VI organoids) and monitored monocyte infiltration upon CVB4 infection. 272 

We first added monocytes to VI organoids, then introduced CVB4, and conducted live cell 273 

imaging at 24hpi and 48hpi. We did not find obviously infiltration of monocytes into VI 274 

organoids (Figure S4M).  275 

 276 

Single cell multi-omics analysis of VMI organoids. 277 

We then performed scRNA-seq and single nucleus assay for transposase-accessible 278 

chromatin using sequencing (snATAC-seq) to compare the cell compositions, 279 

transcriptional and epigenetic profiles of VMI organoids and separately cultured cells46 280 
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(Figure 4A). Cells that were cultured in separate plates but mixed together before library 281 

preparation was compared to cells in VMI organoids (Figure S4N). UMAP analysis 282 

identified 9 cell clusters (Figure 4A). Dot plot of scRNA-seq analysis (Figure 4B) and 283 

integrative genomics viewer plot of snATAC-seq (Figure S4O) confirmed the marker 284 

gene expression in each cluster. Consistent with previous studies47-49, GCG expression 285 

was detected in β cell cluster and INS expression was detected in α and δ cell clusters, 286 

suggesting the immature status of hESC-derived endocrine cells. Next, we compared the 287 

cells in VMI organoids with separately cultured cells (Figure 4C). Pie chart showed the 288 

relative proportions of major cell types in VMI organoids (Figure 4D). Volcano plot 289 

analysis of gene expression in β cell cluster showed decreased expression of non-β cell 290 

associated genes, AFP50, GCG, SST, ACTB and PRSS2 and increased expression of β 291 

cell associated genes RPL13A51 and SMIM3252 in β cell cluster of VMI organoids 292 

compared to separately cultured cells (Figure 4E). Dot plot and violin plot analysis also 293 

showed that genes associated with β cell identity and function, including SLC2A153-55, 294 

PIK3CB56, HNF1B, PAX6, PDX1 and INS, are relatively increased in β cell cluster of VMI 295 

organoids (Figure 4F and Figure S4P). Consistently, snATAC-seq analysis showed 296 

increased open chromatin accessibility peaks of SLC2A153-55, INS and PDX1 in β cells of 297 

VMI organoids compared to separately cultured cells which might indicate the potential 298 

of increased gene expression of SLC2A1, INS and PDX1 (Figure 4G). In addition, dot 299 

plot and violin plot also revealed the upregulation of genes associated with endothelial 300 

cell function in endothelial cell cluster of VMI organoids compared to separately cultured 301 

cells, including INSR43, VWF57, PDGFB58, EDN159, S1PR160 and RSPO361 (Figure 4H 302 

and S4Q).  303 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.05.606734doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606734
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

 304 

Proinflammatory macrophages cause β cell pyroptosis. 305 

We have shown the activation of proinflammatory macrophages, as well as upregulation 306 

of the pyroptotic pathway in β cell cluster of human islets exposed to SARS-CoV-2 or 307 

CVB4 viruses. Here, we also detected the activation of proinflammatory macrophages, 308 

as well as β cells pyroptosis, in VMI organoids exposed to SARS-CoV-2 or CVB4 viruses 309 

(Figures S5A-S5D). To determine whether proinflammatory macrophages cause β cell 310 

pyroptosis, we constructed the VMI organoids with proinflammatory or unstimulated 311 

macrophages. First, LPS and IFN-γ were used to stimulate macrophages into 312 

proinflammatory status (Figure S5E). Both RNA-seq and ELISA analysis confirmed the 313 

increased expression of proinflammatory associated genes and cytokines, including IL-314 

1β and IL-6 in proinflammatory macrophages (Figures S5F and S5G). Then, we 315 

constructed VMI organoids using either unstimulated or proinflammatory macrophages. 316 

VMI organoids containing proinflammatory macrophages showed decreased expression 317 

levels of INS compared to VMI organoids containing unstimulated macrophages (Figures 318 

5A-5B and Supplemental Video 8, 9). We collected the supernatant of VMI organoids 319 

containing proinflammatory or unstimulated macrophages and confirmed the increased 320 

expression of IL-1β, IL-6 and TNF-α in the supernatant of VMI organoids containing 321 

proinflammatory macrophages (Figure 5C).  322 

 323 

Next, scRNA-seq and snATAC-seq were performed to analyze the VMI organoids 324 

containing proinflammatory or unstimulated macrophages. Consistent with the previous 325 

analysis, 9 cell clusters were identified in VMI organoids. UMAP showed a decrease of 326 
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the β cell cluster in VMI organoids with proinflammatory macrophages, which was also 327 

confirmed by quantification of the percentage of β cells (Figures 5D and 5E). Moreover, 328 

volcano plot comparing the β cell cluster of VMI organoids containing proinflammatory 329 

macrophages to that of organoids containing unstimulated macrophages showed the 330 

downregulation of β cell identity and function associated genes, including the decreased 331 

expression levels of IGF262, IGFBP363 and SLC2A364, and upregulation of non-β cell 332 

identity and function associated genes, GCG, ALDH1A165, FGB66 and AFP50 (Figure. 5F). 333 

Dot plot analysis further confirmed the downregulation of β cell identity and function 334 

associated genes, including SLC2A153-55, PIK3CB,56 HNF1B, PAX6, PDX1 and INS, in 335 

the β cluster of VMI organoids containing proinflammatory macrophages compared to 336 

VMI organoids containing unstimulated macrophages (Figure 5G). Consistently, 337 

snATAC-seq analysis also showed decreased open chromatin accessibility peaks of INS 338 

and PDX1 in β cells of VMI organoids containing proinflammatory macrophages (Figure 339 

S5H). Furthermore, dot plot analysis of scRNA-seq analysis also showed increased 340 

expression of pyroptotic pathway associated genes in the β cluster of VMI organoids 341 

containing proinflammatory macrophages (Figure 5H). Consistent with increased 342 

expression of pyroptotic pathway associated genes, snATAC-seq analysis showed 343 

increased open chromatin accessibility peaks of CASP1, CASP9, IL1B and NLRP3, in 344 

the β cell cluster of VMI organoids containing proinflammatory macrophages (Figure 5I). 345 

Upregulation of the pyroptotic pathway in the β cell cluster of VMI organoids containing 346 

proinflammatory macrophages was further confirmed by immunostaining using an 347 

antibody against CASP1 (Figures 5J and 5K). Apart from β cell pyroptosis, we did not 348 

observe β cell dedifferentiation in VMI organoids with pro-inflammatory macrophages 349 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.05.606734doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606734
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

(Figure S5I). Together, these data suggest that proinflammatory macrophages can 350 

induce β cell pyroptosis.  351 

 352 

Mechanistic studies identify pathways contributing to proinflammatory 353 

macrophage-mediated β cell pyroptosis.   354 

To determine the potential mechanisms by which proinflammatory macrophages induce 355 

β cell pyropotosis, we performed cell-cell interaction (cell-chat) analysis and focused on 356 

the interactions from macrophages to β cells. First, when comparing differential signaling 357 

from macrophages to β cells in VMI organoids containing proinflammatory macrophages 358 

to VMI organoids containing unstimulated macrophages, we identified four enhanced 359 

macrophage-to-β cell interaction pathways, including TNFSF12-TNFRSF12A, SPP1-360 

ITGAV+ITGB1, F11R-F11R and DSC2-DSG2 (Figure 6A). Next, we examined cell-cell 361 

interactions from macrophages to β cells in human islets exposed to CVB4 virus and also 362 

found increased communication probability of the TNFSF12-TNFRSF12A pathway 363 

(Figure 6B). Furthermore, the expression level of TNFSF12 was increased in 364 

macrophages of human islets exposed to SARS-CoV-2 (Figure 6C). Immunostaining 365 

confirmed the increased expression of TNFSF12 in both human islets exposed to viruses 366 

and VMI organoids containing proinflammatory macrophages (Figures S6A and S6B). 367 

These data indicate that the TNFSF12-TNFRSF12A pathway might contribute to 368 

proinflammatory macrophage mediated β cell pyroptosis.  369 

 370 

To validate the role of TNFSF12-TNFRSF12A in proinflammatory macrophage mediated 371 

β cells pyroptosis, we treated human islets and VMI organoids containing unstimulated 372 
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macrophages with TNFSF12 protein and detected increased CAPS1 expression in INS+ 373 

β cells in both cases (Figures 6D-6G). Next, we tested TNFSF12 neutralization antibody 374 

and found that it partially blocked β cell pyroptosis caused by SARS-CoV-2 or CVB4 375 

exposure (Figures 6H and 6I), suggesting that other factors, might also contribute to this 376 

process. One candidate is IL-1β, which was detected in the supernatant of VMI organoids 377 

containing proinflammatory macrophages and macrophages of human islets exposed to 378 

SARS-CoV-2 or CVB4 (Figures 2C, 2J, 5C and Figures S2J-2K, S3C-S3D) and was 379 

reported to contribute to cell pyroptosis67,68. Indeed, IL-1β neutralization antibody partially 380 

blocked the increased β cell pyroptosis in human islets exposed to SARS-CoV-2 or CVB4. 381 

Furthermore, the combination of IL-1β and TNFSF12 neutralization antibodies showed 382 

add-on/synergistic effect to further decrease the CASP1 expression levels in human islets 383 

exposed to SARS-CoV-2 or CVB4 (Figures 6H and 6I) and VMI organoids with 384 

proinflammatory macrophages or VMI organoids exposed to SARS-CoV-2 or CVB4 385 

(Figures 6J-6K and Figures S6C-S6F). Finally, we stained the pancreatic autopsy 386 

samples and confirmed the increased CASP1 expression in COVID-19 samples 387 

compared to control samples (Figures 6L and 6M). Moreover, the increased CASP1 388 

expression was independent of T2D conditions (Figures 6L and 6M). GeoMx 389 

transcriptomic data also showed increased expression of pyroptosis-associated genes in 390 

ROIs of islets in COVID-19 samples compared to control samples (Figure S6G). 391 

 392 

Discussion 393 

While several spatial transcriptomic analyses have been applied to study COVID-19 394 

autopsy samples, they have focused on lung69-71, liver72, heart73, and placenta74. In this 395 
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study, we used the GeoMx spatial transcriptomics and proteomics platform to 396 

comprehensively analyze changes in the immune cell composition and endocrine cell 397 

damage of COVID-19 pancreatic samples. Our findings revealed accumulation of 398 

proinflammatory macrophages in islets of COVID-19 samples, which highlights the critical 399 

role of macrophages in pathological changes observed in host tissues in COVID-19 400 

patients. Previous study has shown that SARS-CoV2 induces a pro-fibrotic signature in 401 

monocytes, which includes CD163, a marker not expressed in homeostatic monocytes75. 402 

We also see an increase of CD163+ macrophages in islets of COVID-19 samples, which 403 

could be an indication of fibrogenic monocyte infiltration. Fibrosis might also play a role 404 

for pancreatitis, new onset diabetes and thus β cell damage76. Fibrotic alterations might 405 

be another potential driver of tissue dysfunction besides β cell pyroptosis. Surprisingly, in 406 

our spatial transcriptomics data, we didn’t see an increase of T cells in islets of COVID-407 

19 samples while both CD4 and CD8 T cells contribute to T1D development77,78. Upon 408 

thorough examination of published studies, no reports were identified regarding T cell 409 

infiltrations in the islets of COVID-19 samples. This underscores the need to impartially 410 

assess immune cell accumulation and expand the scope of investigation by examining 411 

additional COVID-19 pancreas samples.  412 

 413 

In our study, we found that β cells in VMI organoids showed improved maturity. Islet 414 

vascular endothelial cells were reported to promote insulin production and secretion, as 415 

well as β-cell proliferation, survival, and maturation, by secreting a variety of growth 416 

factors, components of the extracellular matrix (ECM), and other molecules79-81. 417 

Macrophages exist in the pancreas from the embryonic stage onward. While the role of 418 
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macrophages in islet morphogenesis is not well understood, various observations 419 

underscore their significance in the formation of the endocrine pancreas, especially in the 420 

development of β cells82,83. 421 

 422 

While immune-mediated host damage is recognized as a critical factor in various 423 

diseases, there is a scarcity of suitable human in vitro models. Here, we constructed a 424 

hPSC-derived VMI organoid model, which allowed us to dissect molecular mechanisms 425 

of macrophage-mediated host damage. Through cell-cell interaction analysis, we found 426 

that proinflammatory macrophages induce β cell pyroptosis through the TNFSF12-427 

TNFRSF12A pathway. Previous studies in the context of cholestasis demonstrated that 428 

bile acids induce TNFRSF12A expression, subsequently initiating hepatocyte pyroptosis 429 

through the NFκB/Caspase-1/GSDMD signaling pathway84. TNFSF12-TNFRSF12A 430 

pathway has been reported to contribute to the hepatocyte pyroptosis through 431 

NFκB/Caspase-1/GSDMD signaling84. Persistent TNFSF12-TNFRSF12A signaling has 432 

been implicated in the pathogenesis of numerous diseases, including atherosclerosis, 433 

ischemic stroke, rheumatoid arthritis (RA), and inflammatory bowel diseases85,86. Some 434 

of the TNFSF12-TNFRSF12A targeted therapeutic agents under development for these 435 

conditions87. Enavatuzumab, BIIB036 and RG7212, the humanized monoclonal 436 

antibodies targeting the TNFSF12-TNFRSF12A signaling, were tested in patients with 437 

tumors88-90. BIIB023 was also tested in patients with Rheumatoid Arthritis (NCT00771329) 438 

and lupus nephritis (NCT01499355) in clinical trials91. Here, we identified a previously 439 

unknown role of TNFSF12-TNFRSF12A in macrophages induced β cell pyroptosis. 440 
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Besides, we also explored the cell-cell interactions from β cells to immune cells (Figure 441 

S6H). 442 

 443 

β cell death constitutes a pathophysiological cornerstone in the natural progression of 444 

diabetes. Previous investigations into β cell death have primarily centered on apoptosis, 445 

necrosis, and autophagy. In this study, we uncovered a previously unknown mechanism 446 

in which proinflammatory macrophages induce β cell pyroptosis. An expanding body of 447 

research has linked β cell pyroptosis to diabetes9293. These findings suggest that 448 

macrophage-mediated β cell pyroptosis may contribute to the increased incidence of 449 

diabetes among COVID-19 patients. 450 

 451 

Limitations of study  452 

In this study, we analyzed the pancreatic autopsy samples from non-COVID and 453 

COVID19 subjects. COVID-19 subjects might have experienced bed resting and 454 

starvation (ICU), which could have influenced the β cell phenotype, including insulin 455 

content. Additionally, the inherent variability/heterogeneity of studying pancreatic autopsy 456 

samples could pose analytical challenges in distinguishing genuine disease pathology or 457 

differences between human donors from experimental noise94. The modest sample size 458 

and potential confounders in the clinical samples could also be limitations in this study. In 459 

VMI organoids, we found that some endothelial cells can form small vessels. However, 460 

they cannot form intact blood vessels, which are likely required for monocyte infiltration 461 

into tissue.  The vascular structure of VMI organoids is not fully functional yet, suggesting 462 

a need for further modification of the culture conditions. This might also be why we didn’t 463 
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find obvious infiltration of monocytes into organoids containing endocrine cells and 464 

endothelial cells. Using this VMI organoid model, we observed that pro-inflammatory 465 

macrophage activation induced β cell death. However, we cannot distinguish whether the 466 

observed effects were derived from monocyte derived or tissue resident macrophages.  467 
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Main Figure Titles and Legends. 503 

Figure 1. Macrophage accumulation in islets of COVID-19 pancreatic autopsy 504 

samples. 505 

(A) Representative images illustrating morphology marker and selection of ROIs using 506 

GeoMx platform. 004: islet area; 005: ductal area; 006: exocrine area. Scale bar= 1 mm 507 

or 50 µm. 508 

(B) Representative images illustrating the insulin (INS) staining in COVID-19 (N=7) and 509 

control (N=8) pancreatic autopsy samples. Dotted lines encircle the islet regions. Scale 510 

bar=75 µm. 511 

(C) Quantification of areas of islets and percentages of INS+ β cells per islet in COVID-19 512 

(N=7) and control (N=8) pancreatic autopsy samples. 513 

(D) 3D PCA plot of data from human islet areas of COVID-19 (N=7) and control (N=8) 514 

pancreatic autopsy samples.  515 

(E) Volcano plot of transcriptome sequencing data highlighting the pathways enriched in 516 

human islet areas of COVID-19 (N=7) versus control (N=8) pancreatic autopsy samples.  517 

(F) Heatmap of the CIBERSORT analysis of immune cells (LM22) using the GeoMx whole 518 

transcriptome sequencing data of human islet areas of COVID-19 (N=7) and control (N=8) 519 

pancreatic autopsy samples. 520 

(G) Normalized counts (Log2) of marker proteins associated with macrophages from 521 

human islet areas of COVID-19 (N=7) and control (N=8) pancreatic autopsy samples. 522 

Each dot represents one count in each ROI. 523 
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(H) Box plot of normalized counts of macrophage associated targets in human islet areas 524 

of COVID-19 (N=7) and control (N=8) pancreatic autopsy samples. Each dot represents 525 

one count in each ROI. 526 

(I and J) Immunohistochemistry staining (I) and quantification (J) of CD80 in COVID-19 527 

(N=3) and control (N=3) pancreatic autopsy samples. Dotted lines encircle the regions of 528 

the islets. Scale bar=20 m.  529 

P values were calculated by unpaired two-tailed Student’s t test. n.s., no significance; *P 530 

< 0.05, **P < 0.01, ***P < 0.001.  531 

See also Figure S1.  532 
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Figure 2. Single cell RNA-seq analysis of human islets upon SARS-CoV-2 or CVB4 533 

exposure.  534 

(A) UMAP of immune cell populations in human islets exposed to mock, SARS-CoV-2 535 

(MOI=1) or CVB4 (2X106 PFU/ml) . 536 

(B) UMAP and violin plots of immune cell markers.  537 

(C) Dot plot analysis of proinflammatory macrophage-associated genes in macrophages 538 

of human islets exposed to mock or SARS-CoV-2 (MOI=1).  539 

(D and E) Confocal images (D) and quantification (E) of the relative expression of CD80 540 

in CD68+ cells in human islets exposed to mock or SARS-CoV-2 (MOI=0.5). The white 541 

arrows highlight the CD68+CD80+ cells.  Scale bar= 50 µm. 542 

(F) Pathway enrichment analysis of cell death pathways in β cell cluster of human islets 543 

exposed to mock or SARS-CoV-2 (MOI=1). 544 

(G) Dot plot analysis of pyroptosis associated genes in β cell cluster of human islets 545 

exposed to mock or SARS-CoV-2 (MOI=1). 546 

(H and I) Confocal images (H) and quantification (I) of the relative expression of CAPS1 547 

in human islets exposed to mock or SARS-CoV-2 (MOI=0.5). The yellow arrows highlight 548 

the expression of CASP1 in SARS-N+INS+ cells while the white arrows highlight the 549 

expression of CASP1 in SARS-N-INS+ cells. Scale bar= 50 µm. 550 

(J) Dot plot analysis of proinflammatory macrophage-associated genes in macrophage 551 

cluster of human islets exposed to mock or CVB4 (2x106 PFU/ml). 552 
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(K and L) Confocal images (K) and quantification (L) of the relative expression of CD80 553 

in CD68+ cells in human islets exposed mock or CVB4 (2x106 PFU/ml). The white arrows 554 

highlight the CD68+CD80+ cells. Scale bar= 50 µm. 555 

(M) Dot plot analysis of pyroptosis pathway associated genes in β cell cluster of human 556 

islets exposed to mock or CVB4 (2x106 PFU/ml). 557 

(N and O) Fluorescent images (N) and quantification (O) of the relative expression of 558 

CAPS1 in human islets exposed to mock or CVB4 (2x106 PFU/ml). The yellow arrows 559 

highlight the expression of CASP1 in SARS-N+INS+ cells while the white arrows highlight 560 

the expression of CASP1 in SARS-N-INS+ cells. Scale bar= 50 µm. 561 

N=3 independent biological replicates. Data was presented as mean ± STDEV. P values 562 

were calculated by unpaired two-tailed Student’s t test. *P < 0.05, **P < 0.01.  563 

See also Figure S2 and S3.  564 
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Figure 3. Construction of hPSC-derived VMI organoids. 565 

(A) Schematic representation of VMI organoids construction. 566 

(B) Phase contract images of VMI organoids at day 14 after reaggregation and human 567 

islets. Scale bar= 200 µm. 568 

(C) Composite Z-stack confocal images of live VMI organoids at day 14 after 569 

reaggregation. β cells: INS-GFP; macrophages: RFP; and endothelial cells: Far Red. 570 

Scale bar= 200 µm. 571 

(D) Composite Z-stack confocal images of VMI organoids at day 14 after reaggregation 572 

stained with antibodies against INS, CD68 and PECAM1 (CD31). Scale bar= 100 µm. 573 

(E) Composite Z-stack confocal images of VMI organoids at day 14 after reaggregation 574 

stained with antibodies against INS, CD68, GCG, SST and PECAM1 (CD31). Scale bar= 575 

100 µm. 576 

(F) Transmission electron microscope (TEM) images of human islets, VMI organoids at 577 

day 14 after reaggregation, and endothelial cells without reaggregation. Arrows indicate 578 

fenestrae. Scale bar= 500 nm. 579 

(G) Dynamic glucose stimulated insulin secretion of VMI organoids at day 14 after 580 

reaggregation and hPSC-derived endocrine cells. LG (low glucose): 2 mM D-glucose; HG 581 

(high glucose): 20 mM D-glucose; KCl: 30 mM KCl. Quantification was performed using 582 

the areas under curve of KCl stimulation from 86 min to 90 min. 583 

(H) Composite Z-stack confocal images of VMI organoids at day 7 after reaggregation 584 

upon CVB4 infection (2x106PFU/ml). β cells: INS-GFP, macrophages: RFP. Scale bar= 585 
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50 µm. Arrows highlight RFP+ macrophages that have phagocytosed damaged INS-GFP+ 586 

β cells. 587 

N=3 independent biological replicates. Data was presented as mean ± STDEV. P values 588 

were calculated by unpaired two-tailed Student’s t test. **P < 0.01.  589 

See also Figure S4.  590 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.05.606734doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606734
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4
A

PIK3CB

PAX6

PDX1

INS

25
50
75

0.4

0.0

-0.4

Percent 
Expressed

Average 
Expression

H
SLC2A1

100

β cell identity

ATACRNA
B

C

UMAP_1

U
M

AP
_2

AT
AC

R
N

A

E VMI organoids v.s. Separately cultured cells

LogFoldChange
-1.5 -1.0 -0.5 0.0 0.5 1.0
0

20

40

60

-L
og

P-
va

lu
e

2
1

Percent 
Expressed

Average 
Expression

0
-1

25
50
75
1000. β cells

3. α cells

7. Endothelial cells

4. D
uctal cells

8. M
Φ

2. Progenitor cells

6. Acinar cells
5. U

nknow
n

1. δ cells

INS

GCG

SST

KRT19

PRSS1

CD14

NEUROG3

G

Endothelial cell identity

RSPO3

S1PR1

EDN1

PDGFB

VWF

INSR

25
50
75

0.4

0.0

-0.4

Percent 
Expressed

Average 
Expression

100

N
or

m
al

iz
ed

 s
ig

na
l

(ra
ng

e 
0-

98
)

Fr
ag

m
en

ts
 (1

00
 c

el
ls

)
G

en
es

1
2
3
4

Fragment
count

SLC2A1

N
or

m
al

iz
ed

 s
ig

na
l

(ra
ng

e 
0-

59
)

Fr
ag

m
en

ts
 

(1
00

 c
el

ls
)

G
en

es

INS

Fragment
count

1
2
3
4
5

PDX1

N
or

m
al

iz
ed

 s
ig

na
l

(ra
ng

e 
0-

92
)

Fr
ag

m
en

ts
 

(1
00

 c
el

ls
)

G
en

es

1
2
3
4

PECAM1

0. β cells

3. α cells

7. Endothelial cells

4. Ductal cells

8. MΦ

2. Progenitor cells

6. Acinar cells
5. Unknown

1. δ cells

VMI 
organoids

AFP

GCG

SSTACTB

PRSS2

RPL13A
SMIM32

F

Separately 
cultured

 cells

VMI 
organoids

Pe
ak

s
VM

I 
or

ga
no

id
s

VM
I 

or
ga

no
id

s

INS
INS-IGF2

IGF2
TH

Pe
ak

s

Fragment
count

VM
I 

or
ga

no
id

s
VM

I 
or

ga
no

id
s

PDX1

Chr13 position (bp)
27910000 27920000 27930000

Chr11 position (bp)
2140000 2160000 2180000

SLC2A1
SLC2A1-AS

Pe
ak

s
VM

I 
or

ga
no

id
s

VM
I 

or
ga

no
id

s

Chr1 position (bp)
42930000 42940000 42960000

VMI organoidsSeparately cultured cells

1

2
3

4
5

6

7

80

1

2

0

3

4 5
6

7

8

0

1

2

3

4
5

6

7

8

2

3

0
11

4
5

6

7 7

8

2

3

4
5

6

8

2

1
3

4 5
6

7

8

UMAP_1

U
M

AP
_2

HNF1B

Separately 
cultured

 cells

Se
pa

ra
te

ly
 

cu
ltu

re
d 

ce
lls

Se
pa

ra
te

ly
 

cu
ltu

re
d 

ce
lls

Se
pa

ra
te

ly
 

cu
ltu

re
d 

ce
lls

Se
pa

ra
te

ly
 

cu
ltu

re
d 

ce
lls

Se
pa

ra
te

ly
 

cu
ltu

re
d 

ce
lls

Se
pa

ra
te

ly
 

cu
ltu

re
d 

ce
lls

RNA ATAC

0: 40.95%

1: 15.93%

2: 15.13%

3: 19.99%

4:
 6

.9
2%

5: 0.04%
6: 0.04%
7: 0.71%
8: 0.29%

0: 43.68% 

1: 22.28%

2: 12.84%
3: 4.49%4: 5.68%

5: 
6.6

3%

7: 0.88
8: 0.67%

6: 2.84

D 0. β cells

3. α cells

7. Endothelial cells

4. Ductal cells

8. MΦ

2. Progenitor cells

6. Acinar cells
5. Unknown

1. δ cells

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.05.606734doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606734
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31

Figure 4. Single cell multi-omics analysis of VMI organoids.  591 

(A) Integrative UMAP of scRNA-seq and snATAC-seq analysis of VMI organoids at day 592 

7 after reaggregation and separately cultured cells.  593 

(B) Dot plot displaying cell markers of each cluster using scRNA-seq dataset. 594 

(C) Individual UMAP of scRNA-seq and snATAC-seq analysis of VMI organoids at day 7 595 

after reaggregation and separately cultured cells.  596 

(D) Pie chart showed the relative percentages of each cell types in VMI organoids at day 597 

7 after reaggregation. 598 

(E) Volcano plot of DE genes in β cell cluster of VMI organoids at day 7 after 599 

reaggregation versus separately cultured cells.  600 

(F) Dot plot analysis of β cell associated genes in β cell cluster of VMI organoids at day 7 601 

after reaggregation and separately cultured cells. 602 

(G) Chromatin accessibility signals of SLC2A1, INS, PDX1 in β cell cluster of VMI 603 

organoids at day 7 after reaggregation and separately cultured cells. The normalized 604 

signal shows the averaged frequency of sequenced DNA fragments within a genomic 605 

region. The fragment shows the frequency of sequenced fragments within a genomic 606 

region for individual cells. 607 

(H) Dot plot analysis of endothelial cell associated genes in endothelial cell cluster of VMI 608 

organoids at day 7 after reaggregation and separately cultured cells. 609 

See also Figure S4.  610 
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Figure 5. Construction and multi-omics analysis of VMI organoids containing 611 

unstimulated and proinflammatory macrophages.  612 

(A and B) Composite Z-stack confocal images (A) and quantification (B) of INS intensity 613 

in INS+ cells of VMI organoids at day 7 after reaggregation containing unstimulated or 614 

proinflammatory macrophages stained with the antibodies against INS, CD68 and 615 

PECAM1 (CD31). Scale bar= 50 µm. 616 

(C) Measurements of cytokine secretions in the supernatant of VMI organoids at day 5 617 

after reaggregation containing unstimulated or proinflammatory macrophages. 618 

(D) Integrative UMAP of VMI organoids at day 7 after reaggregation containing 619 

unstimulated or proinflammatory macrophages. 620 

(E) Percentage of cells in β cell cluster in VMI organoids at day 7 after reaggregation 621 

containing unstimulated or proinflammatory macrophages. 622 

(F) Volcano plot of DE genes in β cell cluster of VMI organoids at day 7 after reaggregation 623 

containing proinflammatory versus unstimulated macrophages.  624 

(G) Dot plot analysis of β cell identity associated genes in β cell cluster of VMI organoids 625 

at day 7 after reaggregation containing unstimulated or proinflammatory macrophages.  626 

(H) Dot plot analysis of pyroptosis pathway associated genes in β cell cluster of VMI 627 

organoids at day 7 after reaggregation containing unstimulated or proinflammatory 628 

macrophages.  629 

(I) Chromatin accessibility signals of CASP1, CASP9, IL1B and NLRP3 in β cell cluster 630 

of VMI organoids at day 7 after reaggregation containing unstimulated or proinflammatory 631 

macrophages. The normalized signal shows the averaged frequency of sequenced DNA 632 
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fragments within a genomic region. The fragment shows the frequency of sequenced 633 

fragments within a genomic region for individual cells. 634 

(J and K) Immunostaining (J) and quantification (K) of CASP1 staining in INS+ cells of 635 

VMI organoids at day 7 after reaggregation containing unstimulated or proinflammatory 636 

macrophages. β cells: INS-GFP, macrophages: RFP, endothelial cells: Far Red. CASP1: 637 

grey.  Scale bar= 25 µm. 638 

N=3 independent biological replicates. Data was presented as mean ± STDEV. P values 639 

were calculated by unpaired two-tailed Student’s t test. *P < 0.01, **P < 0.05, ***P < 0.001.  640 

See also Figure S5.  641 
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Figure 6. TNFSF12-TNFRSF12A as a candidate pathway that contributes to 642 

proinflammatory macrophage-mediated β cell pyroptosis.  643 

(A) Dot plot showed the differential signaling from macrophages to β cells in VMI 644 

organoids containing unstimulated or proinflammatory macrophages at day 7 after 645 

reaggregation. 646 

(B) Dot plot showed the differential signaling from macrophages to β cells in human islets 647 

exposed to mock or CVB4 virus (2x106 PFU/ml). 648 

(C) Dot plot of the expression level of TNFSF12 in macrophage of human islets exposed 649 

to mock or SARS-CoV-2 virus (MOI=1). 650 

(D and E) Confocal images (D) and quantification (E) of CASP1 expression in INS+ cells 651 

in control or 10 ng/ml TNFSF12 treated human islets. Scale bar= 25 µm. 652 

(F and G) Confocal images (F) and quantification (G) of CASP1 expression in INS+ cells 653 

in control or 10 ng/ml TNFSF12 treated VMI organoids at day 7 after reaggregation. Scale 654 

bar= 50 µm. 655 

(H and I) Confocal images (H) and quantification (I) of CASP1 expression in INS+ cells of 656 

SARS-CoV-2 (MOI=0.5) or CVB4 (2x106 PFU/ml) exposed human islets treated with 657 

control, 10 µg/ml TNFSF12 blocking antibody, 5µg/ml IL-1β blocking antibody or 10µg/ml 658 

TNFSF12 + 5µg/ml IL-1β blocking antibodies. Scale bar= 25 µm. 659 

(J and K) Confocal images (J) and quantification (K) of CASP1 expression in INS+ cells 660 

of VMI organoids containing proinflammatory macrophages at day 7 after reaggregation 661 

and treated with control, 10 µg/ml TNFSF12 blocking antibody, 5µg/ml IL-1β blocking 662 

antibody or 10µg/ml TNFSF12 + 5µg/ml IL-1β blocking antibodies. Scale bar= 50 µm. 663 
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(L and M) Confocal images (L) and quantification (M) of the CASP1 expression in INS+ 664 

cells of pancreas autopsy samples from control (N=3) and COVID-19 (N=4) subjects. The 665 

insert shows a high magnification of cells. Scale bar= 50 µm. 666 

N=3 independent biological replicates. Data was presented as mean ± STDEV. P values 667 

were calculated by unpaired two-tailed Student’s t test or one-way ANOVA with a 668 

common control. n.s., no significance; *P < 0.05, **P < 0.01, ***P < 0.001.  669 

See also Figure S6.  670 
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STAR*METHODS 671 

Detailed methods are provided in the online version of this paper and include the following: 672 

KEY RESOURCES TABLE 673 

RESOURCE AVAILABILITY 674 

Lead contact  675 

Further information and requests for resources, reagents or codes should be directed to 676 

and will be fulfilled by the Lead Contact, Shuibing Chen (shc2034@med.cornell.edu).  677 

Materials availability 678 

This study did not generate new unique reagents. 679 

Data and code availability 680 

scRNA-seq, snATAC-seq and RNA-seq data have been deposited at GEO and are 681 

publicly available as of the date of publication. Accession numbers are listed in the key 682 

resources table. All original code has been deposited at Github and is publicly available 683 

as of the date of publication. DOI is listed in the key resources table. Any additional 684 

information required to reanalyze the data reported in this paper is available from the lead 685 

contact upon request. 686 

 687 

METHOD DETAILS 688 

Human studies. Pancreas tissues from COVID-19 samples were provided by the Weill 689 

Cornell Medicine Department of Pathology using protocols approved by the Tissue 690 

Procurement Facility of Weill Cornell Medicine. Experiments using samples from human 691 
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subjects were conducted in accordance with local regulations and with the approval of 692 

the IRB at the Weill Cornell Medicine. The autopsy samples were collected under protocol 693 

20-04021814. For GeoMx RNA and protein analysis, seven COVID19 human pancreas 694 

samples were deceased upon tissue acquisition and were provided from Weill Cornell 695 

Medicine as fixed samples. The control human pancreas samples were obtained from the 696 

Human Islet Core at the University of Pennsylvania. The pancreatic organs were obtained 697 

from the organ procurement organization under the United Network for Organ Sharing. 698 

The organs were kept in the University of Wisconsin solution at 4°C before the tissue 699 

samples biopsies. The freshly dissected tissues (<3mm thick) were fixed with 10% 700 

formalin for 8 hours at room temperature. The tissue samples were rinsed with running 701 

tap water for 5 min then through 80% and 95% alcohol for 1 hour each, followed with 2 702 

rinses of 100% alcohol for 1 hour each for dehydration. The tissues were cleared in xylene 703 

3 times for 1 hour each. The tissues were immersed in paraffin 3 times for 1 hour each 704 

before being embedded in a paraffin block. The paraffin-embedded tissue blocks were 705 

sectioned at 5 μm thickness on a microtome and floated in a 40°C water bath containing 706 

distilled water. The sections were transferred onto glass slides which were suitable for 707 

immunohistochemistry and the slides were dried at room temperature before use. 708 

 709 

hPSC maintenance and pancreatic differentiation. INSGFP/W MEL-1 cells were used to 710 

generate pancreatic endocrine cells using a previously reported strategy95. In brief, 711 

INSGFP/W MEL-1 cells were cultured on Matrigel-coated 6-well plates in StemFlex medium 712 

(Gibco Thermo Fisher) and maintained at 37℃ with 5% CO2. At stage 1-day 1, cells were 713 

exposed to basal RPMI 1640 medium supplemented with 1× Glutamax (Thermo Fisher 714 
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Scientific), 50 μg/mL Normocin, 100 ng/mL Activin A (R&D systems), and 3 μM of 715 

CHIR99021 (GSK3β inhibitor 3, Cayman Chemical) for 24 hours. At stage 1-day 2 and 3, 716 

the medium was changed to basal RPMI 1640 medium supplemented with 1× Glutamax, 717 

50 μg/mL Normocin, 0.2% fetal bovine serum (FBS, Corning), 100 ng/mL Activin A for 2 718 

days. At stage 2-day 4 and 5, the resulting definitive endoderm cells were cultured in 719 

MCDB131 medium (Thermo Fisher Scientific) supplemented with 1.5 g/L sodium 720 

bicarbonate, 1× Glutamax, 10 mM glucose (Sigma Aldrich) at final concentration, 2% 721 

bovine serum albumin (BSA, Lampire), 0.25 mM L-ascorbic acid (Sigma Aldrich) and 50 722 

ng/ml of fibroblast growth factor 7 (FGF-7, Peprotech) to acquire primitive gut tube. At 723 

stage 3-day 6 and day 7, cells were induced to differentiate to posterior foregut in MCDB 724 

131 medium supplemented with 2.5 g/L sodium bicarbonate, 1× Glutamax, 10 mM 725 

glucose at final concentration, 2% BSA, 0.25 mM L-ascorbic acid, 50 ng/ml of FGF-7, 1 726 

μM Retinoic acid (RA; Sigma Aldrich), 100 nM LDN193189 (LDN, Axon Medchem), 1:200 727 

ITS-X (Thermo Fisher Scientific), 200 nM TPPB (Tocris Bioscience) and 0.25 μM SANT-728 

1 (Sigma Aldrich) for 2 days. At stage 4-day 8-day 10, cells were differentiated to 729 

pancreatic endoderm in MCDB 131 medium supplemented with 2.5 g/L sodium 730 

bicarbonate, 1× Glutamax, 10 mM glucose at final concentration, 2% BSA, 0.25 mM L-731 

ascorbic acid, 2 ng/ml of FGF-7, 0.1 μM RA, 200 nM LDN193189, 1:200 ITS-X, 100 nM 732 

TPPB and 0.25 μM SANT-1 for 3 days. At stage 5-day 11-day 13, cells were differentiated 733 

to pancreatic endocrine precursors in MCDB 131 medium supplemented with 1.5 g/L 734 

sodium bicarbonate, 1× Glutamax, 20 mM glucose at final concentration, 2% BSA, 0.05 735 

μM RA, 100 nM LDN, 1:200 ITS-X, 0.25 μM SANT-1, 1 mM T3 hormone (Sigma Aldrich), 736 

10 μM ALK5 inhibitor II (Cayman Chemical), 10 μM zinc sulfate heptahydrate (Sigma 737 
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Aldrich) and 10 μg/ml of heparin (Sigma Aldrich) for 3 days. At day 14, cells were exposed 738 

to MCDB 131 medium supplemented with 1.5 g/L sodium bicarbonate, 1× Glutamax, 20 739 

mM glucose at final concentration, 2% BSA, 100 nM LDN193189, 1:200 ITS-X, 1 μM T3, 740 

10 μM ALK5 inhibitor II, 10 μM zinc sulfate, 10 μg/ml of heparin, 100 nM gamma secretase 741 

inhibitor XX (Millipore) for 7 days. Then, cells were exposed to MCDB 131 medium 742 

supplemented with 1.5 g/L sodium bicarbonate, 1× Glutamax, 20 mM glucose at final 743 

concentration, 2% BSA, 1:200 ITS-X, 1 μM T3, 10 μM ALK5 inhibitor II, 10 μM zinc sulfate 744 

heptahydrate, 10 μg/ml of heparin, 1 mM N-acetyl cysteine (Sigma Aldrich), 10 μM Trolox 745 

(Millipore), 2 μM R428 (MedchemExpress) for another 7-15 days. The medium was 746 

subsequently refreshed every day.   747 

 748 

hPSC differentiation toward endothelial cells. To derive endothelial cells from hPSCs, 749 

we optimized a previously reported strategy96. Briefly, H1 hESCs were passaged onto 750 

Matrigel-coated 6-well plates in StemFlex medium. Before differentiation, we infected H1 751 

hESCs with lentivirus carrying ETV2. After two days selection with 1 µg/ml puromycin and 752 

1 day recovery in StemFlex medium, hESCs will be switched to StemDiff APEL medium 753 

(STEMCELL Technologies) with 6 µM CHIR99021 for 2 days. Then, cells were cultured 754 

in StemDiff APEL medium with an additional of 25 ng/ml BMP-4, 10 ng/ml bFGF and 50 755 

ng/ml VEGF (R&D Systems) for another two days. On day 4, cells were dissociated with 756 

Accutase (Innovative Cell Technologies) and reseeded onto p100 culture dishes in EC 757 

Growth Medium MV2 (Promocell) with an additional 50 ng/ml VEGF for 4-6 days. Finally, 758 

endothelial cells were generated and passaged every 3-5 days in EC Growth Medium 759 

MV2 with an additional 50 ng/ml VEGF. Before coculture as organoids or non-coculture 760 
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as control, hPSCs-derived endothelial cells were purified by magnetic sorting using anti-761 

CD31 (PECAM1) beads. 762 

 763 

hPSCs differentiation towards macrophages. H9 hESCs expressing RFP (RFP-H9) 764 

were differentiated using a previously reported protocol97. RFP-H9 cells were dissociated 765 

with ReLeSR (STEMCELL Technologies) as small clusters onto Matrigel-coated 6-well 766 

plates at low density. The day after passaging, cells were cultured in IF9S medium 767 

supplemented with 50 ng/ml BMP-4, 15 ng/ml Activin A and 1.5 µM CHIR99021. After 2 768 

days, medium was refreshed with IF9S medium supplemented with 50 ng/ml VEGF, 50 769 

ng/ml bFGF, 50 ng/ml SCF (R&D Systems) and 10 µM SB431542 (Cayman Chemical). 770 

On day 5 and 7, medium was changed into IF9S medium supplemented with 50 ng/ml IL-771 

6 (R&D Systems), 10 ng/ml IL-3 (R&D Systems), 50 ng/ml VEGF, 50 ng/ml bFGF, 50 772 

ng/ml SCF and 50 ng/ml TPO (R&D Systems). On day 9, cells were dissociated with 773 

TrypLE (Life Technologies) and resuspended in IF9S medium supplemented with 50 774 

ng/ml IL-6, 10 ng/ml IL-3 and 80 ng/ml M-CSF (R&D Systems). On day 13, medium was 775 

changed to IF9S medium supplemented with 50 ng/ml IL-6, 10 ng/ml IL-3 and 80 ng/ml 776 

M-CSF. On day 15, monocytes can be collected at this stage for further experiments. 777 

Otherwise, monocytes can be collected and plated on FBS-coated plates in IF9S medium 778 

supplemented with 80 ng/ml M-CSF to generate macrophages. IF9S medium was 779 

prepared according to previous publication97. All differentiation steps were cultured under 780 

normoxic conditions at 37 ℃, 5% CO2. Before coculture as organoids or non-coculture as 781 

control, hPSCs-derived macrophages were purified by magnetic sorting using anti-CD14 782 

beads. 783 
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 784 

GeoMx transcriptomic and protein assays. Human control and COVID-19 pancreas 785 

samples were prepared as FFPE slides and applied to the NanoString GeoMx® Digital 786 

Spatial Profiler platform according to the manufacturer’s instructions. In brief, slides from 787 

FFPE embedded pancreatic autopsy samples were prepared two weeks before 788 

experiments. Insulin (INS), Pan-ck (Pan Cytokeratin) and nuclear dye (TOTO™-3 Iodide) 789 

were used as morphology markers for selecting ROIs. We selected 6 ROIs in human islet 790 

areas, 3 ROIs in exocrine area and 3 ROIs in ductal area for each pancreas sample. The 791 

protein assays and transcriptomic assays were performed using adjacent sides. Data 792 

analysis was performed on GeoMx DSP software. 793 

 794 

Construction of VMI organoids. The VMI organoids were constructed with hPSC-795 

derived pancreatic endocrine cells, endothelial cells, and macrophages. Briefly, 796 

endocrine cells were dissociated with Accutase (Innovative Cell Technologies) at Day 16- 797 

19, macrophages were dissociated with Accutase after day 19 of the differentiation 798 

procedure, and endothelial cells were dissociated with Trypsin 0.25% EDTA (THERMO 799 

FISHER) after day 10 of the differentiation procedure. The dissociated single cells were 800 

reaggregated with approximately 70-80% pancreatic endocrine cells, 10-20% endothelial 801 

cells, and approximately 2-5% macrophages in VMI organoid culture medium containing 802 

80% pancreatic endocrine cells’ stage 6 medium (MCDB 131 medium supplemented with 803 

1.5 g/L sodium bicarbonate, 1× Glutamax, 20 mM glucose at final concentration, 2% BSA, 804 

100 nM LDN193189, 1:200 ITS-X, 1 μM T3, 10 μM ALK5 inhibitor II, 10 μM zinc sulfate, 805 

10 μg/ml of heparin, 100 nM gamma secretase inhibitor XX) plus 20% endothelial cells’ 806 
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medium (EC Growth Medium MV2 with an additional 50 ng/ml VEGF) using low-attach U 807 

plates. 48 hours later, the cells self-assembled into organoids. Subsequently, the medium 808 

was changed every two days. 809 

 810 

Human islets. The pancreatic organs were obtained from the local organ procurement 811 

organization under the United Network for Organ Sharing (UNOS). The islets were 812 

isolated in the Human Islet Core at the University of Pennsylvania following the guidelines 813 

of Clinical Islet Transplantation consortium protocol98. Briefly, the pancreas was digested 814 

following intraductal injection of Collagenase & Neutral Protease in Hanks’ balanced salt 815 

solution. Liberated islets were then purified on continuous density gradients 816 

(Cellgro/Mediatech) using the COBE 2991 centrifuge and cultured in CIT culture media 817 

and kept in a humidified 5% CO2 incubator. 818 

 819 

Cell Lines. HEK293T (human [Homo sapiens] fetal kidney) and Vero E6 (African green 820 

monkey [Chlorocebus aethiops] kidney) were obtained from ATCC). Cells were cultured 821 

in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% FBS and 100 822 

I.U./mL penicillin and 100 μg/mL streptomycin. All cell lines were incubated at 37°C with 823 

5% CO2. 824 

 825 

SARS-CoV-2 Viruses and infection. SARS-CoV-2, isolate USA-WA1/2020 was 826 

obtained from World Reference Center for Emerging Viruses and Arboviruses located at 827 

University of Texas Medical Branch via the CDC. Vero E6 cells (ATCC) served as the 828 
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culture system for SARS-CoV-2 propagation, utilizing EMEM with a supplement of 10% 829 

FCS, 1 mM Sodium Pyruvate, and 10 mM HEPES (citation). All work involving live SARS-830 

CoV-2 was performed in the CDC/USDA-approved BSL-3 facility at Aaron Diamond AIDS 831 

Research Center located at Columbia University. The Aaron Diamond AIDS Research 832 

Center’s BSL-3 facility at Columbia University prepared the SARS-CoV-2 WA1 strain, 833 

subsequently stored at -70°C. Infection assays on human islets or hESCs-derived VMI 834 

organoids were conducted in culture medium at specified multiplicity of infections (MOIs) 835 

and incubated at 37°C. Post-infection, at predetermined hours post-infection (hpi), the 836 

cells underwent triple PBS washes and a 60-minute fixation in 4% formaldehyde at room 837 

temperature. Culture medium alone served as control. 838 

 839 

CVB4 Viruses and infection. The aliquots of CVB4 E2, the diabetogenic strain of 840 

coxsackievirus B4 virus were provided by Didier Hober and were then stored frozen at 841 

−80°C. Human islets or hESCs-derived VMI organoids were infected with CVB4 E2 at 2 842 

× 106 PFU/ml (2 × 104 PFU/organoid)99. Human islets or VMI organoids were then 843 

incubated in a humidified incubator at 37°C with 5% CO2 at predetermined hours post-844 

infection (hpi), the cells underwent triple PBS washes and a 60-minute fixation in 4% 845 

formaldehyde at room temperature. Culture medium alone served as control.  846 

 847 

Immunohistochemistry. Tissues were fixed overnight in 4% buffered formalin and 848 

transferred to 30% sucrose before being snap-frozen in O.C.T (Fisher Scientific, 849 

Pittsburgh, PA). Live organoids in culture were directly fixed in 4% paraformaldehyde for 850 
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30 min, followed with 60 min of permeabilization and blocking in PBS supplemented with 851 

0.2% Triton X-100 and 5% horse serum. For immunofluorescence, cells or tissue sections 852 

were stained with primary antibodies at 4°C overnight and secondary antibodies at RT for 853 

1h. The information for primary antibodies and secondary antibodies were provided in 854 

Table S3. Nuclei were counterstained by DAPI. 855 

 856 

Single-cell RNA-seq data analysis of human islets upon SARS-CoV-2 or CVB4 857 

infection. The 10X libraries were sequenced on the Illumina NovaSeq6000 sequencer 858 

with paired end reads (28 bp for read 1 and 90 bp for read 2). Subsequently, the 859 

sequencing data were primarily analyzed using the 10X cellranger pipeline v6.1.1 in a 860 

two-step process. In the initial step, cellranger mkfastq demultiplexed the samples and 861 

generated fastq files. In the subsequent step, cellranger count aligned the fastq files to a 862 

customized reference genome, extracting a gene expression UMI counts matrix for each 863 

library. The customized reference genome was constructed by integrating the 10X pre-864 

built human reference GRCh38-2020-A, the SARS-CoV-2 virus genome, and the CVB4 865 

virus genome using the cellranger mkref. The two virus genomes were obtained from the 866 

NCBI Nucleotide database with accession numbers NC_045512.2 (SARS-CoV-2) and 867 

AF311939.1 (CVB4). 868 

 869 

We applied several filtering criteria, excluding cells with fewer than 500 or more than 6000 870 

detected genes, cells with fewer than 1000 or more than 60000 detected transcripts, and 871 

cells with mitochondrial gene content exceeding 15%. Subsequently, we employed a 872 

deconvolution strategy100 for normalizing gene expression UMI counts, utilizing the R 873 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.05.606734doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606734
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45

scran package (v.1.14.1). Specifically, we initiated the process by pre-clustering cells with 874 

the quickCluster function. We then computed size factors per cell within each cluster, 875 

rescaled these factors by normalization between clusters using the computeSumFactors 876 

function, and normalized the UMI counts per cell by the size factors, followed by a 877 

logarithmic transform using the normalize function. We further normalized UMI counts 878 

across samples using the multiBatchNorm function in the R batchelor package (v1.2.1). 879 

We employed solo101 v0.6 to identify doublets, which were subsequently excluded from 880 

the downstream analysis. 881 

 882 

We identified highly variable genes using the FindVariableFeatures function in the R 883 

Seurat package v3.1.0, selecting the top 3000 variable genes after excluding 884 

mitochondria genes, ribosomal genes, viral genes, and dissociation-related genes. The 885 

list of dissociation-related genes, originally built on mouse data, was converted to human 886 

ortholog genes using Ensembl BioMart. Cells from multiple samples were aligned based 887 

on their mutual nearest neighbors (MNNs)102 using the fastMNN function in the R 888 

batchelor package v1.2.1. This involved performing principal component analysis (PCA) 889 

on the highly variable genes and then correcting the principal components (PCs) 890 

according to their MNNs. We chose the corrected top 50 PCs for downstream 891 

visualization and clustering analysis. 892 

 893 

Uniform Manifold Approximation and Projection (UMAP) dimensional reduction were 894 

executed using the RunUMAP function in the R Seurat package, with the number of 895 

neighboring points set to 30 and the training epochs set to 4000. Cells were clustered into 896 
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thirteen clusters by constructing a shared nearest neighbor graph and grouping cells of 897 

similar transcriptome profiles using the FindNeighbors function and FindClusters function 898 

(resolution set to 0.2) in the R Seurat package. After reviewing the clusters, we merged 899 

them into nine clusters representing acinar cells, α cells, β cells, δ cells, ductal cells, 900 

mesenchymal cells, PP cells, immune cells, and endothelial cells for further analysis. 901 

Marker genes for the merged nine clusters were identified by performing differential 902 

expression analysis between cells inside and outside each cluster using the FindMarkers 903 

function in the R Seurat package. The expressions of cell type markers within each cell 904 

population were depicted through violin plots, utilizing the VlnPlot function in the R Seurat 905 

package. The expression of CVB4-polyprotein were visualized either through UMAP plot, 906 

employing the Seurat DimPlot function, or via jitter plot created with R ggplot2 package 907 

v3.2.1.  908 

 909 

To assess cell death associated pathways within varied cell types following SARS-CoV-910 

2 infection, we compared gene expressions in α cells, β cells, δ cells, mesenchymal cells 911 

and endothelial cells between mock and SARS-CoV-2 infected conditions using the 912 

Wilcoxon rank-sum test via the FindMarkers function in the R Seurat package. 913 

Subsequently, we ordered the genes based on log2 fold change and performed gene set 914 

enrichment analysis on cell death associated pathways using the GSEA function in the R 915 

clusterProfiler103 package v4.6.2. The expressions of pyroptosis pathway associated 916 

genes in β cells under mock and SARS-CoV-2 infected conditions were visualized using 917 

the DotPlot function in the R Seurat package. The expressions of HLA genes and 918 

autoantigen associated genes in β cells under mock, SARS-CoV-2 infection or CVB4 919 
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infection conditions were represented using violin plots generated with the VlnPlot 920 

function in the R Seurat package. 921 

 922 

To investigate the immune cell population, we extracted immune cells and performed a 923 

sub-clustering analysis. Highly variable genes were identified using the 924 

FindVariableFeatures function in the R Seurat package, and the top 3000 variable genes 925 

were selected, excluding mitochondria genes, ribosomal genes, viral genes and 926 

dissociation-related genes. Cells from multiple samples were aligned using the fastMNN 927 

function in the R batchelor package, as described above. The top 50 corrected PCs were 928 

selected for UMAP dimensional reduction using the RunUMAP function in the R Seurat 929 

package, with the number of neighboring points set to 30 and training epochs setting to 930 

200. The immune cell population was clustered into seven clusters using the 931 

FindNeighbors function and FindClusters function (resolution set to 0.8) in the R Seurat 932 

package. After reviewing these clusters, we merged them into five clusters representing 933 

macrophages, dendritic cells, immune progenitor cells, T cells and B cells.    934 

 935 

UMAP and violin plots were generated to illustrate the cell clusters and highlight 936 

expressions of selected genes using the R ggplot2 package v3.2.1. Dot plots were 937 

generated to show gene expression changes in the mock and infected conditions using 938 

the DotPlot function in the R Seurat package. 939 

 940 
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Single-cell RNA-seq data analysis of VMI organoids. The 10X scRNA-seq libraries 941 

underwent sequencing on the Illumina NovaSeq6000 sequencer with pair-end reads (28 942 

bp for read 1 and 90 bp for read 2). Subsequently, the sequencing data were primarily 943 

analyzed using the 10X cellranger pipeline v7.1.0 in a two-step process. In the initial step, 944 

cellranger mkfastq demultiplexed the samples and generated fastq files. In the 945 

subsequent step, cellranger count aligned the fastq files to the 10X pre-built human 946 

reference GRCh38-2020-A reference, extracting a gene expression UMI counts matrix 947 

for each library. 948 

 949 

Several filtering criteria were applied, excluding cells with fewer than 300 or more than 950 

9000 detected genes, cells with fewer than 600 or more than 75000 detected transcripts, 951 

and cells with mitochondrial gene content exceeding 10%. Doublet cells in each sample 952 

were identified, assuming a doublet rate 0.8% per 1000 recovered cells, as reported by 953 

10X Genomics, using the R DoubletFinder104 package v2.0.3. The doublet cells were 954 

subsequently excluded from downstream analysis.  955 

 956 

We employed a deconvolution strategy100 for normalizing gene expression UMI counts, 957 

utilizing the R scran (v.1.22.1), scuttle (v1.4.0) and batchelor (v1.10.0) packages. The 958 

process involved pre-clustering cells with the quickCluster function in the R scran 959 

package, computing size factors per cell within each cluster, rescaling these factors by 960 

normalization between clusters using the computeSumFactors function in the R scran 961 

package, normalizing the UMI counts per cell by the size factors, followed by a logarithmic 962 

transform using the logNormCounts function in the R scuttle package. Further 963 
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normalization of UMI counts across samples was performed using the multiBatchNorm 964 

function in the R batchelor package. Cells from multiple samples were aligned based on 965 

their MNNs using the quickCorrect function in the R batchelor package. This involved 966 

identifying highly variable genes, performing PCA on the highly variable genes and then 967 

correcting the PCs according to their MNNs. The corrected top 50 PCs were chosen for 968 

downstream clustering analysis. The corrected gene expression values on variable genes 969 

were reconstructed based on the corrected PCs and were used for coembeding scRNA-970 

seq and snATAC-seq data. 971 

 972 

UMAP dimensional reduction were executed using the RunUMAP function in the R Seurat 973 

package105 av4.1.0, with the number of neighboring points set to 30 and the training 974 

epochs set to 500. Cells were clustered into fourteen clusters by constructing a shared 975 

nearest neighbor graph and grouping cells of similar transcriptome profiles using the 976 

FindNeighbors function and FindClusters function (resolution set to 0.5) in the R Seurat 977 

package. After reviewing the clusters, we merged them into nine clusters representing 978 

acinar cells, α cells, β cells, δ cells, ductal cells, endocrine progenitor cells, endothelial 979 

cells, macrophages and proliferation cells for further analysis.  980 

 981 

DE analysis was performed on β cells between VMI organoids and non-coculture cells, 982 

and between VMI organoids with and without proinflammatory macrophages using the 983 

Wilcoxon rank-sum test via the FindMarkers function in the R Seurat package. Volcano 984 

plots were generated to illustrate DE genes using the R ggplot2 package v3.4.2. Dot plots 985 

were generated to show gene expression changes in different clusters or conditions using 986 
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the DotPlot function in the R Seurat package. Pie charts were utilized to visualize cell type 987 

compositions within VMI organoids using the R ggplot package v3.4.2. 988 

 989 

To determine the mechanisms by which proinflammatory macrophages induce β cell 990 

pyropotosis, we conducted cell-cell interaction analysis between macrophage and β cell 991 

populations using the R CellChat106 package v1.5.0. Bubble plots were generated to 992 

illustrate the communication probabilities mediated by ligand-receptor pairs in between 993 

macrophage and β cell populations using the netVisual_bubble function. 994 

 995 

Single-nuclear ATAC-seq data analysis of VMI organoids. The 10X snATAC-seq 996 

libraries underwent sequencing on the Illumina NovaSeq6000 sequencer with pair-end 997 

reads (51bp for read 1 and 51bp for read 2). Subsequently, the sequencing data were 998 

primarily analyzed using the 10X cellranger-atac pipeline v2.1.0 in a two-step process. In 999 

the initial step, cellranger-atac mkfastq demultiplexed the samples and generated fastq 1000 

files. In the subsequent step, cellranger-atac count aligned the fastq files to the 10X pre-1001 

built GRCh38 2020-A-2.0.0 reference, performed peak calling, and extracted a barcoded 1002 

and aligned fragment file for each library. 1003 

 1004 

We ultilized the R Signac107 package v1.10.0 to analyze snATAC-seq data. Specifically, 1005 

we created a common set of peaks across all samples using the reduce function and 1006 

generated a peaks x cell matrix for each sample by quantifying the common peaks using 1007 

the FeatureMatrix function. We applied several filtering criteria, excluding cells with fewer 1008 
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than 3000 or more than 30000 peaks detected, cells with fewer than 20% of reads in 1009 

peaks, cells with more than 5% of reads in blacklist regions, cells with the ratio of 1010 

mononucleosomal to nucleosome-free fragments greater than 4, and cells with TSS 1011 

enrichment score smaller than 3. Term frequency-inverse document frequency (TF-IDF) 1012 

normalization was performed using the RunTFIDF function. We selected the top-ranked 1013 

peaks using the FindTopFeatures function and ran singular value decomposition (SVD) 1014 

to obtain latent semantic indexing (LSI) components using the RunSVD function. The top 1015 

50 LSI components, excluding the first LSI component, were used for downstream 1016 

clustering analysis.  1017 

 1018 

We classified cells into the nine cell types based on clustering results from scRNA-seq 1019 

data. This was achieved by quantifying gene expression activity from the snATAC-seq 1020 

data using the GeneActivity function, identifying anchors between scRNA-seq and 1021 

snATAC-seq data using the FindTransferAnchors function, and transferring the cell 1022 

clustering labels from scRNA-seq to snATAC-seq data using the TransferData function. 1023 

We co-embeded the scRNA-seq and snATAC-seq cells in the same UMAP plot. This was 1024 

done by imputing gene expressions for the snATAC-seq cells based on the corrected 1025 

gene expression values from the scRNA-seq cells using the TransferData function, 1026 

merging cells from scRNA-seq and snATAC-seq, scaling the expression values and 1027 

performing PCA using the ScaleData and RunPCA functions, and selecting the top 30 1028 

PCs for UMAP dimensional reduction using the RunUMAP function with the number of 1029 

neighboring points setting to 30 and training epochs setting to 500.  1030 

 1031 
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UMAP plots were generated to illustrate the cell clusters using the R ggplot2 package 1032 

v3.4.2. Aggregated chromatin accessibility signals were visualized for multiple groups of 1033 

cells within a given genomic region using the CoveragePlot function. Chromatin 1034 

accessibility signal for individual cells were visualized using the TilePlot function. Pie 1035 

charts were utilized to visualize cell type compositions within VMI organoids using the R 1036 

ggplot package v3.4.2. 1037 

 1038 

Bulk RNA-seq data analysis. The libraries underwent sequencing with single-end 50 1039 

bps on the Illumina NovaSeq6000 sequencer. Raw sequencing reads in BCL format were 1040 

processed through bcl2fastq 2.20 (Illumina) for FASTQ conversion and demultiplexing.  1041 

After trimming the adaptors with cutadapt v1.18, the sequencing reads were mapped to 1042 

the human GRCh37 reference by STAR108 av2.5.2b. Read counts per gene were 1043 

extracted using HTSeq-count v0.11.2109, and normalized through a regularized log 1044 

transformation with the DESeq2 package v1.26.0110.  1045 

 1046 

RNA-Seq. Total RNA was extracted in TRIzol (Invitrogen) and DNase I treated using 1047 

Directzol RNA Miniprep kit (Zymo Research) according to the manufacturer’s instructions. 1048 

RNAseq libraries of polyadenylated RNA were prepared using the TruSeq RNA Library 1049 

Prep Kit v2 (Illumina) or TruSeq Stranded mRNA Library Prep Kit (Illumina) according to 1050 

the manufacturer’s instructions. cDNA libraries were sequenced using an Illumina 1051 

NextSeq 500 platform. The resulting single end reads were checked for quality (FastQC 1052 

v0.11.5) and processed using the Digital Expression Explorer 2 (DEE2)111 workflow.  1053 

Adapter trimming was performed with Skewer (v0.2.2)112.  Further quality control done 1054 
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with Minion, part of the Kraken package113.  The resultant filtered reads were mapped to 1055 

human reference genome GRCh38 using STAR aligner108 and gene-wise expression 1056 

counts generated using the “-quantMode GeneCounts” parameter. BigWig files were 1057 

generated using the bamCoverage function in deepTools2 (v.3.3.0)114. After further 1058 

filtering and quality control, R package edgeR115 was used to calculate RPKM and Log2 1059 

counts per million (CPM) matrices as well as perform differential expression analysis. 1060 

Heatmap was generated using online tool: http://www.heatmapper.ca/. 1061 

 1062 

QUANTIFICATION AND STATISTICAL ANALYSIS 1063 

N=3 independent biological replicates were used for all experiments unless otherwise 1064 

indicated. P-values were calculated by unpaired two-tailed Student’s t-test or one way 1065 

ANOVA with a common control unless otherwise indicated. n.s. indicates a non-significant 1066 

difference. *p<0.05, **p<0.01 and ***p<0.001. 1067 

 1068 

Supplemental Video 1. VMI organoids at day 14 after reaggregation. β cells: INS-GFP; 1069 

macrophages: RFP; and endothelial cells: Far Red. Related to Figure 3. 1070 

Supplemental Video 2. VMI organoids at day 14 after reaggregation stained with 1071 

antibodies against INS (Green), CD68 (Red) and PECAM1 (CD31, Blue). Related to 1072 

Figure 3. 1073 

Supplemental Video 3. VMI organoids at day 14 after reaggregation stained with 1074 

antibodies against INS (Green), CD68 (Red), GCG (Blue) and PECAM1 (CD31, Gray). 1075 

Related to Figure 3. 1076 
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Supplemental Video 4. VMI organoids at day 14 after reaggregation stained with 1077 

antibodies against INS (Green), CD68 (Red), SST (Blue) and PECAM1 (CD31, Gray). 1078 

Related to Figure 3. 1079 

Supplemental Video 5. VMI organoids at day 14 after reaggregation stained with 1080 

antibodies against INS (Green), CD68 (Red), NKX6.1 (Blue) and PECAM1 (CD31, Gray). 1081 

Related to Figure 3. 1082 

Supplemental Video 6. Live imaging of calcium signaling in VMI organoids upon high 1083 

glucose stimulation. High glucose: 20 mM D-glucose. Each frame was captured every 1084 

500 ms. Related to Figure 3. 1085 

Supplemental Video 7. Live imaging of VMI organoids at day 7 after reaggregation 1086 

exposed with with CVB4 virus (2x106PFU/ml). β cells: INS-GFP, macrophages: RFP. 1087 

Related to Figure 3. 1088 

Supplemental Video 8. VMI organoids at day 7 after reaggregation containing 1089 

unstimulated macrophages stained with antibodies against INS (Green), CD68 (Red), 1090 

PECAM1 (CD31, Gray) and DAPI (Blue). Related to Figure 5. 1091 

Supplemental Video 9. VMI organoids at day 7 after reaggregation containing 1092 

proinflammatory macrophages stained with antibodies against INS (Green), CD68 (Red), 1093 

PECAM1 (CD31, Gray) and DAPI (Blue). Related to Figure 5.  1094 
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