
Extracting Drug-Drug Interaction from the Biomedical
Literature Using a Stacked Generalization-Based
Approach
Linna He, Zhihao Yang*, Zhehuan Zhao, Hongfei Lin, Yanpeng Li

School of Computer Science and Technology, Dalian University of Technology, Dalian, China

Abstract

Drug-drug interaction (DDI) detection is particularly important for patient safety. However, the amount of biomedical
literature regarding drug interactions is increasing rapidly. Therefore, there is a need to develop an effective approach for
the automatic extraction of DDI information from the biomedical literature. In this paper, we present a Stacked
Generalization-based approach for automatic DDI extraction. The approach combines the feature-based, graph and tree
kernels and, therefore, reduces the risk of missing important features. In addition, it introduces some domain knowledge
based features (the keyword, semantic type, and DrugBank features) into the feature-based kernel, which contribute to the
performance improvement. More specifically, the approach applies Stacked generalization to automatically learn the
weights from the training data and assign them to three individual kernels to achieve a much better performance than each
individual kernel. The experimental results show that our approach can achieve a better performance of 69.24% in F-score
compared with other systems in the DDI Extraction 2011 challenge task.

Citation: He L, Yang Z, Zhao Z, Lin H, Li Y (2013) Extracting Drug-Drug Interaction from the Biomedical Literature Using a Stacked Generalization-Based
Approach. PLoS ONE 8(6): e65814. doi:10.1371/journal.pone.0065814

Editor: Luis M. Rocha, Indiana University, United States of America

Received January 1, 2013; Accepted April 30, 2013; Published June 13, 2013

Copyright: � 2013 He et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by grants from the Natural Science Foundation of China (No. 61070098 and 61272373, http://www.nsfc.gov.cn/Portal0/
default152.htm) and the Fundamental Research Funds for the Central Universities (No. DUT13JB09, http://www.moe.edu.cn). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yangzh@dlut.edu.cn

Introduction

A drug-drug interaction (DDI) occurs when one drug influences

the level or activity of another [1]. A patient may take a variety of

drugs at one time. However, one drug may influence the others,

and sometimes these influences result in side effects that are

dangerous to patients. Therefore, DDI detection is important for

patient safety. Doctors should not prescribe combinations of drugs

that have side effects when taken together. Furthermore, DDI

detection is also important for pharmacists; if pharmacists are

aware of the interactions that may occur between drugs, they can

list these interactions in the specifications so that the patients will

know which drugs cannot be taken together.

As drug-drug interactions are frequently reported in journals of

clinical pharmacology and technical reports, the biomedical

literature is the most effective source for the detection of DDIs

[1]. The development of Information extraction (IE) tools for

automatically extracting DDIs from the biomedical literature is

important to reduce the time that professionals must spend

reviewing the relevant literature. Meanwhile, it is essential for

improving and updating the drug knowledge databases [1].

In fact, information extraction from the biomedical literature

has been a topic of intense investigation during recent years [2].

For example, many kernel-based methods, such as subsequence

kernels [3], tree kernels [4], shortest path kernels [5], and graph

kernels [6], have been proposed and successfully used to extract

protein-protein interactions (PPIs). However, few approaches have

been proposed to solve the problem of extracting DDIs from the

biomedical texts. Segura-Bedma et al. applied a linguistic rule-

based approach to extract DDIs [7]. Then, they proposed another

approach called the shallow linguistic (SL) kernel [8] to extract

DDIs [1].

In the DDI Extraction 2011 challenge task [9], more

approaches were proposed to extract DDIs from the biomedical

literature. Thomas et al. [10] used an approach called majority

voting ensembles (WBI-5) that consists of three methods, namely

the all-paths graph (APG) kernel [6], the shallow linguistic (SL)

kernel and Moara, which is an improved system that participated

in the BioNLP’09 Event Extraction Challenge [11]. Among

others, the APG kernel obtains the best performance with an F-

score of 63.53%. When further combined with SL and Moara, it

obtains a performance of 65.74% for the F-score, ranking first in

the DDI Extraction 2011 challenge task. Moreover, Chowdhury

et al. [12] applied different machine learning techniques that

include a feature-based method and a kernel-based method

consisting of a mildly extended dependency tree (MEDT) kernel

[13], a phrase structure tree (PST) kernel [14], and a SL kernel to

extract DDIs. The union of the feature-based and kernel-based

methods obtains a performance with an F-score of 63.98% ranking

second in the task. Björne et al. proposed the Turku Event

Extraction system to extract DDIs, and their result ranks fourth

with an F-score of 62.99% [15]. What’s more, Minard et al. used

only a feature-based kernel that includes many types of features to

extract DDIs [16]. Their approach introduces the feature selection

according to the features’ F-measure improved interaction

PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e65814

detection. As a result, their performance ranks fifth with an F-score

of 59.65%. On the whole, the research of DDI extraction from the

biomedical literature is still at an early stage, and its performance

has much room to improve (in the DDI Extraction 2011 challenge

task, the best performance achieved is 65.74% in F-score [10]).

In this paper, we propose a Stacked generalization-based

approach [17] to extract DDIs from the biomedical literature. The

approach introduces Stacked generalization to automatically learn

the weights from the training data and assigns them to three

individual kernels, feature-based, tree and graph kernels, and

achieves much better performance than each individual kernel.

The performance of our approach is superior to those of [10,12].

The key reasons are as follows: 1) In addition to the commonly

used word features, our feature-based kernel introduces the

semantic type feature, the keyword feature and the DrugBank

(http://www.drugbank.ca/) features. The introduction of these

features allows for the utilization of domain knowledge and

improves the performance effectively (nearly 1.2 percentage point

in the F-score). 2) The features in individual kernels are

complementary, and their combination with Stacked generaliza-

tion can achieve better performance than each individual kernel.

Methods

A kernel can be thought of as a similarity function for pairs of

objects. Different kernels calculate the similarities with different

aspects between two sentences. Combining the similarities can

reduce the risk of missing important features and thus produces a

new useful similarity measure. Our method combines several

distinctive types of kernels to extract DDIs: namely, the feature-

based, graph and tree kernels.

Feature-based Kernel
Before the features used in our feature-based kernel are

introduced, some notions of words, n-grams, areas and positions

in a sentence with regard to two interacting drugs (which are

replaced by ‘‘drug1’’ and ‘‘drug2’’ in our experiments) are given.

1. Vocabularies of words: VW = {words in training data}.

2. Vocabularies of word-level n-grams: VN = {1–3 grams in

training data}

3. Assume that words in an DDI instance are indexed by the

following sequence:

Indices = (0, …, d1, …, d2, …, END).

Where d1 is the index of the token ‘‘drug1’’, d2 is the index of

the token ‘‘drug2’’, and END is the index of the last token of the

sentence.

1. General areas: GA = {Left_Area, Inner_Area, Right_-

Area} = {[0, d1–1], [d1+1, d2–1], [d2+1, END]} – text

snippets split by ‘‘drug1’’ and ‘‘drug2’’ in each sentence

denoted by‘‘Left_Area drug1 Inner_Area drug2 Right_Area’’.

2. Surrounding areas: SA = {D1_Left, D1_Right, D2_Left,

D2_Right} = {[d1–4, d1–1], [d1+1, d1+4], [d2–4, d2–1],

[d2+1, d2+4]} – texts surrounding ‘‘drug1’’ or ‘‘drug2’’ within

a 4-word window.

Table 1. Features generated in our feature-based kernel for the instance ‘‘Plasma concentrations of drug1 are decreased when
administered with drug2 containing drug0 or drug0.’’

Feature Feature value

Abon n = 1 left_area = Plasma, left_area = concentrations, left_area = of; Inner_area = are, Inner_area = decreased,…, Inner_area = with;
Right_area = containing,…, Right_area = drug0.

n = 2 left_area = Plasma concentrations, left_area = concentrations of; Inner_area = are decreased,…, Inner_area = administered with;
Right_area = containing drug0,…, Right_area = or drug0.

n = 3 left_area = Plasma concentrations of; inner_area = are decreased when,…, inner_area = when administered with; Right_area = containing
drug0 or; Right_area = drug0 or drug0.

San n = 1 D1_left = Plasma, D1_left = concentrations, D1_left = of; D1_right = are, D1_right = decreased,…; D2_left = decreased,…;
D2_right = containing,…

n = 2 D1_left = Plasma concentrations, D1_left = concentrations of; D1_right = are decreased, D1_right = decreased when,…;
D2_left = decreased when; D2_left = when administered,…; D2_right = containing drug0…

n = 3 D1_left = Plasma concentrations of; D1_right = are decreased when, D1_right = decreased when administered; D2_left = decreased when
administered, D2_left = when administered with;D2_right = containing drug0 or, D2_right = drug0 or drug0

Cpn n = 1 D1_left‘D2_left‘distance = Plasma‘are‘5, D1_left‘D2_left‘distance = Plasma‘ decreased‘5, D1_left‘D2_left‘distance = Plasma‘when‘5…;
D1_right‘D2_left‘distance = are‘are‘5…; D1_left‘D2_right‘distance = Plasma‘containing‘5…;
D1_right‘D2_right‘distance = are‘containing‘5…

n = 2 D1_left‘D2_left‘distance = Plasma concentrations‘are decreased‘5,…;
D1_right‘D2_left‘distance = are decreased‘are decreased‘5,…; D1_left‘D2_right‘distance = Plasma concentrations‘containing
drug0‘5,…; D1_right‘D2_right‘ditance = are decreased‘containing drug0‘5,…

n = 3 D1_left‘D2_left‘distance = Plasma concentrations of‘are decreased when ‘5,…; D1_right‘D2_left‘distance = are decreased when‘are
decreased when‘5,…; D1_left‘D2_right‘distance = Plasma concentrations of‘containing drug0 or‘5,…; D1_right‘D2_right‘distance = are
decreased when‘containing drug0 or‘5…

Negative word no = -1, not = 21,…

Keyword decrease = 1, activate = = 21,…

Semantic type Semtype1 = ‘‘carb,phsu’’, semtype2 = ‘‘gngm’’

NameIsDrug entity1 = 21 entity2 = 21

DrugBank indication = 0, pharmacology = 0, description = 0

doi:10.1371/journal.pone.0065814.t001

4.

5.

Extracting Drug Interactions from Biomedical Text

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e65814

3. Conjunct positions: CP = { D1_direction ‘ D2_direction ‘

distance | direction [{Left, Right}, distance = discretized (d2-

d1) [{0,1, 2, 3, 4, 5, (6,7), (8,10), (11,15), (16,20),

(21,30), (31,40), (40,) } – conjunctions of partial elements

(two areas adjacent each drug) and the discretized word count

between the two drugs.

Lexical features. Our lexical features take three unordered

sets of words as the feature vectors (an example of the features

generated by the feature-based kernel is given in Table 1):

1. Area-bag-of-n-grams (Abon): features derived from VW6GA

and VN6GA. The features of VW6GA, e.g., ‘‘left_area = -

Plasma’’, ignore word positions in the current area, and the

features of VN6GA, e.g., ‘‘left_area = Plasma concentrations’’,

simply enrich the bag-of-words representation by bigrams

and trigrams.

2. Surrounding area-n-grams (San): features from VN6SA, e.g.,

‘‘D1_Right = increase the’’. They are used to highlight n-grams

in the ‘‘indicating areas’’ (i.e., D1_left, D1_right, D2_left and

D2_ right) because, intuitively, features surrounding candidate

drug pairs are more indicative.

3. Conjunction position n-grams (Cpn): features from VN6CP.

The feature set is the conjunctions of a subset of the

surrounding position-n-gram features (the features from

VN6SP, which gives the information of specific distances

from the n-grams in SA to focusing drugs, e.g., ‘‘-1_from_-

D1 = of’’) and the distance of two drugs, e.g., ‘‘D1_left ‘ D2_left ‘

distance = of ‘ with ‘ 5’’. It can simultaneously capture the lexical

information around both drugs. The only problem is that they

may suffer from data sparseness.

In addition to the commonly used lexical features, five extra

features are introduced into the feature-based kernel.

Negative word feature. In most cases, the existence of

negative words in a DDI instance denotes that there is no

interaction between the two drugs. Therefore, we introduce the

negative word feature. The negative words used in our experiment

include ‘‘no’’, ‘‘not’’, ‘‘neither’’, ‘‘fail’’, ‘‘fail to’’, ‘‘fails to’’,

‘‘failed’’, ‘‘failed to’’ and ‘‘failure’’. If one of the negative words

exists in an instance, the feature value will be set to 1; otherwise 0.

NameIsDrug feature. In both the training and test sets of

the DDI Extraction 2011 challenge task, ‘‘drug’’, ‘‘drugs’’, ‘‘Drug’’

and ‘‘Drugs’’ are sometimes labeled as drug names and sometimes

not. There are approximately 520 such labeled instances in the

training set, as shown in the following example: ‘‘The interactions

between Betaseron and other drugs have not been fully

evaluated’’. To solve the problem, we introduce the NameIsDrug

feature. If only one of the two entities is referred to by the terms

‘‘drug’’ or ‘‘drugs’’ or ‘‘Drug’’ or ‘‘Drugs’’, we set the feature as

‘‘entity1 = 1 entity2 = 21’’ or ‘‘entity1 = 21 entity2 = 1’’. Other-

wise, the feature is set as ‘‘entity1 = 1 entity2 = 1’’ or ‘‘entity1 = 21

entity2 = 21’’.

Keyword feature. The existence of an interaction keyword

(the verb or their variants expressing drug interaction relation,

such as ‘‘activate,’’ ‘‘activation,’’ ‘‘counteract,’’ ‘‘inhibit,’’) between

two drug names often implies the existence of the DDI. Thus, it is

chosen as a feature in our feature-based kernel. To identify the

keywords in texts, we manually created an interaction keyword list

of 506 entries, which includes the interaction verbs and their

variants.

Semantic type feature. The dataset of DDI Extraction 2011

challenge task is made available in two formats: the so-called

unified format and the MMTx format. The unified format

contains only the tokenized sentences, while the MMTx format

contains the tokenized sentences along with the POS tag and the

semantic type for each token. An experienced pharmacist

reviewed the UMLS Semantic Network as well as the semantic

annotation provided by MMTx and recommended the inclusion

of the following UMLS semantic types as possible types of

interacting drugs [9]: Clinical Drug (clnd), Pharmacological

Substance (phsu), Antibiotic (antb), Biologically Active Substance

(bacs), Chemical Viewed Structurally (chvs) and Amino Acid,

Peptide, or Protein (aapp). Because DDIs may exist between two

entities with the specific semantic types, we introduce the semantic

type feature, which is extracted from the MMTx format dataset.
DrugBank feature. DrugBank database is a rich resource

combining chemical and pharmaceutical information for approx-

imately 4,900 pharmacological substances [18]. For each drug,

DrugBank contains more than 100 data fields including drug

synonyms, brand names, chemical formulas and structures, drug

categories, ATC and AHFS codes (i.e., codes of standard drug

families), mechanism of action, indication, dosage forms, toxicity,

etc.

Based on the idea that the information in the DrugBank fields

may help classify the DDI instance, we introduce the DrugBank

features. Three DrugBank fields are found through experiments to

be helpful for the performance improvement of DDI extraction,

namely, Indication, Pharmacology and Description. For the two

drugs in one DDI instance, we construct their corresponding N-

dimensional feature vectors a and b of words using the three

DrugBank fields: if a word wi(i = 1,…,N) exists in the DrugBank

field of one drug, the corresponding vector element is set to 1;

otherwise, 0. Then, the similarity between a and b is calculated by

the Cosine similarity defined as follows:

Similarity~
a:b

DDaDDDDbDD
~

PN
i~1

ai biffiPN
i~1

ai
2 |

PN
i~1

bi
2

s ð1Þ

If the Cosine similarity of one DrugBank field of two drugs is

more than or equal to 0.4 (which is determined experimentally),

the corresponding feature is set to 1; otherwise 0.

Graph Kernel
A graph kernel calculates the similarity between two input

graphs by comparing the relations between common vertices

(nodes). The weights of the relations are calculated using all walks

(possible paths) between each pair of vertices. Our method follows

the all-paths graph kernel proposed by Airola et al. [6]. The kernel

represents the target pair using graph matrices based on two sub-

graphs, one representing the parse structure sub-graph, and the

other representing the linear order sub-graph (see Figure 1). The

first sub-graph represents the parse structure of a sentence and

includes word or link vertices. A word vertex contains its lemma

and POS, while a link vertex contains its link. In addition, both

types of vertices contain their positions, which differentiate them

from other vertices in Figure 1. The second sub-graph represents

the word sequence in the sentence, and each of its word vertices

contains its lemma, its relative position to the target pair and its

POS.

For the calculation, two types of matrices, specifically edge

matrix A and label matrix L, are used. We assume that V
represents the set of vertices in the graph, and L represents the set

of possible labels that vertices can have. We represent the graph

6.

Extracting Drug Interactions from Biomedical Text

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e65814

with an adjacent matrix A[RDV D|DV D whose rows and columns are

indexed by the vertices, and ½A�i,j contains the weight of the edge

connecting vi[V and vj[V if such an edge exists, and it is 0

otherwise. The weight is a predefined constant whereby the edges

on the shortest paths are assigned a weight of 0.9 and other edges

receive a weight of 0.3. Additionally, we represent the labels as a

label allocation matrix L[RDlD|DV D so that Li,j~1 if the j-th vertex

has the i-th label, and Li,j~0 otherwise. Using the Neumann

Series, a graph matrix G is calculated as:

G~LT
X?
n~1

AnL~LT ((I{A){1{I)L ð2Þ

This matrix sums up the weights of all the walks between any

pair of vertices so, as a result, each entry represents the strength of

the relation between a pair of vertices. Using two input graph

matrices G9 and G0, the graph kernel K(G9, G0) is the sum of the

products of the common relations’ weights, given by Equation (3).

K(G0,G00)~
X
i~1

X
j~1

G
0
ijG
00
ij ð3Þ

Tree Kernel
As a specialized convolution kernel, the tree kernel used in our

work aims to capture structured information in terms of

substructures. T1 and T2 represent two parse trees. The

convolution tree kernel K(T1,T2) counts the number of common

sub-trees as the syntactic structure similarity between two parse

trees T1 and T2 [19]:

K(T1,T2)~
X

n1[N1,n2[N2

C(n1,n2) ð4Þ

where Ni is the set of nodes in tree Ti, and we note that C(n1,n2)
can be computed in polynomial time due to the following recursive

definition:

(1) If the context-free productions-Context-Free Grammar rules-

at n1 and n2 are different, C(n1,n2)~0;

(2) If both n1 and n2 are POS tags, C(n1,n2)~l; otherwise go to

(3).

(3) Compute C(n1,n2) recursively as:

C(n1,n2)~l P
nc(n1)

i~1
(1zC(ch(n1,i),ch(n2,i))):

where nc(n1) is the number of children of n1 in the tree. ch(n,i) is

the i-th child of node n and l is the decay factor.

Parse tree kernel. The parse tree encapsulates the relation

instance between two focused entities. Thus, we should know

which portion of a parse tree is important in the tree kernel

calculation.

A standard tree kernel is often defined on the minimum

complete tree (MCT) that contains both candidate entities in a

parse tree. The MCT is the complete sub-tree rooted by the node

of the nearest common ancestor of the two entities under

consideration. However, the MCT may introduce some random

noise features. Thus, we introduced the SPT, which is the smallest

common sub-tree including the two focused entities.

In some cases, the information contained in the SPT is not

sufficient to determine the relationship between two candidate

entities. By analyzing the experimental data, we found that in

these cases the SPTs usually have fewer than four leaf nodes and,

therefore, include little information except the two entity names.

Therefore, we employ a simple heuristic rule to expand the SPT

span: we adopt SPT as our tree span. If the number of leaf nodes

in an SPT is smaller than four, the SPT is expanded to a higher

level, i.e., the parent node of the root node of the original SPT is

used as the new root node.

Figure 1. Graph representation generated from an example sentence. The candidate interaction pair is marked as ‘‘drug1’’ and ‘‘drug2’’, the
other drugs are marked as ‘‘drug0’’. The shortest path between the drugs is shown in bold. In the dependency based subgraph all nodes in a shortest
path are specialized using a post-tag (IP). In the linear order subgraph possible tags are (B)efore, (M)iddle, and (A)fter.
doi:10.1371/journal.pone.0065814.g001

Extracting Drug Interactions from Biomedical Text

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e65814

Dependency path tree kernel. Information of dependency

path tree is another type of tree structure information that is

provided by the parser dependency analysis output in our tree

kernel. For dependency based parse representations, a dependency

path is encoded as a flat tree as depicted as follows: (DEPEN-

DENCY (NSUBJ (interacts DRUG1)) (PREP (interacts with))

(POBJ (with DRUG 2))) corresponding to the sentence ‘‘DRUG1

interacts with DRUG2’’. Because a tree kernel measures the

similarity of the trees by counting the common subtrees, it is

expected that the system finds effective subsequences of depen-

dency paths. The dependency path tree is similar to SPT, which

also needs extension in some cases. By analyzing the experimental

data, we determined that if the length of the dependency path

between two focus drugs is shorter than three, it is extended.

Meanwhile, if two edges are present to the left of the first drug in

the whole dependency parse path, they will be included in the

dependency path. Otherwise, the two edges to the right of the

second drug will be included in the dependency path. The optimal

extension threshold 3 is determined through 10-fold cross-

validation on the training set. The original training set is randomly

partitioned into 10 equal size subsamples. Of the 10 subsamples, a

single subsample is retained as the validation data for testing the

model, and the remaining 9 subsamples are used as training data.

The cross-validation process is then repeated 10 times, with each

of the 10 subsamples used exactly once as the validation data. The

10 results from the folds then are averaged to produce a single

estimation.

Combination of Kernels using Stacked Generalization
Each kernel has its own pros and cons. The parse tree kernel

does not output certain shallow relations, and conversely, the

dependency path kernel ignores some deep information. The

feature-based kernel cannot capture the sentence structure. The

graph kernel can treat the parser’s output and word features at the

same time, but it may miss some distant words and similarities of

paths among more than three elements [20].

Each kernel calculates the similarity between two sentences

from different aspects. Thus combining the similarities can reduce

the risk of missing important features. To realize the combination

of different types of kernels based on different parse structures, the

normalized output of several kernels Km can be defined as:

K(x,x’)~
XM
m~1

smKm(x,x’) ð5Þ

XM
m~1

sm~1,sm§0, Vm ð6Þ

where M represents the number of kernel types, and sm is the

weight of each Km. In both PPI and DDI tasks, most methods of

individual kernel combination assign the same weight to each

individual kernel [12,20,21], and sometimes their combined

kernels fail to achieve the best performance [20,21]. The reason

is that that each individual kernel has a different performance, and

only when the kernels with better performances are assigned

higher weights can the combination of individual kernels produce

the best result [22]. However, the manual selection of appropriate

weight for each kernel is a time-consuming and imperfect art.

In our method, Stacked generalization [17] is introduced to

automatically learn the weights assigned to the individual kernels

from the training data. Stacked generalization is an approach for

combining multiple classifiers that have been learned for a

classification task. The performance of Stacked generalization is

very competitive compared with arcing and bagging (which are

presented by Breiman [23,24]) [25].

Stacked generalization is a layered architecture. The classifiers

at the layer-0 (level-0) receive the original data as their inputs, and

each classifier outputs a prediction for its own sub-problem.

Successive layers receive the predictions of the layer immediately

preceding it as an input, and finally a single classifier at the top

level outputs the final prediction. Stacked generalization attempts

to minimize the generalization error by using the classifiers at

higher layers to learn the type of errors made by the classifiers

immediately below. Here we show how stacking with two layers

(level) works.

As shown in Figure 2, given a dataset

Dlevel0~f(xn,yn),n~1,:::,Ng, where xn is a vector representing

the attribute values of the nth instance and yn is the class value.

Then, randomly divide Dlevel0 into J almost equal size parts

D1,:::DJ and define D{j~Dlevel0{Dj , where j = 1, …, J.Dj and

D{j are used as the test and training sets for the jth fold of a J-fold

cross-validation, respectively. There are T base classifiers, which

we call the level-0 generalizers. The tth base classifier is trained using

instances of the training data set D{j to output the hypothesis

H
({j,t)
level0 , for t = 1, …, T. These are called the level-0 hypotheses. For

each instance xn in Dj , the test set of the jth cross-validation fold,

let ptn denote the prediction of the hypothesis H
({j,t)
level0 on xn. By

processing the whole J-fold cross-validation, the level-1 training set

Dlevel1~f(p1n,:::,pTn),n~1,:::Ng is assembled from the outputs of

the T hypotheses. Then a classifier that we call the level-1 generalizer

is used to derive a hypothesis Hlevel1 from the level-1 training data

Dlevel1. Figure 2 illustrates the training process. To complete the

Figure 2. The training process of Stacked generalization. The J-
fold cross-validation process in level-0; and the level-1 dataset Dlevel1
at the end of this process is used to produce the level-1 hypothesis H.
doi:10.1371/journal.pone.0065814.g002

Extracting Drug Interactions from Biomedical Text

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e65814

training process, the final level-0 hypotheses Ht
level0,t~1, . . . ,T ,

are derived using all the data in Dlevel0.

Now let us consider the classification process, which uses the

hypotheses Ht
level0 ,t~1, . . . ,T , in conjunction with Hlevel1. When

presented with a new instance, it is first classified using Ht
level0.

Thus an input vector (p1,:::,pT) is generated and then classified

using Hlevel1, which outputs a prediction for the instance. The

algorithm of the stacking process is shown in Figure 3.

In our method, the feature-based, graph and tree kernels are

used as the level-0 generalizers. As for the level-1 generalizer, we

compared the effects of three different learning algorithms:

Multiple Linear Regression (MLR) [26], Support Vector Ma-

chines (SVM) [27] and Ranking-SVM [28]. MLR is an adaptation

of a least-squares linear regression algorithm that Breiman used in

regression settings [29]. Any classification problem with real-

valued attributes can be transformed into a multi-response

regression problem. If the original classification problem has I

classes, it is converted into I separate regression problems, where

the problem for class l has instances with responses equal to one

when they have class l and zero otherwise. MLR was

demonstrated in [25] to be more suitable for the level-1 generalizer

than C4.5 (a decision tree learning algorithm), NB (a reimple-

mentation of a Naive Bayesian classifier) and IB1 (a variant of a

lazy learning algorithm that employs the p-nearest-neighbor

method using a modified value-difference metric for nominal

and binary attributes).

The foundations of SVM have been developed by Vapnik [27]

and are gaining popularity due to their many attractive features

and promising empirical performance. SVMs are binary classifiers

for a set of training data (xi,yi), i~1,:::,n,xi[RN , yi[fz1,{1g
where xj is a feature vector of the jth training sample, and yj is the

class label associated with the jth training sample. The decision

function is defined by

y(x)~sgn
X
j[SV

yjajw(xj):w(x)zb

 !
ð7Þ

where w is a nonlinear mapping function from RN to RH (N,,H),

aj , b[R, aj§0, and SV is a set of support examples. The mapping

function w should be designed such that all training examples are

Figure 3. The algorithm of the stacking process.
doi:10.1371/journal.pone.0065814.g003

Extracting Drug Interactions from Biomedical Text

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e65814

linearly separable in RH space. SVMs take a maximal margin

strategy in that the parameters are chosen so that the minimum

distance between examples and the separating hyperplane (i.e.,

margin) is maximized.

Ranking SVM uses SVM for the task of pairwise classification

[28]. In essence, Ranking SVM is the classification of the

differences of positive and negative document pairs’ feature

vectors. Compared with the regular classification SVM, Ranking

SVM takes the ranking information into account, which is helpful

to enhance the classification performance. In our Stacked

Generalization-based approach, Ranking SVM uses the output

scores of the level-0 generalizers (the feature-based, graph and tree

kernels) as its features. The difference of the positive and negative

instances’ scores outputted by the level-0 generalizers is used as the

ranking information for Ranking SVM. In addition, when there

are M positive examples and N negative examples, there are only

M+N training samples for SVM, while there are M*N samples for

the Ranking SVM because its samples are based on example pairs.

More samples may achieve better performance.

Results and Discussion

Experimental Settings
Our approach was evaluated on the DDI Extraction 2011

challenge task dataset [9] and, therefore, the results can be

compared with those of the participating systems. It consists of 579

documents describing DDIs. These documents are randomly

selected from the DrugBank database and analyzed by the UMLS

MetaMap Transfer (MMTx) tool. A total of 2402 positive

instances and 21425 negative instances are identified in the

training dataset (435 documents). For the test dataset (144

Table 2. Performances of different features in the feature-based kernel.

Feature Precision Recall F-score MCC AUC

Lexical features Abon 57.40 70.86 63.43 58.92 90.7

San 50.05 66.36 57.06 51.73 89.8

Cpn 54.61 47.81 50.99 45.65 86.0

Abon+San 57.20 73.64 64.39 60.11 91.2

Abon+San+Cpn 58.49 72.98 64.94 60.67 91.8

Lexical features+Negative word 60.80 70.46 65.28 60.96 93.0

Lexical features+Negative word +NameIsDrug 59.40 72.58 65.44 61.06 92.1

Lexical features+Negative word +NameIsDrug+Keyword 59.09 73.64 65.57 61.38 92.8

Lexical features+Negative word+NameIsDrug+Keyword+Semantic type 60.88 71.52 65.77 61.63 92.7

Lexical features+Negative word+NameIsDrug+Keyword+Semantic type+Indication 59.50 73.51 65.91 61.76 92.0

Lexical features+Negative word+NameIsDrug +Keyword+Semantic
type+ Indication+Pharmacology

59.87 74.70 66.47 62.42 92.2

Lexical features+Negative word+ NameIsDrug+Keyword+Semantic
type +Indication+Pharmacology+Description

60.30 74.44 66.63 62.58 92.2

doi:10.1371/journal.pone.0065814.t002

Table 3. Performances of each individual kernel and their combinations.

Method Precision Recall F-score MCC AUC

Feature-based kernel 60.30 74.44 66.63 62.58 92.2

Tree kernel 48.06 59.21 53.06 49.94 84.6

Graph kernel 62.84 61.59 62.21 57.71 90.3

Feature-based kernel (0.5) +Graph (0.5) 63.86 73.25 68.23 64.30 92.7

Feature-based kernel (0.33) +Graph (0.33) +Tree (0.33) 65.05 71.26 68.01 64.05 92.7

Feature-based kernel (0.45) +Graph (0.4) +Tree (0.15) 66.79 72.19 69.38 65.60 92.9

SVM as the level-1 classifier 62.21 70.86 68.46 62.06 92.8

MLR as the level-1 classifier 66.17 71.25 68.62 64.74 92.7

5–5 Ranking SVM as the level-1 classifier 67.18 70.99 69.03 65.21 92.7

6–4 Ranking SVM as the level-1 classifier 67.43 70.46 68.91 65.10 92.8

7–3 Ranking SVM as the level-1 classifier 66.22 72.45 69.20 65.38 92.9

8–2 Ranking SVM as the level-1 classifier 70.46 67.55 69.06 65.33 92.9

9–1 Ranking SVM as the level-1 classifier 70.39 67.68 69.01 65.37 92.9

Ranking SVM as the level-1 classifier 66.18 72.58 69.24 65.43 92.9

The weights of each individual kernel in combined kernels are in the parentheses after the kernel name.
doi:10.1371/journal.pone.0065814.t003

Extracting Drug Interactions from Biomedical Text

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e65814

documents), there are 755 positive instances and 6271 negative

instances.

In our implementation, we used the SVMlight package (http://

svmlight.joachims.org/) developed by Joachims for our feature-

based kernel. The linear kernel is used with a parameter c of 0.006

obtained from the 10-fold cross-validation on the training dataset,

and the other parameters are default. As for the graph kernel, the

all-paths graph kernel proposed by Airola et al. (http://mars.cs.

utu.fi/PPICorpora/GraphKernel.html) is used. For the tree

kernel, we chose Tree Kernel Toolkit developed by Moschitti

with the default parameters (http://dit.unitn.it/̃moschitt/Tree-

Kernel.htm).

The existing DDI extraction system evaluations use the

balanced F-score measure for quantifying the performance of

the systems [9]. This metric is defined as F-score = (2PR)/(P+R)

where P denotes the precision and R denotes the recall. Therefore,

the F-score is also used in our work to measure the performance so

that it can be compared with those of other existing DDI

extraction systems. In addition, we provide our performance in

terms of MCC (Matthews Correlation Coefficient) and AUC (Area

Under roc Curve).

Results
In this section, we discuss the effectiveness of different features

used in the feature-based kernel, the effectiveness of different

kernels, and the comparison of our results with those of earlier

works.

Effectiveness of different features in the feature-based

kernel. The classification performances of different features in

the feature-based kernel is shown in Table 2. Among other lexical

features, the Abon feature achieves the best performance (an F-

score of 63.43%). When it is combined with the San and Cpn

features, the F-scores are improved by approximately 1 and 1.5

percentage units, respectively, and an F-score of 64.94% is

achieved. As introduced in Section Methods, our feature-based

kernel uses five other types of features besides the lexical features.

Experimental result shows that, when these five features are

introduced, the overall performance is improved by 1.7 percentage

units in F-score (from 64.94% to 66.63%). Among others, the

keyword, semantic type, and Drugbank features employ domain

knowledge and contribute to a performance improvement of 1.2

percentage units in F-score (from 65.44% to 66.63%).

Effectiveness of different kernels. The performance of

different kernels is shown in Table 3. The feature-based kernel has

superior performance (66.63% in F-score) compared with the

other two kernels. The key reason is that, in the feature-based

kernel, in addition to the commonly used word features, the

keyword, semantic type, and DrugBank features are introduced to

improve the performance. The introduction of these features is a

way of employing domain knowledge and is shown to improve the

performance effectively. The performance (62.21% in F-score) of

the graph kernel ranks second because it considers the parser’s

output and word features together. Finally, the performance of the

tree kernel ranks the lowest (53.06% in F-score).

In addition, the experimental results show that when the

feature-based kernel is combined with the graph kernel, the

Table 4. Performance comparison with other methods on the
DDI Extraction 2011 challenge task dataset.

Methods Precision Recall F-score MCC AUC

Thomas et al. [10] 60.54 71.92 65.74 61.50 –

Chowdhury et al. [12] 58.59 70.46 63.98 58.25 –

Our combined kernel-1 65.05 71.26 68.01 64.05 92.7

Our combined kernel-2 66.18 72.58 69.24 65.43 92.9

doi:10.1371/journal.pone.0065814.t004

Table 5. Examples of DDI instances. The focused entities of each pair are typeset in bold.

Instances Our result
Corpus’s
annotation

P1 Amiodarone may suppress certain CYP450 enzymes, including CYP1A2, CYP2C9, CYP2D6, and CYP3A4. negative positive

P2 Amiodarone may suppress certain cyp450 enzymes, including CYP1A2, CYP2C9, CYP2D6, and CYP3A4. negative negative

P3 Amiodarone may suppress certain cyp450 enzymes, including CYP1A2, CYP2C9, CYP2D6, and CYP3A4. negative positive

P4 Amiodarone may suppress certain cyp450 enzymes, including CYP1A2, CYP2C9, CYP2D6, and CYP3A4. negative negative

P5 Although not studied with alosetron, inhibition of N-acetyltransferase may have clinically relevant
consequences for drugs such as isoniazid, procainamide, and hydralazine.

negative positive

P6 Intestinal adsorbents (e. g., charcoal) and digestive enzyme preparations containing carbohydrate-splitting
enzymes (e. g., amylase, pancreatin) may reduce the effect of Acarbose and should not be taken concomitantly.

negative positive

P7 When administered concurrently, the following drugs may interact with beta-adrenergic receptor blocking
agents: Anesthetics, general: exaggeration of the hypotension induced by general anesthetics.

negative positive

P8 As with some other nondepolarizing neuromuscular blocking agents, the time of onset of neuromuscular
block induced by NUROMAX is lengthened and the duration of block is shortened in patients receiving
phenytoin or carbamazepine.

negative positive

P9 Quinolones, including cinoxacin, may enhance the effects of oral anticoagulants, such as warfarin or its
derivatives.

positive negative

P10 Therefore, caution should be used when administering CYP3A4 inhibitors with IRESSA. positive negative

P11 Although no drug-drug interaction studies have been conducted in vivo, it is expected that no significant
interaction would occur when nitazoxanide is co-administered with drugs that either are metabolized by
or inhibit cytochrome P450 enzymes.

positive negative

P12 It is recommended that if CASODEX is started in patients already receiving coumarin anticoagulants,
prothrombin times should be closely monitored and adjustment of the anticoagulant dose may be necessary.

positive negative

doi:10.1371/journal.pone.0065814.t005

Extracting Drug Interactions from Biomedical Text

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e65814

performance is improved by 1.6 percentage units in F-score (from

66.63% to 68.23%). When further combined with the tree kernel,

if the kernels are assigned the same weight, the overall

performance will decrease from 68.23% to 68.01%; if the kernels

are assigned the optimal weights (the weights are tuned on the test

set and the performance achieved with them can be regarded as

the best performance that could be achieved on the test set), the

overall performance will improve from 68.23% to 69.38%.

The experimental results demonstrate that, on the one hand, as

discussed in Section Methods, because the different kernels calculate

the similarity between two sentences from different aspects, the

combination of kernels covers more knowledge and is effective for

DDI extraction; on the other hand, if combined with the same

weight, the performance of the combined kernel will deteriorate

owing to the introduction of an individual kernel with poor

performance.

The performances of MLR, SVM and Ranking-SVM as the

level-1 generalizer of Stacked generalization are also shown in

Table 3. Both SVM and Ranking-SVM use the linear kernel with

the parameters c of 0.1 and 10, respectively. The performances of

MLR and SVM are almost the same (68.62% to 68.46% in F-

score), while that of Ranking-SVM is better (69.24%) and very

close to the optimal performance (69.38%) achieved with the

optimal weights tuned on the test set. The performance of the

stacked generalization is also the best in terms of MCC and AUC.

The reason may be that, as discussed in Section Methods, Ranking

SVM takes the ranking information into account, which is helpful

to enhance the classification performance. In addition, for given

training samples, Ranking SVM can have more samples because

its samples are based on example pairs, and more samples may

achieve better performance.

In [30], we have proved the effectiveness of Ranking SVM in

combining the outputs of individual kernels in the PPI extraction

task. However, the experimental method in [30] is different from

the one presented in this paper. In [30], to train a Ranking SVM

model, the whole corpus is partitioned into N datasets of equal size.

The feature-based, tree and graph kernels are trained on M

(M,N) datasets (called the training set), respectively. Then, their

test results on other L (L,N and L+M = N) datasets (called the

validation set) are used as the training data for the Ranking SVM

model. In the Stacked generalization presented in this paper, the

level-1 training set for Ranking SVM is assembled by processing

the whole N-fold cross-validation, and its size is N. With more

samples, it is reasonable that Ranking SVM in Stacked

generalization achieves a better performance.

To further verify the idea, the experiments similar to those in

[30] are conducted on the DDI Extraction 2011 corpus. The

training set of DDI Extraction 2011 is divided into the training set

and validation set of different sizes (5–5, 6–4, 7–3, 8–2, 9–1,

respectively). Take 5–5 for an example. The training set of DDI

Extraction 2011 is divided into 10 datasets of equal size. Five

datasets are used as the training set, and the other five are used as

the validation set. The feature-based, tree and graph kernels are

trained on the training set, respectively. Then their test results on

the validation set are used as the training data for the level-1

generalizer Ranking SVM model. The trained Ranking SVM

model is then tested on the test set of the DDI Extraction 2011.

The experimental results are also shown in Table 3. The

performances of 5–5, 6–4, 7–3, 8–2, 9–1 Ranking SVM models

range from 68.91% to 69.20% in F-score, which are inferior to

that of Ranking SVM in the Stacked generalization presented in

this paper (69.24%). What is more, in the method of [30], the sizes

of the training set and validation set need to be tuned to achieve

the optimal performance while it is not needed in the method of

Stacked generalization.

Performance comparison with other methods in the DDI

Extraction 2011 challenge task. As mentioned in the Section

Introduction, several kernels have been proposed for information

extraction from the biomedical literature, including the tree

kernels, shortest path kernels, and graph kernels. Each kernel

utilizes a portion of the structures to calculate the useful similarity,

whereby any one kernel cannot retrieve the other important

Table 6. Analysis of the false negatives.

Error cause Error number Error proportion (%) Example

Annotation consistency 71 35.5 P1, P3

‘‘Drugs’’ annotation error 15 7.5 P5

Negative word error 12 6 P6

DDI extraction error Failure to extract the DDI 37 18.5 P7

Unobvious DDI 65 32.5 P8

Totals 200 100

doi:10.1371/journal.pone.0065814.t006

Table 7. Analysis of the false positives.

Error cause Error number Error proportion (%) Example

General drug name error 48 24 P9

Non-drug name annotation error 26 13 P10

‘‘Drugs’’ annotation error 12 6 P11

DDI extraction error 114 57 P12

Totals 200 100

doi:10.1371/journal.pone.0065814.t007

Extracting Drug Interactions from Biomedical Text

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e65814

information that may be retrieved by other kernels. The

combination of multiple kernels can gather more information

and cover some of losses. Therefore, in recent years, studies have

proposed the use of multiple kernels to retrieve the widest range of

important information in a given sentence [31,32].

Similarly, in the DDI Extraction 2011 challenge task, the best

performing methods are also multiple kernel-based ones [10,12]

(the results are summarized in Table 4). Thomas et al. obtained an

F-score of 65.74% using the combination of APG, SL and moara

[10]. Their APG is the same as ours. However, its performance

(63.53% F-score) on the DDI Extraction 2011 test set is better than

that of our APG (62.21% F-score). The reason may be that the

preprocessing methods are different: Thomas et al. used the

Charniak-Lease parser with a self-trained re-ranking model

augmented for biomedical texts to parse each sentence, whereas

we used the Stanford parser. The SL kernel is defined as the sum

of two kernels, the global context (GC) kernel (which is based on

the words occurring in the sentence fore-between, between and between-

after relative to the pair focused entities) and the local context (LC)

kernel (which uses the surface (capitalization, punctuation,

numerals) and shallow linguistic (POS-tag, lemma) features

generated from tokens to the left and right of the entities of the

entity pair) [31]. Actually, the SL kernel is similar to the feature-

based kernel used in our method. However, the results of our

feature-based kernel (66.63% in F-score) outperforms that of SL

(60.05% in F-score). The reason is that our feature-based kernel

introduces some domain knowledge based features, such as the

keyword, semantic type, and DrugBank features, which prove to

be effective in improving the DDI extraction performance. What’s

more, the shallow syntactic features, such as POS, added to a

lexical feature set are reported not to increase the performance of

the classifier in [32,33]. Moara uses case-based reasoning (CBR)

for classifying the drug pairs. CBR is a machine learning approach

that represents data with a set of features [34]. Our feature-based

kernel (66.63% in F-score) outperforms that of Moara (44.4% in F-

score) because it introduces richer features. Chowdhury et al.

obtained an F-score of 63.98% by combining the feature-based

method and the kernel-based method consisting of the MEDT,

PST, and SL kernels [12]. The feature-based method (FBM)

contains two types of features: lexical features (Word features,

Morphosyntactic feature, etc.) and advanced features (Trigger

word and Negation). These two types of features are also used in

our feature-based kernel, and, in addition, we added other

features, including domain knowledge features, which is the

reason that the performance of FBM is inferior to ours. In their

kernel-based method, MEDT is a version of the expanded DT

kernel. DT is a dependency tree that is a representation that

denotes the grammatical relations between words in a sentence

[35]. The dependency path tree kernel used in our paper also uses

the information derived from DT and, in some cases, it is extended

to include more information as described in Section Methods. Their

PST kernel is similar to the SPT kernel in our method, which is

based on the smallest common subtree of a phrase structure parse

tree including the two entities involved in a relation. The

difference is that, like for the dependency path tree kernel, we

also extend SPT in some cases.

In our method, the feature-based kernel alone yields a

comparable performance (66.63% in F-score) with the above

two methods. With the introduction of the graph and tree kernels

our method achieves even better performance. In our experiments,

we tried two different multiple kernel combination methods. The

first one is denoted as ‘‘Our combined kernel-1’’ in Table 4, which

assigns the same weights to all three kernels. Its performance

(68.01% in F-score) is inferior to that of ‘‘Our combined kernel-2’’

(69.24% in F-score), in which Stacked generalization is introduced

to automatically learn the weights assigned to the individual

kernels from the training data, and its performance is very close to

the optimal performance (69.38%) achieved with the weights

tuned on the test set.

In addition, in the DDI Extraction 2011 challenge task, Björne

et al. [15], Minard et al. [16] and Garcia-Blasco et al. [36] only

used the feature-based method. Björne et al. applied their open

source Turku Event Extraction System, which was the best

performing system in the popular BioNLP 2009 Shared Task.

They adapted the Turku System to the DDI task by extending it

with a new example builder module, which converts the DDI

corpus into machine learning classification examples, taking into

account information specific for drug-drug interactions. The

features they used are tokens, dependency n-grams built from

the shortest path of dependencies, path terminal token attributes

and sentence word count. What’s more, they marked as a feature

for each candidate pair whether it is present in DrugBank and

whether it is there as a known interacting pair; they also used the

information from the MMTx format dataset. In our method, we

also used the information from Drugbank and the MMTx format

dataset, but the information we used is much richer than theirs, as

described in Section Methods. The experimental results show that

our feature-based kernel outperforms theirs (62.99% in F-score).

The reason may be that they used so many features that some

noise was introduced. The shallow syntactic features such as POS

added to a lexical feature set are reported not to increase the

performance of the classifier, while the deep plus shallow syntactic-

and lexical-feature based classifier showed a poor performance

when the set of lexical features was limited [37]. Both Minard

et al. and Garcia-Blasco et al. used the lexical features. Minard

et al. used all the accessible information of the corpus as features,

and they used the technology of information gain to select 1010

important features. Their method achieves a performance of

59.65% in F-score. Garcia-Blasco et al. used both the lexical

features and the domain knowledge, such as keywords derived

from the training corpus, drug semantic types, classes and drug

IDs derived from the MMTx format dataset. Their method

achieves a performance of 58.29% in F-score. Our feature-based

kernel outperforms the above three methods because it integrates

both the lexical features and domain knowledge based features,

such as the keyword, semantic type, and DrugBank features.

Error Analysis
Confined to the complexity of natural language, extracting

DDIs from the biomedical literature remains a challenging task,

and it is difficult to achieve a satisfactory performance. We

manually analyzed 200 positive instances from the test dataset that

were classified as negative instances by our classification model (i.e.

false negatives. Some examples are given in Table 5). A detailed

analysis of all types of false negative errors is shown in Table 6.

Firstly, there is the problem of the corpus annotation consistency.

For example, the instances P1, P2, P3 and P4 in Table 5 should be

classified as the same class since the interaction patterns in them

are exactly the same. However, according to the corpus’s

annotation, P1 and P3 are labeled as positive instances while P2

and P4 are labeled as negative instances. The corpus annotation

error accounts for 35.5% of the 200 false negative errors.

Secondly, some general words (e.g., ‘‘drugs’’) are sometimes

labeled as drug names in both the training set and test set. To train

a better model, we introduce the NameIsDrug feature as described

in Section Methods. However, our classification model fails to

address such a problem perfectly, and it causes 15 errors (for

example, the example P5 is labeled as a positive instance while it is

Extracting Drug Interactions from Biomedical Text

PLOS ONE | www.plosone.org 10 June 2013 | Volume 8 | Issue 6 | e65814

classified as a negative instance by our model), accounting for

7.5% of the total errors.

Thirdly, the existence of the negative words is considered to be

an indicative feature used in our feature-based kernel. Therefore,

when a negative word exists in an instance, it tends to be classified

as a negative one. However, it may cause some false negatives as

shown in the example P6. It can be observed that a negative word

‘‘not’’ exists in P6, and our classification model classifies it as a

negative instance while in fact it is labeled as a positive one. The

Negative word error accounts for 6% of the total errors.

Lastly, confined to the complexity of the DDI expression as well

as the quantity and quality of the training set, many false negatives

are generated, which accounts for most of the total false negative

errors (51%). These DDI extraction errors can be further divided

into two classes: 1) Failure to extract the DDI. Confined to the

complexity of the DDI expression, our classification model fails to

classify some positive instances. The example P7 is such as an

example. 2) Unobvious DDI. In some DDI instances (e.g. the

example P8), the DDI relationships are rather unobvious and it is

even difficult for a human being to determine whether they are

positive or negative instances. We provide more examples of the

false negatives due to the DDI extraction error in the supplemen-

tary table S1.

In addition, 200 negative instances classified by our model as

positive instances were also manually analyzed. A detailed analysis

of all types of false positive errors is shown in Table 7. Firstly, in

some instances, the annotated drug names are the general names

of a kind of drug names. For example, in the example P9,

Quinolones are a family of synthetic broad-spectrum antibiotics,

which includes cinoxacin. Our model can not differentiate it from a

specific drug name (e.g. cinoxacin) and classifies the DDI as a

positive instance while it is labeled as a false instance in the

corpus’s annotation.

Secondly, in some other instances, the annotated drug names

are not true drug names. For example, in the example P10, one of

the annotated drugs, CYP3A4, is a gene. Like in the example P9,

our model can not differentiate it from a true drug name and

classifies the DDI as a positive instance.

Thirdly, as discussed in the previous part of this section, the

word ‘‘drugs’’ is sometimes labeled as drug names in both the

training set and test set. Our model can not address such a

problem perfectly and classifies some negative instances as positive

instances as shown in the example P11.

Lastly, confined to the complexity of the DDI expression, our

model fails to classify some true negative instances correctly, which

accounts for most of the total false positive errors (57%). Since we

can not further expand the DDI extraction error reason for these

false positive instances, we provide more examples of the false

positives due to the DDI extraction error in in the supplementary

table S2.

Conclusions
Because side effects of drugs can be very dangerous, DDI

detection is the subject of an important field of research that is

crucial for both patient safety and the control of health care costs.

Although health care professionals can perform DDI extraction

using different databases, those being used currently are rarely

complete because their update periods can be as long as three

years [38].

In this paper, we present a Stacked generalization-based

approach for automatic DDI extraction. The approach introduces

Stacked generalization to automatically learn the weights from the

training data and assigns them to three individual kernels (feature-

based, tree and graph kernels), achieving a much better

performance than each individual kernel. This indicates that the

features in the individual kernels are complementary and can be

successfully combined with Stacked generalization due to: 1) the

flat entity information captured by the feature-based kernel; and 2)

the structured syntactic connection information between the two

entities captured by the tree and graph kernels. Experimental

results show that our method can achieve the better performance

with respect to comparable evaluations, with an F-score of 69.24%

on the DDI Extraction 2011 challenge task corpus.

According to our experience with information extraction from

the biomedical literature, among others, the feature-based, tree

and graph kernels are three typical kernels. Each kernel calculates

the similarity between two sentences from different aspects, and

thus combining the similarities can reduce the risk of missing

important features. However, the selection of an appropriate

weight for each kernel manually is a time-consuming and

imperfect art. To solve the problem, Stacked generalization can

be introduced to automatically learn the weights assigned to the

individual kernels from the training data, whose performance is

very competitive compared with arcing and bagging [25]. As the

level-1 generalizer of Stacked generalization, the performance of

Ranking-SVM is better than those of MLR and SVM, and it is

very close to the optimal performance achieved with the weights

tuned on the test set because it takes the ranking information into

account, which is helpful to enhance the classification perfor-

mance.

In addition, our experimental results show that, as a way of

employing domain knowledge, the introduction of the keyword,

semantic type, and DrugBank features is effective in improving the

DDI extraction performance. Therefore, the introduction of more

appropriate domain knowledge into DDI extraction is one

important problem to be studied further.

Supporting Information

Table S1 Examples of the false negatives due to the DDI
extraction error. The focused entities of each pair are typeset in

bold.

(DOC)

Table S2 Examples of the false positives due to the DDI
extraction error. The focused entities of each pair are typeset in

bold.

(DOC)

Author Contributions

Conceived and designed the experiments: LH ZY YL. Performed the

experiments: LH ZY ZZ. Analyzed the data: LH ZY. Wrote the paper: LH

ZY HL.

References

1. Segura-Bedma I, Martı́nez P, De Pablo-Sánchez C (2011) Using a shallow

linguistic kernel for drug–drug interaction extraction. J Biomed Inform 44: 789–

804.

2. Zweigenbaum P, Demner-Fushman D, Yu H, Cohen KB (2007) Frontiers of

biomedical text mining: current progress. Brief Bioinform 8: 358–375.

3. Bunescu RC, Mooney RJ (2006) Subsequence kernels for relation extraction. In:

Weiss Y, Schölkopf B, Platt J, editors. Advances in Neural Information

Processing Systems 18. Cambridge, MA: MIT Press. 171–178.

4. Moschitti A (2006) Making tree kernels practical for natural language processing.

Proc European Chapter of the ACL 2006. Trento, Italy: 113–120.

Extracting Drug Interactions from Biomedical Text

PLOS ONE | www.plosone.org 11 June 2013 | Volume 8 | Issue 6 | e65814

5. Bunescu RC, Mooney RJ (2005) A shortest path dependency kernel for relation

extraction. Proc Human Language Technology and Empirical Methods in
Natural Language Processing. Vancouver, Canada: 724–731.

6. Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, et al. (2008) All-paths graph

kernel for protein–protein interaction extraction with evaluation of cross-corpus
learning. BMC Bioinformatics (Suppl. 11): S2.

7. Segura-Bedmar I, Martı́nez P, De Pablo-Sánchez C (2011) A linguistic rule-
based approach to extract drug-drug interactions from pharmacological

documents in biomedical texts. BMC Bioinformatics (Suppl 2): S1.

8. Giuliano C, Lavelli A, Romano L (2006) Exploiting Shallow Linguistic
Information for Relation Extraction from Biomedical Literature. Proc European

Chapter of the ACL 2006. Trento, Italy: 401–408.
9. Segura-Bedmar I, Martı́nez P, Sánchez-Cisneros D (2011) The 1st DDI

Extraction-2011 challenge task: Extraction of Drug-Drug Interactions from
biomedical texts. Proc DDI Extraction-2011 challenge task. Huelva, Spain: 1–9.

10. Thomas M, Neves M, Solt I, Tikk D, Leser U (2011) Relation Extraction for

Drug-Drug Interactions using Ensemble Learning. Proc DDI Extraction-2011
challenge task. Huelva, Spain: 11–18.

11. Neves M, Carazo JM, Pascual-Montano A (2009) Extraction of biomedical
events using case-based reasoning. Proc North American Chapter of the

Association for Computational Linguistics: 68–76.

12. Chowdhury MFM, Abacha AB, Lavelli A, Zweigenbaum P (2011) Two
Different Machine Learning Techniques for Drug-Drug Interaction Extraction.

Proc DDI Extraction-2011 challenge task. Huelva, Spain: 27–33.
13. Chowdhury MFM, Lavelli A, Moschitti A (2011) A study on dependency tree

kernels for automatic extraction of protein-protein interaction. Proc BioNLP
2011 Workshop. Portland, Oregen, USA: 124–133.

14. Moschitti A (2004) A study on convolution kernels for shallow semantic parsing.

Proc 42nd Annual Meeting of the Association for Computational Linguistics.
Barcelona, Spain: 335–342.

15. Björne J, Airola A, Pahikkala, Salakoski T (2011) Drug-Drug Interaction
Extraction from Biomedical Texts with SVM and RLS Classifiers. Proc DDI

Extraction-2011 challenge task. Huelva, Spain: 35–42.

16. Minard AL, Makour L, Ligozat AL, Grau B (2011) Feature Selection for Drug-
Drug Interaction Detection Using Machine-Learning Based Approaches. Proc

DDI Extraction-2011 challenge task. Huelva, Spain: 43–50.
17. Wolpert DH (1992) Stacked Generalization. Neural Netw 5: 241–259.

18. Wishart D, Knox C, Guo AC, Cheng D, Shrivastava S, et al. (2008) DrugBank:
a Knowledgebase for Drugs, Drug Actions and Drug Targets. Nucleic Acids Res

36(Database issue): D901–906.

19. Collins M, Duffy N (2002) Convolution Kernels for Natural Language. In:
Dietterich TG, Becker S, Ghahramani Z, editors. Advances in neural

information processing systems 14. Cambridge, MA: MIT Press, 625–632.
20. Miwa M, Soetre R, Miyao Y, Tsujii J (2009) Protein-protein Interaction

Extraction by Leveraging Multiple Kernels and Parsers. Int J Med Inform 78:

e39–46.

21. Kim S, Yoon J, Yang J (2008) Kernel Approaches for Genic Interaction

Extraction. Bioinformatics 24: 118–126.

22. Yang ZH, Tang N, Zhang X, Lin HF, Li YP, et al. (2011) Multiple Kernel

Learning in Protein-Protein Interaction Extraction from Biomedical Literature.

Artif Intell Med 51: 163–173.

23. Breiman L (1996) Bagging Predictors. Mach Learn 24: 123–140.

24. Breiman L (1996) Bias, Variance, and Arcing Classiers. Technical Report 460.

Department of Statistics, University of California, Berkeley, CA.

25. Ting KM, Witten IH (1999) Issues in Stacked Generalization. J Artif Intell Res

10: 271–289.

26. Aiken LS, West SG, Pitts SC (2003) Multiple Linear Regression. Handbook of

Psychology 481–507.

27. Vapnik V (1998) Statistical Learning Theory. Wiley, New York.

28. Bartlett PJ, Schölkopf B, Schuurmans D, Smola AJ (2000) Advances in Large

Margin Classifiers. MIT Press, Cambridge, MA, USA.

29. Breiman L (1996) Stacked Regressions. Mach Learn 24: 49–64.

30. Yang ZH, Lin Y, Wu JJ, Tang N, Lin HF, et al. (2011) Ranking SVM for

Multiple Kernels Output Combination in Protein-Protein Interaction Extraction

from Biomedical Literature. PROTEOMICS 11: 3811–3817.

31. Tikk D, Thomas P, Palaga P, Hakenberg J, Leser U (2010) A Comprehensive

Benchmark of Kernel Methods to Extract Protein-protein Interactions from

Literature. PLoS Comput Biol 6(7): e1000837. doi:10.1371/journal.-

pcbi.1000837.

32. Xiao J, Su J, Zhou G, Tan C (2005) Protein-protein Interaction Extraction: A

Supervised Learning Approach. Proc 1st International Symposium on Semantic

Mining in Biomedicine. Hinxton, Cambridgeshire, UK: 51–59.

33. Fayruzov T, Cock MD, Cornelis C, Hoste V (2009) Linguistic feature analysis

for protein interaction extraction. BMC Bioinformatics 10: 374.

34. Aamodt A, Plaza E (1994) Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches. AI Communications 7:

39–59.

35. Culotta A, Sorensen J (2004) Dependency tree kernels for relation extraction.

Proc 42nd Annual Meeting of the Association for Computational Linguistics.

Barcelona, Spain: 423–429.

36. Garcia-Blasco S, Mola-Velasco SM, Danger R, Rosso P (2011) Automatic Drug-

Drug Interaction Detection: A Machine Learning Approach with Maximal

Frequent Sequence Extraction. Proc DDI Extraction-2011 challenge task.

Huelva, Spain: 51–58.

37. Saetre R, Sagae K, Tsujii J (2008) Syntactic Features for Protein-Protein

Interaction Extraction. Proc Second International Symposium on Languages in

Biology and Medicine, Singapore.

38. Rodr’ıguez-Terol A, Camacho C et al (2009) Calidad estructural de las bases de

datos de interacciones. Farmacia Hospitalaria 33: 134–136.

Extracting Drug Interactions from Biomedical Text

PLOS ONE | www.plosone.org 12 June 2013 | Volume 8 | Issue 6 | e65814

