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Abstract

Background: Type 1 diabetes mellitus (TTDM) is a chronic autoimmune disease caused by severe loss of pancreatic
B cells. Immune cells are key mediators of {3 cell destruction. This study attempted to investigate the role of immune
cells and immune-related genes in the occurrence and development of T1DM.

Methods: The raw gene expression profile of the samples from 12 T1DM patients and 10 normal controls was
obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by
Limma package in R. The least absolute shrinkage and selection operator (LASSO)—support vector machines (SVM)
were used to screen the hub genes. CIBERSORT algorithm was used to identify the different immune cells in distribu-
tion between T1DM and normal samples. Correlation of the hub genes and immune cells was analyzed by Spearman,
and gene-GO-BP and gene-pathway interaction networks were constructed by Cytoscape plug-in ClueGO. Receiver
operating characteristic (ROC) curves were used to assess diagnostic value of genes in T1DM.

Results: The 50 immune-related DEGs were obtained between the TIDM and normal samples. Then, the 50
immune-related DEGs were further screened to obtain the 5 hub genes. CIBERSORT analysis revealed that the distri-
bution of plasma cells, resting mast cells, resting NK cells and neutrophils had significant difference between T1DM
and normal samples. Natural cytotoxicity triggering receptor 3 (NCR3) was significantly related to the activated NK
cells, MO macrophages, monocytes, resting NK cells, and resting memory CD4™ T cells. Moreover, tumor necrosis fac-
tor (TNF) was significantly associated with naive B cell and naive CD4™ T cell. NCR3 [Area under curve (AUC) =0.918]
possessed a higher accuracy than TNF (AUC=0.763) in diagnosis of TIDM.

Conclusions: The immune-related genes (NCR3 and TNF) and immune cells (NK cells) may play a vital regulatory role
in the occurrence and development of T1DM, which possibly provide new ideas and potential targets for the immu-
notherapy of diabetes mellitus (DM).
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Background

According to the latest statistics from the International
< ; T S Diabetes Federation (IDF) (https://www.idf.org/), the
e OBl el elobal prevalence of diabetes is sbout 9.3% (163 mil
Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, PR. lion people) in 2019, and it is forecasted to rise to 10.2%
China (578 million people) by 2030 and to 10.9% (700 million
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people) by 2045. Type 1 diabetes mellitus (T1DM) caused
by autoimmune reaction is a major subtype of diabetes,
and is mostly prevalent in adolescents and childhood [1].
Compared with type 2 diabetes mellitus (T2DM), TIDM
has higher morbidity, mortality and health care cost [2,
3]. It is widely accepted that T1DM is the result of the
interaction of both genetic and environmental factors,
but its exact molecular mechanism is still unclear. Over
the past 30 years, insulin therapy, immunotherapy and
some potential therapies such as cell therapy are the main
treatments for diabetes. However, these treatments usu-
ally have some problems, for instance, insulin therapy
can cause a series of complications, while immunother-
apy may impact acquired immunity and the efficacy is
short-term [4—6].

To understand the mechanisms lying in the pathogen-
esis of T1DM, a wide range of studies have been carried
out and found that immune responses play an important
role in T1DM, which need the coordianated efforts of
multiple immune related genes and various immune cells
[7-11]. For instance, the onset phase of TIDM is char-
acterized by the perturbations of NK cells. Patients with
long-standing T1DM showed reduced NK cell activity
due to decreased mRNA expression of the cell surface
markers NKp30/p46 [also known as natural cytotoxicity
triggering receptor 3/1 (NCR3/1)], as well as IFN-y and
perforin [12]. Thl cells and regulatory T cells (Tregs),
two hypotypes of CD4%" T cells, have also been reported
to promote the pathogenesis of TIDM by destroying
cells via secreting cytokines like IL-1 [13].

However, the roles of immune related genes and
immune cells, as well as the associations between them
in T1DM have not been fully investigated. Thus, the cur-
rent study aims to analyze the immune cell components,
immune related genes and their correlations in periph-
eral blood of T1DM patients via bioinformatic strategies.
Our findings will provide novel insights into diagnosis
and improve our knowledge of the immunotherapies for
T1DM patients.

Materials and methods

Dataset acquisition

The raw gene expression profile dataset (GSE55098) was
obtained from the National Center of Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/). The sam-
ples for this data were the peripheral blood mononuclear
cells (PBMCs). The dataset based on GPL570 platform
included 12 T1DM patients and 10 normal controls. The
1639 immune-related genes were downloaded from the
ImmPort database (Immunology Database and Analy-
sis Portal database, https://www.immport.org/shared/
home).
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Identification of immune-related DEGs

The dataset between T1DM patients and normal con-
trols was identified using Limma package in R. The
P<0.05 and |Log, fold change (FC)|>0.585 were set
as the cut-off for the DEGs. The DEGs were exhibited
by the volcano plot and the heatmap. The DEGs were
overlapped with the 1639 immune-related genes, get-
ting 50 immune-related DEGs.

Analyses of the GO and KEGG

The GO enrichment and the KEGG pathway analy-
ses were conducted using the immune-related DEGs
respectively by GOseq package and hypergeomet-
ric test in R, which was used to explore the potential
biological processes (BP), cellular components (CC),
molecular functions (MF) and identified significantly
relevant signal pathways of the immune-related DEGs.
The histogram and bubble chart were plotted by the
ggplot2 package (version 1.0.2) in R.

Analyses of LASSO and SVM

By constructing a penalty function, LASSO can com-
press variable coefficients and make some regression
coefficients to become 0, thereby achieving the purpose
of variable selection [14]. To screen the gene signatures,
the 50 immune-related DEGs were performed the
LASSO regression analysis in the glmnet package in R.
SVM is supervised machine learning techniques widely
used in pattern recognition and classification problems,
which have been used in medical applications to pre-
dict whether a new gene falls into one category or the
other, thereby classifying the genes [15]. The SVM was
also used to screen the gene signatures. The overlap-
ping genes after LASSO and SVM analyses were used
as the hub genes.

CIBERSORT analysis

CIBERSORT algorithm could quantify the abundance
of specific cell types [16]. To compare the differ-
ence between T1DM samples and normal samples in
immune cells, the CIBERSORT analysis (https://ciber
sort.stanford.edu) was used to estimate the percentage
of LM22 (22 immune cell types) in each sample. More-
over, the fraction of 22 immune cells was compared
between T1DM samples and normal samples and the
violin plot was drawn by vioplot package in R.

Enriched GO-BP and KEGG network by 50 immune-related
DEGs

Correlation of the hub genes and immune cells was
analyzed by Spearman and visualized by heatmap in
T1DM and normal samples. To systematically explore
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potential functions between the hub genes, 50 immune-
related DEGs were imported into the Cytoscape soft-
ware v3.7.2 (https://cytoscape.org/) to construct the
genes and pathways interaction network by ClueGO
plug-in. ClueGO was used to decipher the function-
ally grouped GO and pathway annotation networks to
understand their implication in three different classifi-
cations (BP, MF and CC), in addition to the KEGG sign-
aling pathway. The relationship between the terms was
calculated using « statistics and the ClueGO network
was built based on the similarity of their related genes.
In the present study, the enrichment analysis of gene-
BP and gene-pathway was statistically validated using
the ClueGO plug-in. BPs/signaling pathways were func-
tionally split into several groups with k score>0.4. In
network, the node represented a BP/pathway, and the
edge between two nodes indicated that the two BPs/
pathways shared common genes.

Statistical analysis

The WilcoxTest were used to compare the fraction of the
immune cells between T1DM samples and normal sam-
ples in CIBERSORT analysis. ROC curves were used to
assess the diagnostic value of genes in T1DM,and the
higher the AUC value is, the stronger the diagnostic
value will be. The P<0.05 was considerable as the statisti-
cal significance.

Results

Screening of DEGs between the TIDM samples and normal
samples

The 216 DEGs between the T1DM samples and nor-
mal samples were screened out (Fig. la), including 92
up-regulated genes (Additional file 1: Table S1) and 124
down-regulated genes (Additional file 2: Table S2). The
distribution of the DEGs was displayed by the volcano
plot (Fig. 1b), and the expressions of the DEGs in each
sample were shown in Fig. 1c.

The raw identification and functional enrichment analysis
of the immune-related DEGs

The 1639 immune-related genes were overlapped with
the DEGs using the Venn diagram, getting 50 immune-
related DEGs (Fig. 2a) that were used for subsequent
analysis.

To further investigate the functions of the immune-
related DEGs, the GO and KEGG analyses were per-
formed. The GO terms with the top 5 of gene enrichment
were protein binding, membrane, extracellular region,
extracellular space, and integral component of membrane
(Fig. 2b and Additional file 3: Table S3), suggesting that
the immune-related DEGs may be involved in the bio-
logical activities of the cell membrane. Meanwhile, the
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analysis of KEGG pathway indicated that these genes
were mainly enriched in Type 1 diabetes mellitus path-
way (Fig. 2c and Additional file 4: Table S4), further veri-
fying that the immune-related DEGs played a vital role in
the occurrence and development of TIDM.

Identification of the optimal immune-related biomarkers
To identify immune-related hub genes, the LASSO
regression analysis for the 50 immune-related DEGs
was performed to screen the gene signatures, getting
11 gene signatures (Fig. 3a, b). Besides, the SVM for the
50 immune-related DEGs was also used to screen gene
signatures, getting 6 gene signatures (Fig. 3c). Subse-
quently, the 11 gene signatures identified by LASSO were
overlapped with the 6 gene signatures identified by the
SVM, and ultimately obtaining 5 hub genes [C-C motif
chemokine receptor 3 (CCR3), major histocompatibility
complex, class I, DQ alpha 1 (HLA-DQA1I), NCR3, toll
like receptor 3 (TLR3) and tumor necrosis factor (TNF),
Fig. 3d], which were considered as the optimal immune-
related biomarkers.

Distribution of immune cells between TIDM and normal
samples

To further investigate the correlation of the hub genes
related to immune with immune cells, the distribution of
the 22 immune cells between T1DM and normal samples
was analyzed by the CIBERSORT algorithm. Figure 4a
showed the percentage of immune cells in each sam-
ple, indicating that Monocytes, resting NK cells, resting
memory CD4" T cells, and CD8' T cells had a larger
proportion (Additional file 5: Table S5). Removing the
four types of immune cells that were not in the sample,
the proportion of the other immune cells in each sample
was displayed by a heatmap (Fig. 4b). According to sta-
tistical results, the distribution of plasma cells (P=0.05),
resting mast cells (P=0.013) and neutrophils (P=0.018)
in T1DM samples was significantly increased, while the
distribution of resting NK cells (P=0.009) in T1IDM
samples was significantly reduced, compared with that
in normal samples (Fig. 4c). The above results suggested
that these differential immune cells might be involved in
the immune regulation process of TIDM pathogenesis.

Correlation analysis of the immune cells and the hub genes
To further analyze the correlation of the hub genes and
the immune cells, the Spearman correlation heatmaps
were plotted respectively in TIDM and normal samples.
As shown in Fig. 5a, b, the differential immune cells were
marked with red. NCR3 was only significantly related to
the activated NK cells (P<0.05) in the normal samples,
while was significantly associated with multiple immune
cells including MO macrophages, monocytes, resting NK
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Fig. 1 The amount of 216 DEGs between the T1DM samples and normal samples. a Histogram; b volcano plot; ¢ heatmap
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cells, and resting memory CD4" T cells (all P<0.05) in
the T1IDM samples. Moreover, TNF had no significant
correlations to all immune cells (all P>0.05) in the nor-
mal samples, but was significantly related to naive B cell
(P<0.05) and naive CD4" T cell (P<0.01) in the TIDM
samples. Additionally, there were significant differences
between T1DM and normal samples that TLR3, HLA-
DQA1 and CCR3 were only related to CD8" T cells
(P<0.05), resting mast cells (P<0.05) and Neutrophils
(P<0.05), respectively. These results suggested that NCR3

and TNF might play an important role in the regulation
of immune cell-mediated T1DM progression.

Construction of the hub genes and pathways network

To in-depth investigate functions of the hub genes, a
network of the 50 immune-related DEGs and GO-BP
interaction was constructed using ClueGO Plug-in of
Cytoscape software, in which the hub genes were marked
as red frame. As shown in Fig. 6a, as expected, the path-
ways that interacted with TNF were the most, mainly
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cellular response to interferon-gamma-related anti-infec-
tion pathways. Next was NCR3, which was mainly related
to natural killer cell mediated immunity-related innate
immune response pathways. Further, Fig. 6b also indi-
cated that proportions of genes in cellular response to
interferon-gamma and natural killer cell mediated immu-
nity terms were the largest, 59.52% and 16.67% respec-
tively. To more clearly show the interaction of TNF and
NCR3 with pathways, the up-regulated genes and down-
regulated genes were separated to construct networks
which were shown in Fig. 6¢, d, e—f. Similar results were
obtained, TNF participated in antimicrobial humoral
response-related anti-infection pathways, NCR3 was
still involved in natural killer cell mediated immunity.
Besides, the network of the 50 immune-related DEGs and
KEGG interaction also indicated similar results (Addi-
tional file 6: Figure S1).

The above results suggested that TNF and NCR3
might regulate T1DM progression respectively by

anti-infection pathways and natural killer cell mediated
immunity. NK cells recognize and kill virus-infected
cells in the absence of antibodies and major histocom-
patibility complex (MHC), allowing for a much faster
immune reaction. The role of NK cells in both the
innate and adaptive immune responses is becoming
increasingly important in research using NK cell activ-
ity as a potential therapy [17].

Diagnostic value of TNF and NCR3

To explore the accuracy of the TNF and NCR3 as the
diagnostic biomarkers for T1IDM, the ROC curves were
plotted, respectively. The AUC was 0.763 (TNF, Fig. 7a)
and 0.918 (NCR3, Fig. 7b), suggesting that NCR3 pos-
sessed a higher accuracy than TNF in diagnosis of
T1DM. And this might be related to NK cell mediated
innate immune system which was often ignored in the
design of novel immune-based therapies [18].
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Fig. 3 Identification of the optimal immune-related biomarkers. a, b LASSO regression analysis; ¢ SVM analysis; d venn diagram of overlapping

Discussion
Immune related genes and immune cells are crucial in the
pathogenesis of TIDM. However, their roles and inter-
actions in T1DM have yet to be clarified. In this study,
we identified five candidate immune-related biomarkers
for TIDM and four types of immune cells differentially
distributed between T1DM patients and the normal con-
trols. Furthermore, we explored the correlations between
these immune-related biomarkers and immune cells.
Firstly, we obtained 50 immune-related genes
involved in T1DM by intersecting 1639 immune-
related genes with 216 DEGs. Functional analysis
revealed that these genes mainly participate in TIDM

pathway, suggesting that T1DM is closely related to
immunity. Besides, we also found some pathways other
than T1DM or immunity, such as positive regulation
of cytosolic calcium ion concentration and G protein-
coupled receptor signaling pathway in GO enrichment
analysis. Calcium ions play an important role in the
maintenance of cell membrane biopotential and nerve
conduction. Washburn RL et al. noted that C-peptide,
a cleavage product of insulin processing unproduced
by patients with T1DM, can elevate calcium concentra-
tions by binding G protein-coupled receptors and thus
treat the complications of TIDM [19]. As well, the Jak-
STAT signaling pathway was present in the results of
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the KEGG pathway analysis. Jak-STAT signaling path-
way activation can regulate the transcription of down-
stream genes and cell proliferation, differentiation and
apoptosis process. Gurzov et al. [20] observed that the
highly conserved and efficient Jak-STAT signaling path-
way is necessary for normal homeostasis, and when

dysregulated, it leads to the development of obesity and

diabetes.

To get more robust immune-related biomarkers in
T1DM, we performed LASSO and SVM analyses and
found five candidate immune-related biomarkers, includ-
ing CCR3, HLA-DQA1, NCR3, TLR3 and TNE. CCR3
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encodes a receptor for C—C type chemokines which
belongs to family 1 of the G protein-coupled receptors
[21]. Chemokine receptors play an important role in the
extracellular infiltration of inflammatory factors into the
inflamed tissue in T1DM insulitis [22]. According to the
study of Lohmann et al. [23], there was no difference for
the Th2-associated chemokine receptor CCR3 in CD3%
lymphocytes between newly diagnosed T1DM patients,
long-existing T1DM patients and healthy individu-
als. Likewise, another study also showed that there was
no significant difference in the percentages of CCR3 in
recently activated circulating T cells (CD3*, HLA-DR")
between newly diagnosed T1DM patients, long stand-
ing TIDM patients and health individuals [24]. In this
paper, CCR3 was differentially expressed in T1IDM and
normal samples, probably due to the different cell types
examined in this study compared to the above studies.
Thus, CCR3 may indirectly regulate the pathological pro-
cess of TIDM by some mechanisms which require fur-
ther research. HLA-DQA1 belongs to the HLA class II
chain paralogues. The higher expression of HLA-DQAI
in T1DM than in normal samples affected the encoding
level of DQ2.5 and DQ8 molecules on the APC surface,
which can promote the presentation of self-antigens to
induce autoimmunity, and present gluten antigens to
homologous CD4" T cells, thereby promoting T cell acti-
vation and proliferation [25]. In our study, HLA-DQAI
was also highly expressed in T1IDM patients, suggesting
that it may be involved in the pathogenesis of T1DM by

inducing autoimmunity and could potentially be a thera-
peutic target. The protein family encoded by NCR3 is an
active receptor that conveys effective signals to NK cells
to lyse harmful cells and produce inflammatory cytokines
[26]. Rodacki et al. [12] reported that the expression of
NCR3 is reduced in patients with long-standing T1DM,
which is consistent with our results. TLR3 plays a funda-
mental role in pathogen recognition and innate immune
activation by recognizing dsRNA derived from viral
replication. In some genetically susceptible individuals,
this defence system does not work properly and instead
induces excessive progressive inflammation and pro-
longed cell death, leading to the development of TIDM
[27], which may explain the lower expression of TLR3 in
T1DM patients found in our study. TNF encodes a multi-
functional pro-inflammatory cytokine secreted basically
by macrophages. Qiao et al. [28] confirmed that serum
TNF level in T1IDM patients significantly elevated among
all age, disease duration and ethnicity groups, which is
similar to our result observed in PBMCs, suggesting its
important role in T1DM process.

Furthermore, we analyzed the distribution of immune
cells in T1DM patients and normal ones, and found that
plasma cells, resting mast cells, neutrophils and rest-
ing NK cells were differentially distributed between the
T1DM and the normal controls, indicating these immune
cells are more important in the occurrence and develop-
ment of TIDM. For plasma cells, Isabel et al. [29] found
that they were increased in the thymus of non-obese
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diabetic (NOD) mice compared to the control ones.
In another study, plasma cells were also increased in
patients with diabetic nephropathy (DN). They found a
positive correlation between the number of plasma cells
and serum IgG levels in DN patients, probably due to
antigenic stimulation promoting the activation and dif-
ferentiation of naive B cells and memory B cells towards
plasma cells, leading to IgG production in DN patients
[30]. Our results also showed that plasma cells were
increased in the samples of TIDM patients compared
to the normal ones, suggesting that it may play a role in
the antigen presentation process. Mast cells are a type of
innate immune cells that express MHC molecules [31]. It
has been demonstrated that mast cells negatively regu-
late T1IDM and other autoimmune related diseases [32,

33]. Our findings revealed increased resting mast cell in
T1DM, which also points out from a cell subtype per-
spective that mast cells may negatively regulate TIDM
through participating in MHC expression. Neutrophils
gelatinase-associated lipocalin (NGAL) has been shown
to be elevated in T1IDM patients and has potential to
become a biomarker for DN [34, 35]. Studies suggest
that neutrophil cells are involved in T1DM pathological
damage through the formation of neutrophil extracellu-
lar traps (NETs) [36, 37]. Likewise, our study also indi-
cated that neutrophils are highly expressed in T1DM.
Rodacki et al. found that recently diagnosed patients with
T1DM may have more, or more active, circulating NK
cells, whereas patients with the long-standing T1DM had
reduced cellular activity of NK cells [12]. Likewise, Lorini
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et al. also indicated that NK cell cytotoxic activity was
reduced in patients with long-standing T1DM ([38]. The
reduced activity of NK cells in patients with long-stand-
ing T1DM suggests that the reduced activity of NK cells
is a consequence of the disease rather than a cause. In our
study, we showed that NK cell resting was less prevalent
in T1DM from a cell subtype perspective, which may be
due to the fact that samples in our study were from newly
diagnosed T1DM patients rather than long-term T1DM
patients.

In consideration that immunity requires the coor-
dinated efforts of immune related genes and immune
cells, we analyzed the correlations between five TIDM

biomarkers and immune cells. We found a significantly
positive correlation between TNF and naive B cells and
a significantly negative correlation between TNF and
naive CD4" T cells in T1DM samples. Lee et al. reported
that TNF promotes the proliferation of naive CD4" T
cells in NOD mice. It is probably due to the differences
of the sources and treatment of the samples [39]. NCR3
was only negatively associated with activated NK cells
in normal samples, while positively related to resting
memory CD4" T cells and negatively correlated with MO
macrophages, monocytes and resting NK cells in TIDM
samples. It has been reported that NCR3 positively regu-
lates NK cell activity in T1IDM [12], which may explain
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the negative correlation between NCR3 and resting NK
cells in TIDM observed in our study. Ward et al. [40]
showed that a few HIV-infected CD4" T cells expressed
NCRS3 ligands, leading to lysis of CD4% T cells by NK

cells. In our study, NCR3 and resting memory CD4" T
cells were positively correlated in patients with T1DM, by
a potential mechanism that may be similar to the above
study. The results of this study regarding the negative
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correlation of NCR3 with MO macrophages and mono-
cytes in TIDM patients may be a novel finding. Taken
together, TNF may affect TIDM by regulating naive B
cells and naive CD4" T cells, while NCR3, an NK cell
receptor, may affect TIDM primarily by delivering effec-
tive signals to NK cells and enable them to lyse target
cells.

Interestingly, in the network of hub genes and
GO-BP, we found most biological processes were
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mostly interacted with TNF and NCR3, and it is also
a sign that they play an essential role in TIDM. Also,
the network revealed the possible mechanisms of TNF
and NCR3 in regulating T1DM, by anti-infection path-
ways and natural killer cell mediated immunity, respec-
tively. Finally, given the importance of the above two
genes, we assessed their diagnostic value by ROC and
found a strong accuracy for the NCR3 (AUC=0.918),
which also provides a new biomarker for the diagnosis
of TIDM.

Although we used multiple analyses to systematically
investigate immune related genes, immune cells and
their relationships in T1DM, this study still has some
limitations due to the lack of experimental validation,
single dataset and incomplete database information.
Further optimization and fundamental experiments are
required to reveal the detailed molecular mechanisms
of these immune related genes in TIDM.

Conclusion

In this study, we identified CCR3, HLA-DQA1, NCR3,
TLR3 and TNF as potential immune-related biomarkers
in TIDM. For the first time, the current study revealed
the associations between immune related genes and
immune cells. Our findings improve the understand-
ing of molecular mechanisms involved in T1IDM and
provide novel information of diagnose and therapy for
T1DM patients.
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