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Abstract: During the SARS-CoV-2 global pandemic, several vaccines, including mRNA and ade-
novirus vector approaches, have received emergency or full approval. However, supply chain
logistics have hampered global vaccine delivery, which is impacting mass vaccination strategies.
Recent studies have identified different strategies for vaccine dose administration so that supply
constraints issues are diminished. These include increasing the time between consecutive doses in a
two-dose vaccine regimen and reducing the dosage of the second dose. We consider both of these
strategies in a mathematical modeling study of a non-replicating viral vector adenovirus vaccine in
this work. We investigate the impact of different prime-boost strategies by quantifying their effects
on immunological outcomes based on simple system of ordinary differential equations. The boost
dose is administered either at a standard dose (SD) of 1000 or at a low dose (LD) of 500 or 250 vaccine
particles. Results show dose-dependent immune response activity. Our model predictions show that
by stretching the prime-boost interval to 18 or 20, in an SD/SD or SD/LD regimen, the minimum
promoted antibody (Nab) response will be comparable with the neutralizing antibody level measured
in COVID-19 recovered patients. Results also show that the minimum stimulated antibody in SD/SD
regimen is identical with the high level observed in clinical trial data. We conclude that an SD/LD
regimen may provide protective capacity, which will allow for conservation of vaccine doses.

Keywords: adenovirus-based vaccine; SARS-CoV-2; COVID-19; adaptive immune response; neutral-
izing antibody (NAb); IgG antibody; mathematical modeling

1. Introduction

The spread of coronavirus disease 2019 (COVID-19), caused by severe acute respira-
tory syndrome coronavirus-2 (SARS-CoV-2), can be mitigated through safe and effective
vaccines. Different vaccine types are currently being used to protect individuals from
SARS-CoV-2 infection and disease. The four main types of COVID-19 vaccine in clinical
trial includes whole virus, protein subunit, viral vector, and nucleic acid (RNA and DNA).

Limitations in vaccine supply, however, can affect the outcomes of the global vacci-
nation campaign. Reductions in dose size, and a second dose delay whereby the second
dose is delivered in a time frame beyond the manufacturer’s recommended schedule, can
thus be considered, so that vaccine supply issues are diminished. In this work, we mathe-
matically model adenovirus-based vaccines using a system of simple ordinary differential
equations. The goals of our mathematical modeling study are two-fold, to (1) identify
biological and vaccine characteristics that may allow for heightened and longer-lasting
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immune responses from vaccination, and (2) study the outcomes of a delayed second
dose with the same or smaller dose size. The goals of this study are directly related to
vaccine supply as we can determine if delaying and administering smaller second doses
can provide immunological protection of similar magnitude to the recommended vaccine
schedule (i.e., two similar-sized doses separated by 28 days).

The ODE-based model introduced in this work is based on the biological signaling
pathway of the immune response to vaccination. The model includes both cellular and
humoral immune system components, including vaccine particles, T helper cells, interferon-
gamma (IFNγ), interleukin 6 (IL6), plasma B-cells, antibody, and cytotoxic T-cells. Model
parameters were fit to clinical trial data for the COVID-19 ChAdOx1-S (AZD1222) vaccine
developed by the University of Oxford and AstraZeneca [1].

Our results show evidence for a dose-dependent behavior of the immune system in
response to an adenovirus-based vaccine [2]. Our results suggest that limiting the booster
decreased antibody and cytotoxic T-cell levels as compared to regimens that follow the
manufacturer’s recommended dose size and dosing schedule. Model results also show
that, compared to clinical data [3], the model-predicted antibody level is comparable to
the level attained by a patient with mild symptoms who recovers from COVID-19. Model
predictions of attenuated IFNγ level by second shot delay and reduced dose size can
provide a measure of vaccine efficacy and safety of a vaccine program with a delayed
second dose.

This paper is organized as follows: In Section 2, we describe the mathematical model
of the adaptive immune response. We then fit the model to available clinical trial data for
the Oxford/AstraZenca vaccine [1]. A sensitivity analysis is then performed to determine
model parameters that most affect peak values of the immune system outcomes from
vaccination and, thus, the longevity of components of vaccine-induced immunity. Finally,
we study the effects of delays in the second dose of the vaccine and the use of smaller-sized
second doses. We conclude the paper in Section 4.

2. Model

The adaptive immune system is activated after exposure to an antigen either through
vaccination or infection by a pathogen if the innate immune response is insufficient to
stop the disease. Cell-mediated immunity, contributed by T-cells, and humoral immu-
nity, controlled by activated B-cells, are components of the adaptive immune response
that activate the immune system to protect the human body. These immune response
components also generate memory T- and B-cells to protect an individual from future
infection or disease. We have developed a mathematical model of an adenovirus vaccine
that considers humoral and cell-mediated immune response mechanisms. The mechanisms
of the cell-mediated immune response are illustrated in Figure 1, using bold and shaded
components. Upon vaccination, vaccine particles will be recognized by components of the
innate immune response, antigen-presenting cells (APCs, denoted here by APC1 and APC2,
which are related to major histocompatibility complex (MHC) class 1 and 2 molecules,
respectively). T helper type 0 cells (Th0) are activated through (APC2) and differentiate
into Th1 and Th2 cells (central part). Cytotoxic T-cells (CTL, also called CD8 T-cells) can
then be stimulated through the cytokine production from Th1 cells, including interleukins
(IL2, IL12), transforming growth factor-alpha TGFα and Interferon IFNγ. Activated CTL
differentiates into effector cells, which can then become memory CD8 T-cells. Th2 cells
recognize the Th epitopes that are presented by B-cells through the MHC class II receptors.
After being activated, Th2 cells secrete IL4, IL5, IL6, IL10, and TGFβ to stimulate B-cell
activation and differentiation into plasma cells and memory B-cells (right part). The plasma
cell produces neutralizing (NAb) antibody responsible for clearing the infection [4–6].
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Figure 1. Vaccine-induced immune activation pathway for an adenovirus vaccine. Faint background:
The subsequent downstream of signaling pathways activated through adaptive immunity when
SARS-CoV-2 enters the human cell. Highlighted compartments describe vector-based vaccine-
induced immune system stimulation that is modeled explicitly in this study. The dashed arrows
show implicit communications between cells and cytokines, and the only solid arrow indicates the
production of antibodies by B-cells.

A simple network that reflects the entire diagram in Figure 1 is shown in bold. This
simple network provides the basis of the mathematical model used in this study and has
been chosen so to reduce the dimension of the system, given available parameters from
the literature and the availability of the vaccine data. We explicitly consider T helper type
0 cells, plasma B-cells, antibody, cytotoxic T-cells, and two central cytokines, including IFNγ
and IL6. An external stimulus, the vaccine, activates the immune response. The model
consists of the following system of seven nonlinear ordinary differential equations.

dV
dt

= −α16VA− γvV (1a)

dT
dt

= µ21V − γtT (1b)

dF
dt

= µ32T − γ f F− α37F C (1c)

dI
dt

= µ42T − γi I − α45 I B (1d)

dB
dt

= µ52T + α54

(
I

Si + I

)
B− γbB (1e)

dA
dt

= µ65B− γa A− α61 A V (1f)

dC
dt

= µ71V + α73

(
F

S f + F

)
C− γcC (1g)

with variables summarized in Table 1, and 21 model parameters, listed in Table 2. Ac-
cordingly, parameters referring to variable production processes are denoted by µij, where
i and j = {1, 2, . . . , 7}, corresponding to populations {V, T, F, I, B, A, C}, and denote the
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stimulated and stimulating populations, respectively. Parameters referring to the interac-
tion of entities i and j are denoted by αij. We note that αi,j is not necessarily equal to αji.
Finally, parameters referring to the natural death of the population under consideration
are defined by γk, where k in {v, t, f , i, b, a, c}, corresponding to the model variables.

Table 1. Model variables.

Variable Definition

V Vaccine cell
T T helper type 0 cell (Th0)
F Interferon gamma (IFNγ)
I Interleukin 6 (IL− 6)
B Plasma B-cell
A Antibody
C Cytotoxic T-cell

Table 2. Model Parameters.

Parameter Definition Value Unit Comment

α16 Vaccine neutralizing rate by antibody molecules 1 × 10−6 day−1(a.u.)−1 Handle et al., 2018
γv Vaccine clearance rate 0.2 day−1 Cao et al., 2016
µ21 Th0 cells activation rate by vaccine particles 0.035 day−1 Chosen
γt Th0 cells natural death rate 0.055 day−1 Cao et al., 2016

µ32 IFNγ stimulation rate by Th0 2.55 day−1 Fitted
γ f IFNγ natural degradation rate 0.13 day−1 Fitted
α37 IFNγ absorption rate by CTL for mitotic signals 0.006 day−1(a.u.)−1 Fitted

µ42 IL6 release rate by Th0 1.3 day−1 Fitted
γi IL6 natural degradation rate 0.0008 day−1 Chosen
α45 IL6 absorption rate by B-cells for mitotic signals 0.0001 day−1(a.u.)−1 Fitted

µ52 B-cell activation rate by Th0 0.02 day−1 Fitted
α54 B-cell stimulation rate by IL 0.05 day−1(a.u.)−1 Fitted
Si B-cell duplication threshold due to IL 1000 a.u. Chosen
γb B-cell natural death rate 0.06 day−1 Fitted

εµ65 Released Ab rate by B-cells 7 day−1 Fitted
γa Ab natural degradation rate 0.06 day−1 Fitted
α61 Ab - V cells binding rate 1 × 10−7 day−1(a.u.)−1 Chosen

µ71 CTL activation rate by vaccine 0.002 day−1 Fitted
α73 CTL stimulation rate by IFNγ 0.09 day−1(a.u.)−1 Fitted
S f CTL duplication threshold due to IFNγ 600 a.u. Chosen
γc CTL natural death rate 0.01 day−1 Wang et al., 2016

In Equation (1a), vaccine particles are injected into the host with a predefined dosage.
Their inhibition is described by natural decay and neutralization by antibody [7,8].

T helper cells are essential cells in that they are involved in activating the humoral
and cell-mediated immune responses. T helper cells are activated by specialized antigen-
presenting cells (APCs) through the primary histocompatibility class II/peptide complexes.
Model (1) considers T helper type 0 cells only (we do not consider differentiated T-cell
dynamics). See Equation (1b). We also simplify the model by ignoring the explicit popula-
tion of APCs and instead assume that the Th0 population activation is proportional to the
vaccine particles in the system (i.e., we assume that the APC population is proportional to
the vaccine particles count).
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IFNγ is a type-II IFN that plays a crucial role in regulating the adaptive immune
response. It is produced by a wide variety of lymphocytes, including CD4+, CD8+, and
regulatory T (Treg) cells, B-cells, and NK cells. Although numerous cells can express IFNγ, it
is mainly secreted by T-cells, and it is the defining cytokine of Th1 helper cells [9,10]. Accord-
ingly, and based on the signaling pathway introduced by Figure 1 here, in Equation (1c), we
define the source term of IFNγ (µ32T) to be the Th0 cells in the system. We also assume that
IFNγ can be degraded or removed in the system by (1) Th0 cell surface binding (for mitotic
and stimulation signals in cytotoxic T-cell, C, proliferation [11]), and (2) natural decay.

We also explicity model IL6, another cytokine in the system (Equation (1d)). IL6 is a
pleiotropic cytokine [12,13] produced by many different T-cell types, including T- and
B-cells [14], that has a pivotal role in the activation and stimulation of the immune
response [15]. IL6 also plays an important role in antibody production [16]. IL6 has a
wide range of functions and acts as a B-cell stimulatory factor to induce antibody pro-
duction [17]. Elevated IL6 levels are found in COVID-19 patients with mild and severe
symptoms [18–31] implying that IL6, alongside other cytokines, can be of prognostic value
in these patients [32]. In our mathematical model, IL6 is considered to be secreted indirectly
by Th0 cells and is partially absorbed for stimulation signals in B-cell priming.

Plasma B-cells are long-lived, non-proliferating cells arising from B-cell differentiation,
stimulated by interaction with T helper cells. Activated plasma B-cells produce neutralizing
antibody, which are responsible for clearing the infection. In Equation (1e) we consider an
indirect activation of plasma B-cells by Th0 cells at rate µ52T, and by IL6, which is assumed
to have an adjuvanted role in stimulation, α54(

I
Si+I )B, where α54 is a recruitment rate and

Si is a saturation constant. Plasma B-cells die naturally at rate γb.
Humoral immunity is an antibody-mediated response that occurs when plasma B-cells

are activated. In Equation (1f) we assume that antibody production is proportional to the
number of plasma B-cells, by rate µ65. We also assume that antibodies are degraded at a rate
γa, or removed through vaccine binding at rate α61. They can be lost to the system through
vaccine particle binding (α61 A V). Note that the simulated antibody, without specialization,
is entirely the neutralizing antibody (Nabs), which is responsible for defending cells from
pathogens or infectious particles by neutralizing its biological effects.

Finally, like the activation of Th0 cells, in Equation (1g), we assume that cytotoxic
T-cells (also known as cytotoxic T-lymphocytes, CTL, and activated CD8 T-cells) priming
is proportional to the number of vaccine cell particles (µ71V). We also assume that IFNγ
can stimulate further cytotoxic effector T-cells (term α73(

F
S f +F )C) [9,33]. Finally, cytotoxic

T-cells die at rate γc.
The initial conditions for all activated cells and cytokines are zero T(0) = F(0) =

I(0) = B(0) = A(0) = C(0) = 0, assuming that we are starting in a system with no
activated immune response. The first and second doses are entered into the system using
an initial condition of V(0) = 1000, and an impulse of 1000, 500 or 250 vaccine particles is
provided to the system at the time of the second dose. The standard dose size used here is
chosen to be 1000 vaccine particles. This is an arbitrary value. When a smaller or larger
dose size is chosen, parameters µ21, α61 and µ71 are simply rescaled.

2.1. Parameter Fitting

The vaccine on which we base our parameters is the one produced by AstraZeneca/
Oxford [1], an adenovirus-based SARS-CoV-2 vaccine that has been approved in many
countries, such as the United Kingdom, Bangladesh, Egypt, Australia, Canada, Thailand,
Malaysia, Philippines, South Korea and so on. We parameterize the model by fixing some
parameter values from the literature and others to the vaccine trial data using a grid search
method. Some parameters had limited data availability, and their values are chosen (see
Table 2). Sensitivity analyses are performed to assess variations in model outcomes due
to changes in the fixed and chosen parameters. The final fit of the model to the vaccine
trial data was defined by the minimum of the root-mean-squared error (RMSE), which
considers differences between the IFNγ and antibody data for SARS-CoV-2 IgG response,



Vaccines 2021, 9, 861 6 of 13

and the model-predicted values for these values. Clinical trial data for one and two doses
of the vaccine are both considered.

We note that the parameters of the modeled neutralizing antibody response are fit
to IgG clinical data. Although IgG is the most common antibody (70–75% of all human
immunoglobulins found in the plasma [34,35]), we must consider a proportionality between
IgG and the antibody population. We thus assumed that IgG = ε NAbs, and the antibody
equation in Model (1) becomes

dIg
dt

= µ65εB− γa Ig− α61 Ig V .

Consequently, we consider µ65ε as one parameter in the model fit to the vaccine
trial data.

2.2. Sensitivity Analysis

We employ sensitivity analysis methods that include Latin hypercube sampling
(LHS) [36,37] and partial rank correlation coefficients (PRCC) to study the effects of param-
eter variation on key model outcomes of interest. We use 10,000 samples from a uniform
distribution over parameter ranges within the interval with median = parameter value,
listed in Table 2, minimum = 0.5*parameter and maximum = 1.5*parameter. PRCC val-
ues are calculated on model outcomes associated with a strong vaccine-induced immune
response. We choose to study the peak magnitude of each model variable, as peak value
correlates with a longer-lasting immune response. We note that PRCC values with a mag-
nitude close to unity indicate that the parameter has the highest attainable significant
impact on the model output [38]. A value greater than 0.5 is assumed to be significant [38].
Additionally, PRCC values can be negatively (negative sign) or positively correlated with a
model outcome [39].

3. Results

The model fit to the IgG and IFNγ data [1] is shown in Figure 2. We observe that post
priming, the model predicted antibody level is comparable to the clinical trial data for the
56–69 (one dose) age group, and it lies in the upper range of the antibody levels reported
by [1]. After boosting (red line), the antibody level increases to about 104 titer, which lies
close to the lower end of the clinical trial measurements.

The model-predicted result of IFNγ after the prime is also consistent with clinical data
and boosted by the second dose injection. The resulting IFNγ level predicted by the model
lies close to the lower values measured in the clinical trial at days 28 and 42.
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Figure 2. Antibody and IFNγ fit to the clinical trial data [1]. Blue and red solid lines: predicted results
for participants who received one (blue) or two doses (red), with a boost dose at day 28 (shown by
black vertical dashed lines). Left: The purple horizontal dashed line shows the maximum stimulated
antibody level post-boost.
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3.1. Sensitivity Analysis

A sensitivity analysis is performed to assess changes in model outcomes as parameter
values are varied. We examine the sensitivity of the peak values of T helper cells, IFNγ,
interleukin, B-cells, antibody, and cytotoxic T-cells. We are interested in determining what
parameters maximize peak values so that longer-lasting immune outcomes can be realized
from vaccination (assuming that longer-lasting immunity correlates with increased peak
value). Results of the LHS/PRCC analysis are shown in Figure 3 for all model parameters.
Significant parameters affecting peak values, with an absolute value of PRCC > 0.5, are
listed in Table 3. A monotonic relationship between the outcomes and the parameter values
is confirmed in all cases.

Table 3. Parameter sensitivity with absolute value of PRCC ≥ 0.5.

Variable Parameter Absolute PRCC Value

A (Antibody)

γb 0.8 < PRCC < 0.9
µ21 ≈0.8
γv ≈0.8
εµ65 ≈0.7
α54 0.6 < PRCC < 0.7
γt ≈0.6
µ52 ≈0.6
γa 0.5 ≤ PRCC < 0.6

α73 0.8 < PRCC < 0.9
γv 0.8 < PRCC < 0.9
γt ≈0.7

C (CTL) µ21 0.6 < PRCC < 0.7
µ32 0.6 < PRCC < 0.7
S f ≈0.7
µ71 ≈0.6

F (IFNγ)

µ21 ≈0.9
µ32 ≈0.9
γv 0.7 < PRCC < 0.8
γt ≈0.6
µ71 ≈0.5
α37 ≈0.5

µ21 ≈1
T (Th0) γv ≈1

γt ≈0.7

Plasma B

µ21 ≈0.8
γb ≈0.8
γv 0.7 < PRCC < 0.8
µ52 ≈0.7
α54 0.6 < PRCC < 0.7
γt ≈0.6

I (IL6)

µ42 ≈0.9
µ21 ≈0.9
γv 0.8 < PRCC < 0.9
γt 0.8 < PRCC < 0.9

Generally, we find that increases in peak value correlate with increases in stimulation
and secretion, and decrease with increases in death and decay rates. Peak antibody and
plasma B-cells both have a high sensitivity to γb, the B-cell natural death rate, α54, the
B-cell stimulation rate by IL− 6 and µ52, the B-cell activation rate by Th0. Peak CTL is
very sensitive to α73, simulation rate by IFNγ,µ32, IFNγ stimulation rate by Th0, S f , CTL
duplication threshold due to IFNγ, which is a chosen parameter, and activation by virus
particles, µ71. Variations in secretion rates µ32 and µ42 significantly affect the peak values
of interferon and interleukin, respectively.
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We note that variation in µ21, γt and γv significantly affects all populations. This is
an intuitive result as µ21, γt, and γv all affect the peak Th0 value, and the Th0 population
stimulates the rest of the immune response.
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Figure 3. Sensitivity analysis of Model (1) using 10,000 iterations of a Latin hypercube sampling (LHS) method with a
partial rank correlation coefficient (PRCC). PRCC values with magnitude close to unity indicate that the parameter has a
strong impact on the model output [38].

We note that µ21 is is a chosen parameter. Although variation in its value significantly
affects all population peak values, since it is related to the activation rate of the Th0 popula-
tion, which activates the rest of the immune response, it is always countered by sensitivity
to γv and γt, which are parameters informed by the literature. Given a constant activation
and proliferation capacity of Th0 cells, an increase in µ21 would require an increase in γt of
similar magnitude. Therefore, we conclude that sensitivity to this parameter is limited.

Lastly, we note that the only other chosen parameter value that significantly affects
any model outcome is S f , the saturation constant of the CTL population. The parameter
ranks 6th in significance related to peak CTL value only, suggesting that sensitivity to this
parameter is not a concern.

3.2. Mechanism of Vaccine-Induced Immunity with Booster Delay and Sparing

We now apply Model (1) in a study of reduced second dose volume, and its delay.
We consider several different scenarios based on varying assumptions on boosting (second
dose). We first provide the system with a standard dose (SD) of 103 vaccine particles.
We then provide a SD second dose, a low dose (LD) of 500 vaccine particles, or a LD of
250 vaccine particles. The second dose is injected into the system 28, 42, 56, 70, 84, 98, 112,
126, or 140 days later (corresponding to 4, 6, 8, 10, 12, 14, 16, 18, and 20 weeks between
doses). Figure 4 shows the antibody and CTL populations generated from the model
considering all of these cases.

3.2.1. Antibody and Cytotoxic T-Cell Responses

Model predictions suggest quantitative differences in neutralizing antibody and cyto-
toxic T-cell responses stimulated by the vaccine administration by an SD or LD boost 4 to
20 weeks post priming, see Figure 4. By comparing the SD/SD and SD/LD regimens, we
find that higher peaks of antibodies and CTL are achieved for the second dose when the
SD dose is provided—viewing the second peak in each panel of Figure 4, the maximum
activated antibody level decreases from panel (a) to panels (b) and (c), the maximum
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stimulated CTL reduces from 80–100 in the SD/SD regimen (panel (a)) to 50–70 (panel (b))
and 30–60 (panel (c)) in SD/LD regimens. We, however, also observe that a higher antibody
or CTL peak after the second dose, compared to the first dose peak, may not be achievable
if the doses are too far apart (long delays in second dose), or the dose is too small. With
respect to antibodies, the peak after the second dose is always greater than the first dose
peak if an SD is used. When an LD is used, the time between doses must be shorter.
For the CTL, a higher second peak can be achieved under all scenarios using an SD and
an LD = SD/2, but the peak after the second dose may not surpass the first peak if an
LD = SD/4 is used (shorter times between doses are needed).
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Figure 4. Antibody (IgG) and CTL outcomes with standard (SD) and low dose (LD), with and
without delay. Model predictions of antibody, first row, and cytotoxic T-cells, second row, with
second dose vaccination on days: 28 (week:4), 42 (week:6), 56 (week:8), 70 (week:10), 84 (week:12),
98 (week:14), 112 (week:16), 126 (week:18), and 140 (week:20, shown by colored vertical dashed
lines.). The second dose value (sd) in panel (a) is the same as the initial dose (id) value: (sd = Id = 1000
vaccine particles), in panel (b) it is decreased by half (sd = Id/2 = 500 vaccine particles), and in panel
(c) is decreased by a quarter (sd = Id/4 = 250 particles).

Considering the CTL population we can also observe that shorter times between doses
do not necessarily result in larger CTL peak values. Here, we observe that a time-frame of
4 weeks between doses is not optimal. Generally, we find that the second-dose induced
antibody enhancement is increased if the prime-boost time interval is short. The differing
outcomes between the antibody and CTL populations may be explained by the fact that CTL
activity might be required to account for lower levels of antibodies that cannot neutralize
the virus particle efficiently.

3.2.2. Cytokines, B and Th0 Cell Responses

Here we investigate the model predictions of proinflammatory cytokines, including
IFNγ and IL6, alongside plasma B- and Th0-cells for four different prime-boost intervals
(containing 4, 6, 8, and 10 weeks) in SD/SD regimen. Results are shown in Figure 5. We find
that prolonging the time interval between doses reduces levels of IFNγ but increases IL6
levels. We also observe that the plasma B-cell count increases, but that a Th0 enhancement
can only be achieved if the time between doses is less than 70 days.

3.2.3. Protective Capacity

An important question that we must consider is whether the model-predicted antibody
and CTL levels would protect against SARS-CoV-2 infection by existing or new emerging
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variants. Our models results cannot comment on direct protection, but we can compare
the model outcomes to antibody levels in recovered COVID-19 individuals. In [3], the
authors measured SARS-Cov-2-specific neutralizing antibody in plasma from 175 recovered
COVID-19 patients with mild symptoms. They reported that 39% of the patients have
medium-high antibody 1000-25000 titers (ID50), that 30% have less than 500 antibody titers,
and 14% have titers greater than 2500. Figure 4 shows that after the second dose injection
for the SD/SD regimen the maximum stimulated IgG antibody for short prime-boost
intervals, such as 4, 6, 8, 10 weeks, is much higher than a 2500 titer (≈104). The maximum
stimulated antibody, however, decreases as the time between doses increases. At 20 weeks
between doses, the antibody level reaches ≈4000 upon boosting. Interestingly, for the
regimen SD/LD, with the second dose value at SD/2, the promoted antibody level up to
an 18-week delay is greater than 2500 and is about the same level at 20 weeks between
doses (≈2500). For the last scenario where the second dose is a quarter of the prime dose,
the minimum activated antibody level is ≈1000 for a long time-frame between doses (week
18, or 20).
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Figure 5. Model predictions of IFNγ, IL-6, plasma B-cells and T helper type 0 cells Th0 for the
received boost dose (1000 vaccine particles) on days 28 (blue curve), 42 (red curve), 56 (green curve)
and 70 (purple curve). The vertical dashed lines show the second dose injection days.

We must now consider neutralizing antibodies to through the parameter varepsilon.
From [35], if we assume ε = 0.7, we find that the minimum promoted neutralizing antibody
through different second-dose injection weeks (from week = 4, ...., 20) for (i) SD/SD
regimen is ≈5714, (ii) SD/LD regimen with LD = SD/2 is approximated by 3571, and (iii)
SD/LD with LD = SD/4 is ≈1429. Considering a worst-case scenario with ε = 0.3 for IgG
percentage, we have ≈13,333, 8333 and 3333 minimum antibody titer levels of stimulated
neutralizing antibody. We thus predict that using even the pessimistic range of neutralizing
antibody achieves the same level of high and medium-to-high neutralizing antibodies as
observed in COVID-19 recovered individuals.

4. Discussion

In this work, we have employed a mathematical model to study the vaccine-induced
adaptive immune response through cell-mediated and humoral (antibody-mediated) im-
munity given an adenovirus vaccine [1]. Using a set of nonlinear ordinary differential
equations, we present a new model of vaccine-induced immunity that is parameterized
with the clinical trial data for the COVID-19 ChAdOx1-S (AZD1222) vaccine. The model
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parameters are determined by grid search over parameter ranges to minimize the RMSE
of IFNγ and antibody functions. In addition to the fitted parameters, the model includes
some chosen parameters. Our sensitivity analysis in Figure 3 shows that variations in these
parameters do not significantly affect model peak values of the model parameters, except
mu21, the activation rate of Th0 by the vaccine particles.

Our model predictions for IFNγ and antibody are consistent with the clinical trial
data of the adenovirus-based Oxford vaccine [1]. Recent studies have explored scenarios
for reduced vaccine dose size, to consider if vaccine supply is scarce. In [40] the authors
studied the effects of reducing the prime dose of a SARS-CoV-2 adenovirus-based vaccine
in a mouse model. Their in vivo experiments demonstrated that mice initially primed with
a low-dose (LD) vaccine significantly exhibited a higher level of the immune response.
In another study, Geoffroy et al. looked at the effects of increasing the time interval between
doses, using an SIR epidemiological model [41]. We have considered SD/LD cases with
varying time frames between doses. Our results demonstrate that an enhanced immune
response can be realized in some immune response populations, whereas the antibody
response is best if doses are given 28 days (4 weeks) apart.

Our mathematical model does not take into account memory B-cells and T-cells,
instead focusing on correlations between such memory cells and the model peak plasma B-
and Th0-cells. With more clinical data availability, future extension may include stimulation
of memory cells. The inclusion of memory cells is a course for future work.

We have analyzed different scenarios given a second dose of vaccine that is delayed
or reduced in size. Our model predictions show that either limiting the second dose or
increasing the prime-boost time interval leads to an attenuated adaptive immune response.
However, in agreement with previous clinical findings [3], the model-predicted antibody
achieves levels lie in the same range as the neutralizing antibody in 39% of COVID-19
recovered patients. Hence, a delayed second dose in combination with smaller doses sizes
may allow for sufficient dose allocation to meet specific population vaccination targets
while maintaining vaccine efficacy. We note that we do not consider specific vaccine
efficacy here, and simply compare neutralizing antibody levels, which are a measure of
protection. A study of vaccine efficacy against different strains of SARS-CoV-2 is a course
for future work.

It is important to note that [1] observed similar outcomes in LD/LD scenarios in
their clinical trial compared to SD/SD individuals, across different age groups, given a
28-day interval between doses. We have not considered this case here, but we plan to in
future work.
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