
RESEARCH ARTICLE

Specific excitatory connectivity for feature

integration in mouse primary visual cortex

Dylan R. Muir1,2*, Patricia Molina-Luna2, Morgane M. Roth1,2, Fritjof Helmchen2, Björn

M. Kampa2,3,4

1 Biozentrum, University of Basel, Basel, Switzerland, 2 Laboratory of Neural Circuit Dynamics, Brain

Research Institute, University of Zurich, Zurich, Switzerland, 3 Department of Neurophysiology, Institute of

Biology 2, RWTH Aachen University, Aachen, Germany, 4 JARA-BRAIN, Aachen, Germany

* dylan.muir@unibas.ch

Abstract

Local excitatory connections in mouse primary visual cortex (V1) are stronger and more

prevalent between neurons that share similar functional response features. However, the

details of how functional rules for local connectivity shape neuronal responses in V1 remain

unknown. We hypothesised that complex responses to visual stimuli may arise as a conse-

quence of rules for selective excitatory connectivity within the local network in the superficial

layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli

(plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted

by responses to single gratings presented alone. This complexity is surprising, since ex-

citatory neurons in V1 are considered to be mainly tuned to single preferred orientations.

Here we examined the consequences for visual processing of two alternative connectivity

schemes: in the first case, local connections are aligned with visual properties inherited from

feedforward input (a ‘like-to-like’ scheme specifically connecting neurons that share similar

preferred orientations); in the second case, local connections group neurons into excitatory

subnetworks that combine and amplify multiple feedforward visual properties (a ‘feature

binding’ scheme). By comparing predictions from large scale computational models with in

vivo recordings of visual representations in mouse V1, we found that responses to plaid sti-

muli were best explained by assuming feature binding connectivity. Unlike under the like-to-

like scheme, selective amplification within feature-binding excitatory subnetworks replicated

experimentally observed facilitatory responses to plaid stimuli; explained selective plaid

responses not predicted by grating selectivity; and was consistent with broad anatomical

selectivity observed in mouse V1. Our results show that visual feature binding can occur

through local recurrent mechanisms without requiring feedforward convergence, and that

such a mechanism is consistent with visual responses and cortical anatomy in mouse V1.

Author summary

The brain is a highly complex structure, with abundant connectivity between nearby neu-

rons in the neocortex, the outermost and evolutionarily most recent part of the brain.
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Although the network architecture of the neocortex can appear disordered, connections

between neurons seem to follow certain rules. These rules most likely determine how

information flows through the neural circuits of the brain, but the relationship between

particular connectivity rules and the function of the cortical network is not known. We

built models of visual cortex in the mouse, assuming distinct rules for connectivity, and

examined how the various rules changed the way the models responded to visual stimuli.

We also recorded responses to visual stimuli of populations of neurons in anesthetized

mice, and compared these responses with our model predictions. We found that connec-

tions in neocortex probably follow a connectivity rule that groups together neurons that

differ in simple visual properties, to build more complex representations of visual stimuli.

This finding is surprising because primary visual cortex is assumed to support mainly sim-

ple visual representations. We show that including specific rules for non-random connec-

tivity in cortical models, and precisely measuring those rules in cortical tissue, is essential

to understanding how information is processed by the brain.

Introduction

Much of our current understanding of local cortical connectivity in neuronal circuits of the

neocortex is based on the presumption of randomness. Anatomical methods for estimating

connection probabilities [1,2] and techniques for using anatomical reconstructions to build

models of cortical circuits [3–7] are largely based on the assumption that connections between

nearby neurons are made stochastically in proportion to the overlap between axonal and den-

dritic arborisations [8].

On the other hand, a wealth of evidence spanning many cortical areas and several species

indicates that cortical connectivity is not entirely random. In species that display smooth func-

tional maps in primary visual cortex (V1), such as cat and macaque monkey, long-range

intrinsic excitatory connections tend to preferentially connect regions of similar function [9–

13]. Although rodents exhibit a mapless, “salt and pepper” representation of basic visual fea-

tures across V1 [14], non-random connectivity is nonetheless prevalent both within and

between cortical layers [15–20], reflecting similarities in functional properties [21–25] or pro-

jection targets [26–28].

Despite multiple descriptions of specific connectivity in cortex, the rules underlying the

configuration of these connections are not entirely clear. Whereas strong connections are

more prevalent between neurons with similar receptive fields, the majority of synaptic connec-

tions are made between neurons with poorly-correlated receptive fields and poorly correlated

responses [24]. This sea of weak synaptic inputs might be responsible for non-feature-specific

depolarisation [24] or might permit plasticity of network function [20].

However, another possibility is that weak local recurrent connections reflect higher-

order connectivity rules that have not yet been described. Recent reports have highlighted

the facilitatory and selective nature of plaid responses in mouse V1 [29–31]. Many neurons

in mouse V1 respond to plaid stimuli in accordance with a simple superimposition of their

responses to the two underlying grating components (i.e. “component cell” responses [32]).

However, a significant proportion of neurons that are visually responsive, reliable and selec-

tive exhibit complex responses to plaid stimuli that are difficult to explain with respect to

simple combinations of grating components [30]. We hypothesised that responses to com-

plex stimuli in mouse V1 could be a result of local combinations of visual features, through

structured local recurrent excitatory connectivity. These rules could be difficult to detect
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through anatomical measurements, if they comprised only small deviations from predomi-

nantly like-to-like connectivity.

Here we examined whether small tweaks to recurrent connectivity rules could alter visual

representations in cortex, by analysing the computational properties of cortical networks with

defined rules for local connectivity. We simulated visual responses to grating and plaid stimuli

in large networks with properties designed to resemble the superficial layers of mouse V1,

assuming distinct connectivity schemes. We then compared the response patterns and visual

representations predicted by the network simulations with those recorded in vivo in mouse

V1, to test the predictions arising from our models.

Specifically, we evaluated two broad classes of connectivity patterns, where specific local

excitatory connectivity is defined according to the visual response properties of neurons

(Fig 1):

1. Strictly “like-to-like” connectivity, such that neurons with similar response properties

defined by their feedforward inputs to each neuron (e.g. orientation tuning of neurons in

the superficial layers, arising from tuned input from layer 4) are grouped into subnetworks;

2. A form of “feature-binding” connectivity, such that in addition to predominantly like-to-

like connectivity, excitatory neurons with differing feedforward visual properties (e.g. dis-

tinct orientation preference) are also grouped together.

Despite the small difference in network configuration, these distinct rules give rise to radi-

cally different visual representations of plaid stimuli, both in terms of complexity of visual

response selectivity of individual neurons and regarding facilitation versus suppression in

response to these compound stimuli. We found that the complexity of plaid responses in

mouse V1 was reproduced in our simulations when assuming the feature-binding connectivity

scheme, with local connections grouping multiple feedforward response properties, but not

when assuming purely like-to-like connections.

Results

Responses to plaid stimuli are selective and facilitatory in mouse V1

Under the assumption that the configuration of local recurrent connections in cortex might

lead to differential processing of simple and compound visual stimuli, it is important to quan-

tify the relationship between responses to grating and plaid stimuli in visual cortex. Plaid

Fig 1. Like-to-like and feature-binding rules for local recurrent connectivity. a Connectivity scheme

where local recurrent excitatory connections (between neurons grouped by dashed ovals) are matched to the

feedforward visual preferences of the connected neurons (like-to-like over orientation preference, indicated by

grating icons). b Connectivity scheme where local recurrent excitatory connections are different from the

feedforward visual preferences of connected neurons (feature-binding). Connections to and from inhibitory

neurons (circles and shading) are assumed to be non-specific in all cases. Exc.: excitatory; Inh.: inhibitory.

https://doi.org/10.1371/journal.pcbi.1005888.g001
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stimuli are often constructed from a single choice of relative component angle (90˚ orthogonal

gratings), leaving open the possibility that a richer set of plaid stimuli would help to classify

neurons with complex responses.

We therefore probed mouse V1 with grating component stimuli composed of grating sti-

muli with 16 drift directions, and three full sets of plaid stimuli composed of 45˚, 90˚ and 135˚

relative grating component orientations. We recorded responses from layer 2/3 neurons in V1

using two-photon imaging of animals expressing GCaMP6m (Fig 2A–2F; 8 animals, 8 sessions,

441 / 879 responsive / imaged neurons; see Methods). We defined a modulation index (MI) to

quantify the degree of facilitation or suppression elicited by plaid stimuli over grating stimuli,

for single cortical neurons; large positive values for MI indicate strong facilitation in response

to plaid stimuli, whereas large negative values indicate strong suppression (see Methods).

Visual responses to the full set of plaid stimuli were dominated by facilitation, and were signifi-

cantly more facilitatory than when considering only the set of 90˚ plaids (Fig 2I; median mod-

ulation index MI 0.098 ± [0.081 0.12] vs 0.011 ± [-0.0060 0.027]; p< 1×10–10, Wilcoxon rank-

sum; all following values are reported as median ± 95% bootstrap confidence intervals unless

stated otherwise).

Fig 2. Plaid responses are facilitatory and selective in mouse V1. a–b Two-photon calcium imaging of

visual responses in mouse V1. b Average of 6 imaging frames. c Trial-averaged responses (7 trials) of a

single neuron in mouse V1 to grating and (d–f) plaid stimuli of varying relative component orientations. g–h

Response tuning of the same neuron in c–f. Neurons can be highly tuned to oriented gratings, and also highly

selective for particular combinations of grating components. i When three sets of plaid stimuli with varying

relative component angles are presented, the majority of neurons have facilitating responses to plaids (64%

with MI > 0.05). In response to 90˚ plaids alone however, neurons are more evenly split between facilitation

and suppression (39% with MI > 0.05; dashed). j Responses to combined plaid sets are significantly more

selective than responses to 90˚ plaids alone, and significantly more selective than predicted plaid responses

under a component response model [30]. *** p < 1×10–10, Wilcoxon rank-sum test. OSI: orientation

selectivity index; DSI: direction selectivity index; PSI: plaid selectivity index; MI: modulation index; facil.:

facilitating; supp.: suppressing; prop.: proportion.

https://doi.org/10.1371/journal.pcbi.1005888.g002
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The presence of stronger facilitation when comparing responses to the full set of plaid sti-

muli with responses to 90˚ plaids alone, is consistent with our earlier finding that some neu-

rons in mouse V1 are highly selective for particular combinations of grating components

[30]. Accordingly, we used a plaid selectivity index (PSI) to quantify how selective were the

responses of single neurons over the set of plaid stimuli (see Methods). The PSI was defined in

analogy to orientation or direction selectivity indices (OSI or DSI), such that values of PSI

close to 1 indicate that a neuron responds to only a single plaid stimulus out of the set of pre-

sented plaid stimuli. Values of PSI close to 0 indicate that a neuron responds equally to all

plaid stimuli. Responses to the full set of plaid stimuli were highly selective; significantly more

selective than predicted by a component model generated using all plaid and grating stimuli

(Fig 2J; median PSI 0.38 ± [0.36 0.41] vs 0.30 ± [0.28 0.31]; p< 1×10–10, Wilcoxon rank-sum)

and indeed significantly more selective than responses to the 90˚ plaids alone (Fig 2J; median

90˚ PSI 0.25 ± [0.23 0.28]; p< 1×10–10 vs all plaids, Wilcoxon rank-sum).

Therefore, probing visual cortex with a dense set of plaid stimuli reveals richer visual

responses than when probed with a set of only 90˚ plaids. Indeed, recent results suggest that

using an expanded set of plaid stimuli evokes more pattern-cell responses in mouse V1 [31].

Consistent with this finding, our results show that using a dense set of plaids does not make

responses to compound stimuli trivial to predict based on component responses. In addition,

we found that visual responses were more facilitatory and more selective than when measured

using 90˚ plaids alone.

Local excitatory connections in cortex are broadly selective for preferred

orientation

How are selective, facilitatory responses to plaid stimuli generated in V1? As we suggested pre-

viously, one possibility is that specific grating component representations are combined

through local excitatory connectivity [30]. In mouse V1, synaptic connection probability is

enhanced by similarity of orientation preference [21,23,25], suggesting that local excitatory

connections may group together neurons with common preferred orientations. Connection

probability is even more strongly modulated by neuronal response correlations to natural

visual stimuli; i.e., the likelihood for a synaptic connection is higher for neuronal pairs

responding similarly to natural scenes [21,22,24].

If connections in mouse V1 were strictly governed by preferred orientation, then neurons

with similar orientation preference should also predominately have similar responses to natu-

ral movies, and vice versa. We recorded visual responses in populations of neurons labelled

with the synthetic calcium indicator OGB in anesthetized mouse V1 (5 animals, 129 / 391

responsive neurons with overlapping receptive fields / total imaged neurons; S1A–S1C Fig; see

Methods). We used signal correlations to measure the similarity between the responses of

pairs of neurons with identified receptive fields (S1A Fig) to drifting grating (S1B Fig) and nat-

ural movie (S1C Fig) visual stimuli (see Methods).

We found that neuronal pairs with high signal correlations to natural scenes, which are

most likely to be connected in cortex [21,22,24], showed only a weak tendency to share similar

orientation preferences (S1D and S1E Fig; pairs with OSI> 0.3; p = 0.8, Kruskall-Wallis). This

is consistent with earlier findings in cat area 17 (V1), which showed a poor relationship

between responses to gratings and natural movies [34].

Similarly, under a like-to-like connectivity rule, synaptically connected neurons in mouse

V1 should share both similar orientation preference and responsiveness to natural movies.

We therefore compared response correlations and preferred orientations for pairs of mouse

V1 neurons, which were known to be connected from in vivo / in vitro characterisation of

Feature integration in mouse V1
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functional properties and connectivity (data from [24] used with permission; 17 animals, 203

patched and imaged cells, 75 connected pairs). Consistent with our results comparing

responses to gratings and natural movies, connected pairs of cells with similar orientation pref-

erence were not more likely to share a high signal correlation to flashed natural scenes (S1F

Fig; p = 0.54, Kruskall-Wallis). Also consistent with earlier findings [21,23], we observed a pos-

itive relationship between synaptic connectivity and similarity of orientation preference (S1G

Fig; p = 0.045, Ansari-Bradley test). However, strongly connected pairs (strongest 50% of excit-

atory post-synaptic potentials—EPSPs—over connected pairs) were not more similar in their

preferred orientation than the remaining pairs (p = 0.17, Ansari-Bradley test vs weakest 50%

of connected pairs). Connected pairs spanned a wide bandwidth of preferred orientations,

with more than 20% of connections formed between neurons with orthogonal preferred orien-

tations. Spatial correlation of receptive fields is a comparatively better predictor for synaptic

connectivity than shared orientation preference, but a majority of synaptic inputs are never-

theless formed between neurons with poorly- or un-correlated responses [24]. We conclude

that similarity in orientation preference only partially determines connection probability and

strength between pairs of neurons in mouse V1.

This weak functional specificity for similar visual properties can be explained by two possi-

ble alternative connectivity rules. In the first scenario, local excitatory connections in cortex

are aligned with feedforward visual properties, but with broad tuning (Fig 1A; a like-to-like

rule). As a consequence, all connections show an identical weak bias to be formed between

neurons within similar tuning, and the average functional specificity reported in S1G Fig and

elsewhere [21,24] reflects the true connection rules between any pair of neurons in cortex.

Alternatively, local excitatory connections may be highly selective, but follow rules that are

not well described by pairwise similarity in feedforward visual properties. For example, sub-

populations of connected excitatory neurons might share a small set of feedforward visual

properties, as opposed to only a single feedforward property (Fig 1B; a feature-binding rule).

In this case, connections within a subpopulation could still be highly specific, but this specific-

ity would be difficult to detect through purely pairwise measurements. If pairwise measure-

ments were averaged across a large population, any specific tuning shared within groups of

neurons would be averaged away.

Models of local connectivity and cortical activity

We designed a non-spiking model of the superficial layers of mouse V1, to explore the effect of

different connectivity rules on information processing and visual feature representation within

the cortex. Non-spiking linear-threshold neuron models provide a good approximation to the

input current to firing rate (I–F) curves of adapted cortical neurons [35]; model neurons with

linear-threshold dynamics can be directly translated into integrate-and-fire models with more

complex dynamics [36,37], and in addition form good approximations to conductance-based

neuron models [38]. A full list of parameters for all models presented in this paper is given in

Table 1.

General equations governing model dynamics. Individual excitatory neurons (approxi-

mating layer 2/3 pyramidal cells) and inhibitory neurons (approximating layer 2/3 basket

cells) were modelled as linear-threshold units. The dynamics of each rate-coded neuron in the

large- and small-scale models was governed by the differential equation

ti � x
⦁

i ¼ � xi þ
XNN

j

gj � ni;j � aj½xj � bj�
þ
þ IiðtÞ þ si � ziðtÞ ð1Þ
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Here xi is the instantaneous activation current being injected into neuron i in Amperes (A).

This activation current causes the neuron to fire under a linear-threshold current-to-firing

rate (I–F) relationship, defined by α[x−β]+ = α�max(0,x−β). Here α is the I–F gain of the neu-

ron in Hz A-1, and β determines the minimum activation current in A below which the neuron

emits no spikes. Since both x and β are currents in A, the function α[x−β]+ determines the fir-

ing rate of the neuron in Hz. In Eq (1), Ii (t) denotes the stimulus input current in A provided

to neuron i at time t; σi�zi(t) is a white noise current included to approximate the barrage of

spontaneous excitatory and inhibitory post-synaptic potentials (EPSPs and IPSPs) experienced

by cortical neurons; τi is the lumped time constant of neuron i, representing a combination of

membrane, synaptic and firing dynamics; and NN is the total number of neurons in the model.

Equal time constants τ = 10 ms were used for all neurons; activation thresholds β were set to 0.

The directed connection strength between two neurons j and i is given in Eq (1) by gj�ni,j�αj =

wi,j, where gj is the current injected per output synapse of neuron j in A Hz-1; ni,j is the number

of synapses made by neuron j onto neuron i; and αj is the I–F gain of neuron j in Hz A-1. wi, j is

therefore a unitless gain factor expressing the effect of neuron j on the activation of neuron i.
Synaptic input. Synapses were modelled as constant current sources that injected an

amount of charge per second related to the average firing rate of the presynaptic neuron, mod-

ulated by the synaptic release probability. Single excitatory synapses were assigned a weight of

g = 0.01 pA Hz-1; single inhibitory synapses were considered to be 10 times stronger [4]. Excit-

atory and inhibitory neurons were assigned output gains of α = 0.066 Hz pA-1 [39].

Table 1. Summary of nominal model parameters and model variables.

Parameter Description Nominal value

τi Lumped neuron time constant for neuron i 10 ms

gj Nominal current injected by synapses from

neuron j

Exc.: 0.01 pA Hz-1

Inh.:10×0.01 pA Hz-1

αj Nominal I–F output gain of neuron j 0.066 Hz pA-1

ni, j Number of synapses made from neuron j to neuron i

βj Threshold of neuron j Zero

σi �ζi (t) Noise current injected into neuron i. Wiener

process with std. dev. σi after 1 sec.

σi = 5 mA

NN Number of neurons in simulation 80,000 (10% of cortical density)

Prop. inh. Proportion of inhibitory neurons 18%

Dimensions of simulated torus space 2.2×2.2 mm

Si Nominal number of synapses made by neuron

i (within superficial layers only)

Exc.: 8142

Inh.: 8566

σd, i Std. Dev. of Gaussian dendritic field of neuron

i

75μm (approx. width 30μm)

σa, i Std. dev. of Gaussian axonal field of neuron i Exc.: 290μm (approx. width 1100μm)

Inh.: 100μm (approx. width 400μm)

κi Input orientation tuning width parameter for

neuron i

4

s1 Degree of like-to-like modulation of anatomical connection probability

s2 Degree of feature-binding modulation of connection probability

κ1 Orientation tuning of like-to-like connection probability

κ2 Orientation tuning of subnetwork membership probability

NS Number of subnetworks that exist at a point in cortex

Θ Number of preferred orientations bound in a subnetwork

Abbreviations: Exc: Excitatory; Inh: Inhibitory; Prop: proportion.

https://doi.org/10.1371/journal.pcbi.1005888.t001

Feature integration in mouse V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005888 December 14, 2017 7 / 33

https://doi.org/10.1371/journal.pcbi.1005888.t001
https://doi.org/10.1371/journal.pcbi.1005888


Specific connectivity gives rise to amplification and competition

The dynamics of neuronal networks defined with particular specific synaptic connectivity

rules remain generally unknown, although some results suggest that specific connectivity leads

to reduced dimensionality of network activity patterns [40]. Here we explored the relationship

between specific connectivity and network dynamical properties in a non-linear, rate-based

network model incorporating realistic estimates for recurrent excitatory and inhibitory con-

nection strength in layer 2 / 3 of mouse V1.

To explore the basic stability and computational consequences of functionally specific excit-

atory connectivity, we built a small five-node model (four excitatory and one inhibitory neu-

rons; “analytical model”; Fig 3). Connections within this model were defined to approximate

the average expected connectivity between populations of neurons in layer 2 / 3 of mouse V1.

Excitatory neurons were grouped into two subnetworks, and a proportion s of synapses from

each excitatory neuron was reserved to be made within the same subnetwork.

Fig 3. Rules for excitatory connectivity influence stimulus representations, and underlie

amplification and competition. a In a simple model for random connectivity in mouse V1, injecting current

into a single neuron (black outline) leads to non-specific activation of other excitatory (triangle) and inhibitory

neurons (circle). Traces show the instantaneous firing rate of each neuron. b When the model is partitioned

into subnetworks (SN1 & 2; dashed ovals), injecting current into a single neuron gives rise to an amplified

response within the same subnetwork and suppresses activity in the non-driven subnetwork. c The degree of

amplification and suppression depends directly on the proportion of excitatory synapses s restricted to be

made within a subnetwork (see S2 Fig). Values of s used in panels a–b indicated on plot. d When local

recurrent excitatory connections match the feedforward visual properties of connected neurons (like-to-like),

grating responses (top) and plaid responses (bottom) are highly similar (high ρg & ρp). e In contrast, when

local recurrent connections are different from the feedforward visual properties—in this case, grouping two

different preferred orientations (feature-binding)—then neurons with similar grating responses (top, high ρg)

can have dissimilar plaid responses (bottom, low ρp), reflecting decorrelation of these responses caused by

competition. Black outlines: stimulated neurons. Grating labels: preferred orientation of that neuron. Dashed

ovals: neurons grouped by specific excitatory connectivity. a.u.: arbitrary units; prop.: proportion; syns.:

synapses. Other conventions as in Fig 1.

https://doi.org/10.1371/journal.pcbi.1005888.g003
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When s = 0, E$E synapses were considered to be made without specificity, such that each

connection in the small model approximated the average total connection strength expected in

mouse V1 in the absence of functional specificity. When s = 1, all E$E synapses were consid-

ered to be selectively made within the same subnetwork, such that no synapses were made

between excitatory neurons in different subnetworks. Connections to and from the inhibitory

node were considered to be made without functional specificity in every case, mimicking

dense inhibitory connectivity in mouse visual cortex [41–44]. The general form of the weight

matrix is therefore given by

W ¼

a a b b � wie

a a b b � wie

b b a a � wie

b b a a � wie

wei wei wei wei � wI � fI

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð2Þ

where wS = wE �(1− fI) �s is the specific weight component, wN = wE �(1− fI) �(1−s) is the non-

specific weight component, wE is the total synaptic weight from a single excitatory neuron,

wI is the total synaptic weight from a single inhibitory neuron; fI = 1/5 is the proportion of

inhibitory neurons; a = wS / 2+wN / 4 is the excitatory weight between neurons in the same

subnetwork; b = wN / 4 is the excitatory weight between neurons in different subnetworks;

wie = wI �(1− fI) / 4 is the nonspecific inhibitory to excitatory feedback weight; and wei = wE � fI
is the nonspecific excitatory to inhibitory weight.

Measuring stability and competition. To determine network stability in the analytical

model, we performed an eigenvalue analysis of the system Jacobian, given by J = (W–I)/T,

where W is the system weight matrix as given above, I is the identity matrix, T is the matrix

composed of time constants for each post-synaptic neuron corresponding to elements in W

and A/B indicates element-wise division between matrices A and B. The network was consid-

ered stable if all eigenvalues of J as well as the trace of the Jacobian Tr (J) were non-positive.

The non-linear dynamical system was linearized around the fixed point where all neurons are

active; if this fixed point is unstable then the system operates in either a hard winner-take-all

mode if a different partition is stable, or is globally unstable [45,46]. Neither of these modes is

desirable for cortex.

As suggested by estimations of strong excitatory feedback in cortex [4,47], our model

required inhibitory feedback to maintain stability (an inhibition-stabilised network or ISN; S2

Fig; [48–51]; but see [52]). For a network to be in an inhibition-stabilised (ISN) regime, the

excitatory portion of the network must be unstable in the absence of inhibition, and inhibition

must be strong enough in the full network to balance excitation. To determine whether the

parameter regimes place the network in an ISN regime, we therefore performed an eigenvalue

analysis of the system in which all inhibitory connections were removed (i.e. wI = 0). Either an

eigenvalue of the Jacobian JE of the excitatory-only network or the system trace Tr (JE) was

required to be positive, but the system including inhibitory feedback was required to be stable.

We determined the presence and strength of competition between neurons by injecting

current into a single excitatory neuron and recording the net current received by an excitatory

neuron in the opposite subnetwork at the network fixed point (see Fig 3A). Negative net cur-

rents correspond to competition between the stimulated and recorded excitatory neurons

(shown as shading in S2 Fig). Non-random connectivity, in the form of specific excitatory

connections within subnetworks (Fig 3B; SNs; [15,18]), introduced selective amplification

within subnetworks and competition between subnetworks (Fig 3C). Surprisingly, these
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computational mechanisms were strongly expressed even when only a minority of synapses (s
around 20%) were made to be subnetwork-specific (Fig 3C; S2 Fig). Specific connectivity rules

resulted in functional grouping of sets of excitatory neurons (Fig 3B), permitting the network

to operate in a soft winner-take-all regime [53,54].

Neither competition nor amplification was present under parameters designed to approxi-

mate functionally non-specific connectivity in mouse V1 (Fig 3A and 3C; S2 Fig). This is not

because the network architecture was incapable of expressing competition, but because recur-

rent excitatory connections were insufficiently strong under assumptions of random stochastic

connectivity. We conclude that specific excitatory connectivity strongly promotes amplifica-

tion and competition in neuronal responses.

Selective amplification under like-to-like and feature-binding connectivity

rules

Amplification in the network with specific connectivity is selective (Fig 3B and 3C): neurons

within a subnetwork recurrently support each other’s activity, while neurons in different sub-

networks compete. Therefore, which sets of neurons will be amplified or will compete during

visual processing will depend strongly on the precise rules used to group neurons into subnet-

works. We therefore examined the impact of like-to-like and feature-binding rules on

responses in our analytical model. The excitatory network was partitioned into two subnet-

works; connections within a subnetwork corresponded to selective local excitatory connectiv-

ity within rodent V1. Under the like-to-like rule, neurons with similar orientation preferences

were grouped into subnetworks (Fig 3D).

We tested the response of this network architecture to simulated grating and plaid stimuli,

by injecting currents into neurons according to the similarity between the orientation prefer-

ence of each neuron and the orientation content of a stimulus (see grating labels in Fig 3D and

3E). When a stimulus matched the preferred orientation of a neuron, a constant input current

was injected (Ii (t = ι); when a stimulus did not match the preferred orientation, no input cur-

rent was provided to that neuron (Ii (t) = 0). When simulating the analytical model, the input

current ι = 1.

Under the like-to-like rule, responses of pairs of neurons to simple grating stimuli and

more complex plaid stimuli were highly similar (Fig 3D). Amplification occurred within sub-

networks of neurons with the same preferred orientation, and competition between subnet-

works with differing preferred orientation [53,55] (visible by complete suppression of

response of neurons in lower traces of Fig 3D).

Alternatively, we configured the network such that the rules for local excitatory connectivity

did not align with feedforward visual properties (a feature-binding rule). We formed subnet-

works by grouping neurons showing preference for either of two specific orientations (Fig 3E).

When this feature-binding connectivity rule was applied, neuronal responses to grating and plaid

stimuli differed markedly (cf. top vs bottom panels of Fig 3E). Selective amplification was now

arrayed within populations of neurons spanning differing orientation preferences, and competi-

tion occurred between subnetworks with different compound feature preferences. Importantly, a

feature-binding rule implies that neurons with the same preferred orientation could exist in com-

peting subnetworks. While their responses to a simple grating of the preferred orientation would

be similar and correlated (Fig 3E; indicated by a high response correlation measured over grating

responses ρg), the same two neurons would show decorrelated responses to a plaid stimulus (Fig

3E; indicated by a low response correlation measured over plaid responses ρp). We conclude that

changes in pairwise response similarity, provoked by varying the inputs to a network, can provide

information about the connectivity rules present in the network.
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Large-scale model of local connectivity in mouse V1

The results of our simulations of small networks suggest that rules for specific local connectiv-

ity can modify the correlation of activity between two neurons in a network, depending on the

input to the network. The question arises of how connectivity rules shape distributed represen-

tations of visual stimuli, when examined across a large network and over a broad set of stimuli.

We therefore simulated the presentation of grating and plaid visual stimuli in a large-scale

non-linear, rate-based model of the superficial layers of mouse V1. Individual neurons were

modelled as described above for the small scale network (Eq (1)).

To construct the large-scale simulation model of mouse V1, 80,000 linear-threshold neu-

rons were each assigned a random location in physical space ui 2 T
2 where T defines the sur-

face of a virtual torus of size 2.2×2.2 mm. Excitatory and inhibitory neurons were placed with

relative densities appropriate for layers 2 and 3 of mouse cortex [56]. Approximately 18% of

neurons were inhibitory; [57,58]; see Tables 1 and 2 for all parameters used in these models.

Excitatory neurons were assigned an orientation preference θ drawn from a uniform random

distribution, mimicking the “salt and pepper” functional architecture present in rodent visual

cortex [14].

Anatomical connectivity rules. To determine patterns of synaptic connectivity, we calcu-

lated for each neuron the probability distribution of forming a synaptic connection with all

other neurons in the model. A fixed number of synapses was drawn over this distribution as

output synapses for a single neuron; the number was chosen as an estimate of the number of

synapses formed with other superficial layer neurons in rodent cortex (8142 from each excit-

atory and 8566 from each inhibitory neuron; [1,56]). The total output synaptic weight arising

from single neurons was therefore constant for all excitatory neurons, and independently con-

stant for all inhibitory neurons. Since a simulation with the full density of cortical neurons was

computationally infeasible, the density of the simulations was scaled to 10% of estimated corti-

cal density. The sparsity of local synaptic connectivity was maintained by also scaling the num-

ber of synapses made by each neuron by the same factor, while maintaining the total synaptic

conductance formed by each neuron. The total synaptic output weight for a neuron was there-

fore independent of network size, while the number of output synapses for each neuron varied

with network size.

Axonal and dendritic densities for each neuron were described by a two-dimensional

Gaussian field over physical space, given by

Gðv;uj; rjÞ ¼ exp
� k v;uj k

2

2r2
j

 !

ð3Þ

where ρj is a field dispersion parameter associated with neuron j and kv,uk is the Euclidean

distance between the physical locations v and u, computed over the surface of a torus. In our

models, each neuron had a Gaussian dendritic field of ρd = 75 μm (corresponding to an

approximate width of 4ρ = 300 μm; [59]); and axonal field of ρa,e = 290 μm for excitatory neu-

rons (width 1100 μm; [59–61]) and ρa,i = 100 μm for inhibitory neurons (width 400 μm; [62]).

Table 2. Parameter values used to specify large-scale network models.

Network configuration Parameter values

Random connectivity model s1 = 0, s2 = 0

Like-to-like specificity model s1 = 0.8, s2 = 0, κ1 = 0.5

Feature-binding specificity model s1 = 0.1, s2 = 0.25, κ1 = 0.5, κ2 = 4, NS = 6, W = 2

https://doi.org/10.1371/journal.pcbi.1005888.t002
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Our default rule for forming synapses was based on Peters’ Rule, in that the probability of

forming a synapse was proportional to the overlap between axonal and dendritic fields [2,8].

This was estimated by computing the integrated product of axonal and dendritic fields over a

torus T:

pPeters ¼〚
ZZ

T
Gðv;ui; rd;iÞGðv; uj; ra;jÞdv 〛 ð4Þ

where pPeters is the probability of forming a single synapse between neurons i and j, and the

notation 〚� � �〛 indicates that the expression between the double brackets is normalised to

form a probability density function, such that if summed across all possible target neurons the

total will be equal to 1.

Like-to-like connectivity rule. We investigated two rules for anatomical specificity in

intra-cortical excitatory recurrent connections. The first such rule corresponds to the case

where local recurrent connectivity is aligned with matching feedforward visual properties (pre-

ferred orientation, in our case). We therefore assumed that the probability of forming a syn-

apse is modulated by the similarity in preferred orientation between two excitatory neurons

(Like-to-Like rule; see Fig 4A). The probability of connection between two neurons was pro-

portional to

pconn / pPetersðs1〚pori〛þ ð1 � s1ÞÞ ð5Þ

Fig 4. Rules for excitatory connectivity determine response correlation and decorrelation in a model of mouse V1. a–b In

a large-scale network simulation incorporating like-to-like selective excitatory connectivity (connectivity rule and network

schematic shown at left), responses of pairs of neurons to grating and plaid stimuli are always similar (b; similar ρg & ρp, high R2).

Traces: instantaneous firing rates for single example excitatory (black) and inhibitory (blue) neurons. Responses to grating stimuli

are highly predictive of plaid responses; distribution of ρg versus ρp is therefore clustered around the diagonal (black line in b; high

R2). c–d When in addition to like-to-like connectivity, subnetworks also group neurons with several preferred orientations, then

pairs of neurons with similar preferred orientations can respond differently to plaid stimuli, and vice versa (see response traces). d

Competition due to feature-binding connectivity leads to decorrelation of the population response (low R2). The distribution of ρg

versus ρp is broad (black line in d), indicating poor predictability between grating and plaid responses. Inhibitory responses are

broadly tuned in both models (blue traces in a & b). Pips in connectivity diagram in c indicate example preferred orientations of a

single subnetwork. Conventions as in Fig 1. Stim.: stimuli; a.u.: arbitrary units; corr.: correlation; feat. bind.: feature binding.

https://doi.org/10.1371/journal.pcbi.1005888.g004
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where pori = V(θi,θj,κ) = exp{κcos(θi−θj)} is the non-normalised von Mises circular distribution

with concentration parameter κ; pPeters is the connection probability under non-specific Peters’

rule connectivity, defined above; and s1 is the proportional strength of specificity s1 2 [0,1]. If

s1 = 0 then Eq (5) becomes equivalent to Peters’ rule. When s1 = 1 then the probability of con-

necting orthogonally tuned neurons is zero.

Feature-binding connectivity rule. The second rule for anatomical connection specificity

corresponds to the case where local recurrent connectivity is not aligned with feedforward

visual properties. Instead, it was designed to explore binding of simple visual features (feature-

binding specificity; see Fig 4C). Under this rule, a subnetwork combined neurons with a num-

ber ϑ of different orientation preferences. The preferred orientations used to compose a sub-

network in the feature-binding specificity model were chosen from periodic filtered noise

fields.

A noise field Z was built by generating a unit-magnitude complex number zj = exp(−izj) for

each neuron j in the model, with uniformly-distributed orientations zj 2 [−π,π]. Here “i” rep-

resents the complex number
ffiffiffiffiffiffiffi
� 1
p

. A field Z was defined by placing each zj at the location uj of

the corresponding neuron. Each complex field Z was spatially filtered by convolving with a

Gaussian field on a torus (Eq (3)), with a spatial standard deviation of ρ = 75 μm (width

300 μm). The value of a field at a spatial location v was therefore given by

ZðvÞ ¼
XNN

j¼1

zj � Gðuj; v; rÞ ð6Þ

The angles from the resulting field of complex numbers were used as components defining

the subnetwork orientation preferences. Several of these fields were generated, with Zk, q and

zk, q, j spanning k2[1, NS], where NS is the number of subnetworks in the model and q2[1, ϑ],

where ϑ is the number of preferred orientations per subnetwork. For the models described in

this paper, we chose NS = 6 and ϑ = 2. Therefore, at the location uj of neuron j, the set of pre-

ferred orientation components Θk (uj) of subnetwork k was given by

YkðujÞ ¼ fq ¼ ½1; W� : yk;q ¼ ffZk;qðujÞg ð7Þ

Under this formulation, the composition of each subnetwork therefore changed smoothly

across cortical space, so that nearby neurons in the same subnetwork had similar functional

selectivity.

Neurons were assigned to one of NS subnetworks, according to the maximum similarity

between a neuron’s preferred orientation and the orientation composition of the set of subnet-

works at the location of the neuron’s soma. The similarity between a neuron’s preferred orien-

tation and a subnetwork orientation was computed using a von Mises function with

concentration parameter κ2, such that the membership probability was proportional to

pmðk; yiÞ /〚max½Vðyi; yk;1; k2Þ;Vðyi; yk;2; k2Þ�〛 ð8Þ

where k is the index of a subnetwork consisting of preferred orientations θk, 1 and θk, 1; θi is the

preferred orientation of a neuron under consideration; and the expression within the double

brackets 〚� � �〛 was normalised to be a valid probability density function over the k subnet-

works. A neuron was assigned membership of a subnetwork according to the formula

MðiÞ ¼ arg max
k
ðpmðk; yiÞÞ ð9Þ

where M(i) gives the index of the subnetwork of which neuron i is a member.
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The probability of connection between two neurons under the feature-binding model was

therefore given by

pconn / ð1 � s2ÞpPetersðs1 �〚pori〛þ 1 � s1Þ þ s2〚bSSN � pPeters〛 ð10Þ

where parameter s1 determines the relative contribution of Non-Specific versus orientation-

tuned like-to-like specificity as in Eq (5); s2 determines the relative contribution of feature-

binding specificity; pori = vonmises(θi, θj, κ1) as in Eq (5); and bSSN is a value equal to 1 when

the two neurons fall within the same subnetwork; that is

bSSN ¼

(
1 iff MðiÞ ¼ MðjÞ

0 otherwise
ð11Þ

Network input. Input was provided to the network as a simulation of orientation-tuned

projections from layer 4 to layers 2/3 [63,64]. Each excitatory neuron was assigned an orienta-

tion tuning curve based on a von Mises function, with a uniformly randomly chosen preferred

orientation θi and a common input tuning curve width κ = 4. Current was injected into each

simulated neuron proportional to the orientation tuning curve of that neuron, according to

the orientation content of the stimulus:

IiðtÞ /
AðtÞ
NN

V ygðtÞ; yi; ki

� �
ð12Þ

where A(t) is the amplitude of the stimulus at time t; θg(t) is the orientation of a grating stimu-

lus at time t; θi is the preferred orientation of neuron i; κi is the tuning curve width of neuron i;
NN is the total number of neurons in the network. The input to the network was normalised

such that the total current injected into the network was equal to A(t). For a simulated plaid

stimulus composed of the two component orientations θg1 and θg2, input to a neuron was the

linear average of input associated with each grating component, given by

IiðtÞ /
AðtÞ
2NN

V yg1; yi; ki

� �
þ V yg2; yi; ki

� �� �
ð13Þ

Both grating and plaid stimuli were considered to cover the full visual field. Tuned input

currents were injected only into excitatory neurons, because we wanted to investigate the effect

of excitatory recurrence on cortical information processing. Providing untuned feedforward

input to inhibitory neurons can produce the illusion of competition between excitatory neu-

rons, merely due to the thresholding effect of feedforward inhibitory input shared between

those neurons.

Inclusion of experimental response variability. We simulated large-scale networks as

described above, and obtained responses to simulated visual stimuli. In order to mimic the

response variability due to experimental conditions, such as recording noise and intrinsic neu-

ronal response variability, we introduced a random component to the model responses.

To quantify experimental variability, we recorded neuronal responses to presented visual

stimuli under two-photon calcium imaging in mouse V1 (see Methods). For each presented

stimulus i (e.g. a grating of a given orientation), we obtained a set Si of single-trial responses ri,j
for a single neuron such that ri, j 2Si, and the trial- averaged response ri ¼

X

j¼1::T
ri;j=T, where

T is the number of trials collected for that stimulus. Over the full set of stimuli for a given neu-

ron, we determined the maximum trial-averaged response rmax ¼ maxi r i. We then measured

the standard deviation σ over the collection of all single-trial responses over all stimuli for a

Feature integration in mouse V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005888 December 14, 2017 14 / 33

https://doi.org/10.1371/journal.pcbi.1005888


given neuron normalised by rmax, such that s ¼ stdð[
i
Si=rmaxÞ. The estimated experimental

variability bs was defined as the median σ over all recorded neurons.

A similar procedure in reverse was applied to model-simulated visual responses, to mimic

experimental variability. Activity of single neurons in response to a simulated stimulus i was

interpreted as the mean response r i, with rmax defined as above. Single-trial model responses

were then generated as ri;j ¼ ri þ Nð0; bs �rmaxÞ, where N (µ,σ) generates a single normally-dis-

tributed random variate with mean μ and standard deviation σ. Twelve trials were generated

for each stimulus (i.e. T = 12), and single-trial responses were then analysed as described for

experimentally recorded responses.

Estimation of parameters for connection rules. Ko and colleagues characterised func-

tional specificity in mouse V1, by recording in cortical slices from pairs of neurons that were

functionally characterised in vivo [21]. We fit our function pconn (Eq (5)) to their measure-

ments of the probability of connection between neurons tuned for orientation, giving esti-

mates for both κ1 and s1 (bk1 ¼ 0:5;bs1 ¼ 0:45). These parameters correspond to fairly weak

functional specificity. We found that in the like-to-like specificity model, in order to have an

appreciable network effect we had to increase the strength of functional specificity to s1 = 0.8

(with κ1 = 0.5). The connectivity measurements of Yoshimura and colleagues suggest that on

the order of N = 5–6 subnetworks exist in layer 2/3 of rodent cortex [15]. For the feature-bind-

ing specificity model, we took the parameters s1 = 0.45, s2 = 0.225, κ1 = 0.5, κ2 = 4, N = 6, ϑ = 2.

Therefore, in our feature-binding model, the majority (68%) of recurrent synapses are

made randomly; a smaller fraction (27%) are made according to similarity of preferred orien-

tation and the remaining small fraction (5%) are made selectively across preferred orienta-

tions. These last few synapses could potentially weakly change the preferred orientation of a

neuron. However, we found that most neurons in our feature-binding model had grating

responses aligned with their feedforward preferred orientation. This is likely due to the strong

influence of like-to-like connectivity even in the feature-binding model.

Feature-binding connectivity leads to facilitation and decorrelation in

large networks

We simulated the presentation of grating and plaid stimuli in our large-scale network model

of mouse V1. We quantified response similarity between pairs of neurons as suggested by the

results of the small network simulations: by measuring pairwise response correlations over a

set of grating stimuli (ρg), and separately over a set of plaid stimuli (ρp; see Methods).

In the network that implemented a like-to-like connection rule for recurrent excitatory

connectivity (Fig 4A and 4B), pairs of neurons showed similar responses to both grating and

plaid stimuli (Fig 4B; R2 = 0.83 between ρg and ρp), in agreement with the analytical like-to-

like model of Fig 3D.

However, in the network that implemented a feature-binding connection rule, where in

addition to spatial proximity and similarity in preferred orientation subnetworks were defined

to group neurons of two distinct preferred orientations (Fig 4C and 4D), neurons showed

reduced correlation in response to plaid stimuli (Fig 4D, R2 = 0.13 between ρg and ρp), in

agreement with the analytical feature- binding model of Fig 3E. Different configurations of

local recurrent excitatory connectivity produced by like-to-like or feature-binding rules can

therefore be detected in large networks, by comparing responses to simple and compound

stimuli.

Consistent with our analytical models, networks without functionally specific connectivity

did not give rise to decorrelation (S3B Fig; R2 = 0.72 between ρg and ρp). This shows that dec-

orrelation between plaid and grating responses in our models does not arise simply due to
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random connectivity, but requires the active mechanism of selective amplification through fea-

ture-binding subnetwork connectivity. Inhibitory responses were untuned in our simulations

(blue traces in Fig 4A and 4C), in agreement with experimental observations of poorly-tuned

inhibition in mouse V1 [42,58,65,66].

Visual responses in mouse V1 are consistent with feature-binding

connection rules

Our analytical network results show that in principle the configuration of local excitatory

connectivity, whether aligned with or spanning across feedforward visual properties, has a

strong effect on visual representations (Fig 3). Our large-scale simulations show that these

effects can be detected in large networks as differences in the pairwise correlations of

responses to simple and compound visual stimuli (Fig 4). We therefore aimed to test which

connectivity scheme is more likely to be present in visual cortex, by examining responses of

neurons in mouse V1.

Using two-photon calcium imaging, we recorded responses of populations of OGB-labelled

neurons in mouse V1 to a set of contrast-oscillating oriented grating stimuli over a range of

orientations, as well as the responses to the set of plaid stimuli composed of every possible

pair-wise combination of the oriented grating stimuli (Fig 5; 5 animals, 5 sessions, 313 / 543

responsive / total imaged neurons; see Methods). Responses to plaid stimuli in mouse V1 sug-

gest that stimulating with a denser sampling of compound stimulus space leads to a better

Fig 5. Responses to contrast-oscillating plaid and grating stimuli in mouse V1 suggest feature-binding connection rules. a Single-

trial OGB calcium response to contrast-oscillating grating and plaid stimuli; presentation time of stimuli evoking strong responses indicated

above trace. Right inset: measurement of plaid response similarity ρp between two neurons. b Trial-averaged responses (8 trials) of a pair of

neurons from a single imaging site, with similar preferred orientations (polar plots at left; high ρg) but with dissimilar responses to plaid stimuli

(low ρp). c Responses to grating and plaid stimuli are poorly related in orientation-tuned neurons in mouse V1 (Broad distribution of ρg versus

ρp residuals—black line, low R2). d Control data that includes experimental noise and response variability, obtained by resampling

experimental responses and assuming a like-to-like connectivity rule (inset; see Methods), predicts a strong relationship between grating and

plaid representations (high R2) and is easily distinguished from observed V1 responses in c. e Decorrelation in mouse V1 is similar to the

feature-binding model (F.B.), and much broader than the like-to-like model (L-to-L). f Responses to plaid stimuli in V1 are split between

facilitating and suppressing (45% MI > 0.05; 42% MI < –0.05). g The distribution of facilitating (Facil.; MI > 0.05) and suppressing (Supp., MI < –

0.05) responses is similar between mouse V1 and the feature-binding model (F.B.; p = 0.17, Fisher’s exact test). The like-to-like and random

non-specific (Rnd) connectivity models produced predominately suppressing responses. ***p < 0.001. nV1 = 313; nF.B. = 804; nL-to-L = 729;

nRnd = 729; significantly responsive neurons with OSI > 0.3. Stim: stimuli; corr.: correlation; decorr.: decorrelation.

https://doi.org/10.1371/journal.pcbi.1005888.g005
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characterisation of response selectivity [31] (Fig 2). Accordingly, we probed responses in

mouse V1 under stimuli analogous to those used in the model simulations, with a dense cover-

age of plaid combinations over a set of finely-varying grating orientations.

We found that consistent with our earlier findings examining 90˚ drifting plaid stimuli

[30], responses to grating stimuli did not well predict responses to plaid stimuli. Pairs of neu-

rons with similar preferred orientation but with highly differing responses to plaid stimuli

were common (Fig 5B and 5C; R2 = 0.05 between ρg and ρp; OSI> 0.3). The degree of decorre-

lation we observed in mouse V1 was considerably higher than predicted by the like-to-like

model, and was more consistent with the feature-binding model (Fig 5E).

Decorrelation induced by plaid responses and the lack of a relationship between grating

and plaid responses in mouse V1 were not a result of unreliable or noisy responses in vivo. We

included in our analysis only neurons that were highly reliable, and responded significantly

more strongly than the surrounding neuropil (see Methods). As a further control, we used

experimentally recorded responses to grating stimuli to generate synthetic plaid responses for

mouse V1 that would result from a cortex with like-to-like subnetwork connectivity (Fig 5D,

inset; see Methods). Our control data were generated from single-trial responses of single V1

neurons, and therefore included the same trial-to-trial variability exhibited by cortex. This

control analysis indicates that a like-to-like rule among V1 neurons would result in a higher

correlation of grating and plaid responses than experimentally observed (Fig 5D; median R2 =

0.77 ± [0.767 0.775] between ρg and ρp; n = 2000 bootstrap samples; compared with R2 = 0.05

for experimental results; p< 0.005, Monte-Carlo test).

Importantly, this control analysis is not restricted to our like-to-like rule, but makes similar

predictions of highly correlated grating and plaid responses for any arbitrary model that com-

bines grating components to produce a plaid response, as long as that rule is identical for every

neuron in the network [30]. This is because if a single consistently-applied rule exists, then any

pair of neurons with similar grating responses (high ρg) will also exhibit similar plaid responses

(high ρp). In contrast, neurons that are connected within the feature-binding model combine

different sets of grating components, depending on which subnetwork the neurons are mem-

bers of.

Neurons in mouse V1 exhibited a wide range of facilitatory and suppressive responses to

plaid stimuli, roughly equally split between facilitation and suppression (Fig 5F and 5G; 45%

vs 42%; MI > 0.05 and MI< –0.05). The proportion of facilitating and suppressing neurons in

mouse V1 was similar to that exhibited by responsive neurons in our feature-binding model

(Fig 5G; V1 versus F.B., p = 0.17; two-tailed Fisher’s exact test, nV1 = 313, nF.B. = 809). In con-

trast, neither the like-to-like model nor a model without functionally specific connectivity

exhibited significant facilitation in responsive neurons, and both were significantly different

from the distribution of facilitation and suppression in mouse V1 (Fig 5G; p< 0.001 in both

cases; two-tailed Fisher’s exact test, nL-to-L = 729, nRnd = 729). The wide range of facilitatory

and suppressive responses observed in mouse V1 is more consistent with a feature-binding

rule for local connectivity, compared with a like-to-like rule or a network without functionally

specific connectivity.

Discussion

Whereas feedforward mechanisms for building response properties in visual networks have

been extensively studied, it is not well understood how visual responses are shaped by local

recurrent connections. We hypothesised that the configuration of local recurrent cortical con-

nectivity shapes responses to visual stimuli in mouse V1, and examined two alternative scenar-

ios for local connection rules: essentially, whether local excitatory connections are made in
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accordance with feedforward visual properties (“like-to-like”; Fig 1A), or whether local excit-

atory connections span across feedforward visual properties to group them (“feature-binding”;

Fig 1B). We found that highly selective and facilitatory responses to plaid stimuli observed in

mouse V1 (Fig 2, Fig 5; [30]) are consistent with tuning of recurrent connections within small

cohorts of neurons to particular combinations of preferred orientations. Moreover, responses

in mouse V1 are inconsistent with a simple configuration of cortical connections strictly

aligned with feedforward visual responses.

Detecting feature-binding connectivity rules in cortex

We found that the precise rules that determine local connections among neurons in cortex can

strongly affect the representation of visual stimuli. The feature-binding rule we examined

embodies the simplest second-order relationship between connectivity and preferred orienta-

tion, and was chosen for this reason. We cannot rule out more complicated connectivity rules

as being present in mouse V1, but we have shown that a simple like-to-like rule cannot explain

responses to plaid visual stimuli. Random, non-functionally specific connections were also

unable to explain complex plaid responses in mouse V1 (S3 Fig).

How can the detailed statistics of “feature-binding” rules be measured in cortex? Exist-

ing experimental techniques have been used to measure only first-order statistical rela-

tionships between function and cortical connectivity [18,21–24,42]. Unfortunately,

current technical limitations make it difficult to measure more complex statistical struc-

tures such as present under a feature-binding connectivity rule. Simultaneous whole-cell

recordings are typically possible from only small numbers of neurons, thus sparsely test-

ing connectivity within a small cohort. Even if simultaneous recordings of up to 12 neu-

rons are used [17], identifying and quantifying higher-order statistics in the local

connectivity pattern is limited by the low probability of finding connected excitatory neu-

rons in cortex. Nevertheless, our feature-binding connectivity model is consistent with

the results of functional connectivity studies (S1 Fig).

In addition, our results highlight that small changes in the statistics of local connectivity

can have drastic effects on computation and visual coding. Introducing a small degree of speci-

ficity, such that a minority of synapses are made within an excitatory subnetwork, is sufficient

to induce strong specific amplification and strong competition to the network, even though a

majority of the synapses are made randomly without functional specificity (Fig 3A–3C).

Under our feature-binding model 68% of synapses are made randomly; approximately 27%

are made under a like-to-like rule and the remaining 5% are used to bind visual features.

Clearly, detecting the small proportion of synapses required to implement feature binding in

V1 will be difficult, using anatomical sampling techniques that examine only small cohorts of

connected neurons.

A recent study functionally characterised the presynaptic inputs to single superficial-layer

neurons in mouse V1, using a novel pre-synaptic labelling technique [67]. Consistent with our

results for preferred orientation (S1F and S1G Fig), they found that presynaptic inputs were

similarly tuned as target neurons but over a wide bandwidth. The majority of synaptically con-

nected networks were tuned for multiple orientation preferences across cortical layers, similar

to the feature-binding networks in our study.

We implemented an alternative approach, by inferring the presence of higher-order con-

nectivity statistics from population responses in cortex. This technique could be expanded

experimentally, by presenting a parameterised battery of simple and complex stimuli. Stimuli

close to the configuration of local connectivity rules would lead to maximal facilitation and

competition within the cortical network. Importantly, our results strongly suggest that simple
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stimuli alone are insufficient to accurately characterise neuronal response properties in visual

cortex.

Amplification and competition might underlie facilitation and suppression

Our theoretical analysis and simulation results demonstrate that functionally specific excit-

atory connectivity affects the computational properties of a cortical network by introducing

amplification of responses within subnetworks of excitatory neurons, and competition in

responses between subnetworks (Fig 3A–3C). Several recent studies have demonstrated that

visual input is amplified within the superficial layers of cortex [68–70], and recent results from

motor cortex suggest competition between ensembles of neurons [71]. Our modelling results

indicate that some form of selective local excitatory connectivity is required for such amplifica-

tion to occur through recurrent network interactions, under reasonable assumptions for ana-

tomical and physiological parameters for rodent cortex (Fig 3A–3C; S2 Fig). This still leaves in

question whether the particular configuration of selective excitatory connectivity plays a role.

Our simulation results showed that the effects of amplification and competition on cortical

responses are tuned to the statistics of local connectivity. This implies that complex visual sti-

muli for which the composition of stimulus components matches the statistics of a subnetwork

will undergo stronger amplification than other non-matching visual stimuli (Fig 6). In our

feature-binding model, the statistics of subnetwork connectivity were defined to reflect combi-

nations of two preferred orientations chosen from a uniform random distribution. This com-

bination of two orientations is similar to the visual statistics of plaid stimuli with arbitrarily

chosen grating components. As a result, plaid stimuli gave rise to stronger amplification than

single grating components alone, when the composition of the plaid matched the composition

of connectivity within a particular subnetwork. This led to a facilitatory effect, where some

neurons responded more strongly to plaid stimuli than to the grating components underlying

the plaid stimuli. Conversely, competition between subnetworks led to weaker responses to

some plaid stimuli, for neurons that “lost” the competition. Competition could therefore be

one cortical mechanism underlying cross-orientation suppression in response to plaid

stimulation.

In contrast, suppression in the like-to-like and random non-specific models occur because

the energy in the stimulus is spread across two grating components, and is not combined by

the network to form strong plaid selectivity. In the like-to-like model, competition occurs

Fig 6. Non-random connectivity supports autoassociative behaviour. In a simple model with two

subnetworks (a), presenting a linear graduated mixture between the ideal stimuli for the two subnetworks (b)

results in competition and switching between network representations. When the stimulus is ideal for one

subnetwork (mixture = 0% or 100%), then strong amplification of the network response occurs (compare with

response of SN1 to a single grating component; arrowheads at right of b). When an approximately even

mixture is presented (close to 50%), the network switches rapidly from one representation to the other.

Proportion of specific excitatory synapses s = 25%. Dashed ovals: neurons grouped by specific excitatory

connectivity. Other conventions as in Fig 1. a.u.: arbitrary units.

https://doi.org/10.1371/journal.pcbi.1005888.g006
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between representations of the two oriented grating components of the plaid, causing addi-

tional suppression. The presence of amplified, strongly facilitating plaid responses in mouse

V1 is therefore consistent with the existence of subnetworks representing the conjunction of

differently-oriented edges.

Building plaid responses from convergence of simple feedforward

inputs, or from feedback inputs

Could the complexity of plaid texture responses in mouse V1 be explained by convergence of

differently tuned feedforward inputs from layer 4 onto single layer 2/3 neurons, similar to the

proposed generation of pattern-selective responses in primate MT [32,72]? Building plaid

responses in this way would imply that layer 2/3 neurons would respond to multiple grating

orientations, since they would receive approximately equal inputs from at least two oriented

components. However, layer 4 and layer 2/3 neurons are similarly tuned to orientation in

rodent V1 [63,64], in conflict with this feedforward hypothesis.

In addition, if responses to complex stimuli were built by feedforward combination of sim-

ple grating components, then the response of a neuron to the set of grating stimuli would

directly predict the plaid response of that neuron. This would then imply that two neurons

with similar responses to plaid stimuli must have similar responses to grating stimuli. However

we found this not to be the case experimentally; two neurons with similar responses to grating

components often respond differently to plaid textures or to natural scenes (S1D Fig; Fig 5A

and 5B; [30]).

We cannot rule out the influence of feedback projections on shaping responses to plaid sti-

muli. The time resolution of calcium imaging is too slow to differentiate between feedforward,

recurrent local, and feedback responses based only on timing. However, top-down feedback

inputs are considered to be suppressed during anesthesia [73]; in contrast, we observed com-

plex responses to plaid stimuli in anesthetized animals. Since our proposed mechanism for fea-

ture binding relies on recurrent amplification, relatively few excitatory synapses are required

to reproduce complex plaid responses. In contrast, non recurrent influences such as feedfor-

ward or feedback projections would require comparatively more synapses to achieve a similar

pattern of plaid responses. There are more local recurrent excitatory synapses in V1 layer 2 / 3

than there are available excitatory synapses in feedback projections to V1 (22% recurrent excit-

atory synapses in layer 2 / 3 vs a maximum of 17.2% feedback synapses; [1]). In addition, puta-

tive feedback inputs would need to be wired with high functional specificity; this degree of

anatomical specificity has not been demonstrated experimentally.

Computational role of inhibitory connectivity and physiology

Non-specific connectivity between excitatory and inhibitory neurons, as assumed in our simu-

lation models, is consistent with the concept that inhibitory neurons simply integrate neuronal

responses in the surrounding population [74], and is also consistent with experimental obser-

vations of weakly tuned or untuned inhibition in rodent visual cortex [42,52,58,65,66].

Although specific E$I connectivity has been observed in rodent cortex [16,28], the majority

of E$I synapses are likely to be made functionally non-specifically in line with the high con-

vergence of E!I and I!E connections observed in cortex [41,42,65].

In our models, shared inhibition is crucial to mediate competition between excitatory sub-

networks (Fig 3); inhibition is untuned because excitatory inputs to the inhibitory population

are pooled across subnetworks. Poorly tuned inhibition, as expressed by the dominant class of

cortical inhibitory neurons (parvalbumin expressing neurons), therefore plays an important

computational role and is not merely a stabilising force in cortex.

Feature integration in mouse V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005888 December 14, 2017 20 / 33

https://doi.org/10.1371/journal.pcbi.1005888


Other inhibitory neuron classes in cortex (e.g. somatostatin or vaso-intestinal peptide

expressing neurons) have been shown to exhibit feature-selective responses [58,75,76]. Recent

computational work examined the influence of multiple inhibitory neuron classes with differ-

ent physiological and anatomical tuning properties in a model for rodent cortex [77]. They

examined the role of inhibitory connectivity on divisive and subtractive normalisation of net-

work activity in a network with specific, orientation-tuned inhibitory connectivity. They

found that specific inhibitory feedback could lead to divisive normalisation of network activity,

while non-specific inhibitory feedback could lead to subtractive normalisation.

However, the computational role of specific inhibition is likely to rest on the precise rules for

connectivity expressed between excitatory and inhibitory neurons. If the rules for E$E and

E$I connections align, then a specific inhibitory population could act as a break on excitation

within a subnetwork, and could allow more specific anatomical connectivity to persist while

maintaining the balance between excitation and inhibition in cortex. The functional profile of

this balancing pool would be highly tuned, and be similar to that of the excitatory neurons in

the subnetwork, suggesting a physiological signature of specific inhibitory feedback that could

be sought experimentally. Alternatively, if E$I connection rules result in counter-tuned speci-

ficity, these connections would act to strengthen competition between subnetworks.

Previous models of specific synaptic connectivity

As discussed above, our like-to-like model of orientation-tuned selective excitatory connectiv-

ity coupled with non-specific inhibitory feedback is similar in network topology to classical

ring models of orientation tuning in visual cortex (e.g [53,54,78]). The principal difference in

our model is the embedding of functionally selective connectivity within spatially-constrained

anatomical connectivity. We showed that under model parameters chosen to be realistic in

mouse V1, only a small fraction of excitatory synapses must be specific in order to introduce

selective amplification and competition within the network.

Several previous models of recurrent cortical connectivity designed for columnar visual cor-

tex have incorporated selective excitatory connectivity, either with connectivity relying on purely

anatomical constraints (e.g [79]) or mimicking the spatially periodic, long-range lateral excit-

atory projections found in monkey, cat and other species (e.g. [80–83]). Similarly to our models,

these works emphasise that feature integration can occur within V1 through recurrent process-

ing of visual stimuli. These earlier models examined how specific synaptic connectivity between

spatially separated neurons across visual space can perform operations that link representations

of similar visual features such as contour integration, and can underlie competition between dis-

similar visual features [80,84]. The principal difference to our models is that we examined how

local excitatory connections between neurons representing overlapping regions of visual space

can underlie facilitatory binding of dissimilar visual features. Our models therefore examine the

consequences of higher-order patterns in local recurrent connectivity on visual coding.

Feature binding to detect higher-order visual statistics

In visual cortex of primates, carnivores and rodents, orientation tuning develops before post-

natal eye opening and in the absence of visual experience [85,86].

Local recurrent connections develop after the onset of visual experience and maintain their

plasticity into adulthood [85,87–91]. Statistical correlations in natural scenes might therefore

lead to wiring of subnetworks under an activity-dependent mechanism such as spike-time

dependent plasticity (STDP) [92–96]. Along these lines, examinations of the development of

specific excitatory connections after eye opening found that similarities in feedforward input

were progressively encoded in specific excitatory connections [22].
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We expect that, as the specificity of lateral connections forms during development, the

emergence of compound feature selectivity will gradually occur after the onset of sensory expe-

rience. This hypothesis is consistent with experience-dependent development of modulatory

effects due to natural visual stimulation outside of the classical receptive field, as observed in

mouse V1 [97]. A complete factorial combination of all possible features occurring in natural

vision is clearly not possible. However, the most prominent statistical features of cortical activ-

ity patterns could plausibly be prioritised for embedding through recurrent excitatory connec-

tivity. At the same time, competition induced by non-specific shared inhibition will encourage

the separation of neurons into subnetworks. In our interpretation, single subnetworks would

embed learned relationships between external stimulus features into functional ensembles in

cortex, such that they could be recovered by the competitive mechanisms we have detailed.

In prefrontal cortex, compound or mixed selectivity of single neurons to combinations of

task-related responses has been found in several studies [98,99]. This is proposed to facilitate

the efficient decoding of arbitrary decision-related variables. Binding feedforward cortical

inputs into compound representations, as occurs in our feature-binding model, is therefore a

useful computational process with general applicability. Our work suggests that specific local

excitatory connectivity could be a general circuit mechanism for shaping information process-

ing in cortical networks.

Materials and methods

Ethics statement

Experimental procedures followed institutional guidelines and were approved by the Cantonal

Veterinary Office in Zürich or the UK Home Office.

In-vivo calcium imaging

Procedures for urethane anesthesia, craniotomies, bulk loading of the calcium indicator, as

well as for in vivo two-photon calcium imaging and in vitro recording of synaptic connection

strength were the same as described previously [24,30,100,101].

Preparation and imaging with OGB. Adult male and female wild type C7BL/6 mice

(P90) were sedated with chlorprothixene (10 mg / ml in Ringer solution; 0.01 ml per 20 g by

weight) then anesthetized with urethane (10% in isotonic saline; initial dose 0.1 ml per 20 g by

weight; supplemented as required to maintain anesthesia). The body temperature of anesthe-

tized animals was monitored and controlled using a heating pad and rectal thermometer.

Atropine was given to reduce secretions (0.16 ml per 20 g by weight). Intrinsic optical imaging

was used to locate primary visual cortex, and a craniotomy was made over V1. Briefly, the

skull above the estimated location of V1 was thinned and we illuminated the cortical surface

with 630 nm LED light, presented drifting gratings for 5 s, and collected reflectance images

through a 4× objective with a CCD camera (Toshiba TELI CS3960DCL).

We performed bulk loading of the synthetic calcium indicator Oregon Green BAPTA–1

(OGB–1; Invitrogen). Several acute injections of OGB–1–AM were made under visual guid-

ance into the visual cortex [102]. Sulforhodamine (SR101; Invitrogen) was applied topically to

the pial surface, to provide labelling of the astrocytic network [103]. Time-series stacks record-

ing activity in layer 2/3 cortical neurons were acquired at a 4–10 Hz frame rate with a custom-

built microscope equipped with a 40× objective (LUMPlanFl/IR, NA 0.8; Olympus) and an 80

MHz pulsed Ti:Sapphire excitation laser (MaiTai HP; Spectra Physics, Newport). Acquisition

of calcium transients was performed using custom-written software in LabView (National

Instruments), and analysis was performed using the open-source FocusStack toolbox [33].
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Preparation and imaging with GCaMP6. Adult male mice (P75–P90) were initially anes-

thetized with 4–5% isoflurane in O2 and maintained on 1.5–2% during the surgical procedure.

The primary visual cortex (V1) was localized using intrinsic imaging.

A craniotomy of 3–4 mm was opened above the region of strongest intrinsic signal

response, which we assumed to be centred over V1. We then injected the genetically encoded

calcium indicator GCaMP6m [104] (AAV1.Syn.GCaMP6m.WPRE.SV40; UPenn) around

250 μm below the cortical surface to target superficial layer neurons. 2–3 injections were made

in a single animal and a volume of approximately 200 nl was injected at each location. The cra-

niotomy was sealed with a glass window and a metal post for head fixation was implanted on

the skull with dental acrylic, contralateral to the cranial window.

For imaging, animals were anesthetized with isoflurane at 4% for induction, then head

fixed. Isoflurane concentration was lowered to 0.5–0.75% during the experiment. We main-

tained the animal’s body temperature at 37˚C using a rectal thermometer probe and a heating

pad placed under the animal. Silicon oil was applied to the eyes to keep them moist.

In vivo / in vitro characterisation of function and connectivity. Methods for obtaining

visual responses in vivo and measuring synaptic connectivity in vitro are described in [24].

Briefly, young C75/BL6 mice (P22–26) were anesthetized (fentanyl, midazolam and medeto-

midine) and injected with OGB calcium indicators, lightly anesthetized with isoflurane (0.3–

0.5%) and head fixed. Two- photon imaging of calcium responses was used to record the

response of neurons to a sequence of natural images (1800 individual images). After in vivo
imaging experiments, the brain was rapidly removed and sliced for in vitro recording. Z-stacks

recorded in vivo were matched with Z-stacks recorded in vitro in order to locate functionally

characterised neurons for electrophysiological recording. Simultaneous whole-cell recordings

of up to six neurons at a time were performed. Evoked spikes and recorded EPSPs were used

to identify synaptically connected pairs of neurons.

Visual stimulation

Visual stimuli for receptive field characterisation, drifting gratings and plaids and masked nat-

ural movies were displayed on an LCD monitor (52.5 × 29.5 cm; BenQ) placed 10–11 cm from

the eye of the animal and covering approximately 135 × 107 visual degrees (v.d.). The monitor

was calibrated to have a linear intensity response curve. Contrast-oscillating grating and plaid

stimuli were presented on an LCD monitor (15.2 × 9.1 cm; Xenarc) placed 9 cm from the eye

of the animal and covering 80 × 54 v.d. The same screen was used for stimulus presentation

during intrinsic imaging to locate visual cortex and during two-photon imaging. The open-

source StimServer toolbox was used to generate and present visual stimuli via the

Psychtoolbox package [33,105].

Stimuli for receptive field characterisation comprised a 5 × 5 array of masked high contrast

drifting gratings (15 v.d. wide; overlapping by 40%; 9 v.d. per cycle; 1 Hz drift rate; 0.5 Hz rota-

tion rate) presented for 2 s each in random order, separated by a blank screen of 2 s duration,

with 50% luminance (example calcium response shown in S1A Fig). Frames were averaged

during the 2 s stimulus window to estimate the response of a neuron.

Full-field high-contrast drifting gratings (33.33 v.d. per cycle; 1 Hz drift rate) were pre-

sented drifting in one of 8 directions for 2 s each in random order, separated by a 6 s period of

blank screen with 50% luminance (example calcium response shown in S1B Fig). Frames were

averaged during the 2 s stimulus window to estimate the response of a neuron.

Full-field 50% contrast drifting sine-wave gratings (25 v.d. per cycle; 1 Hz drift rate) were

presented drifting in one of 16 directions for 1 s each in random order (calcium responses

shown in Fig 2). Full-field drifting plaid stimuli were constructed additively from 50% contrast
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sine-wave grating components (25 v.d. per cycle; 1 Hz drift rate; 1 s duration; Fig 2). Three

frames were averaged following the peak response (384 ms window) to estimate the response

of a neuron.

Full-field natural movies consisted of a 43 s continuous sequence with three segments

(example calcium response shown in S1C Fig).

Full-field contrast-oscillating square-wave gratings and plaid stimuli were composed of

bars of 8 v.d. width which oscillated at 2 Hz between black and white on a 50% grey back-

ground, and with a spatial frequency of 20 v.d./cycle (example calcium response shown in Fig

5A). On each subsequent oscillation cycle the bars locations shifted phase by 180˚. Static grat-

ings were used to avoid introducing a movement component into the stimulus. A base orienta-

tion for the gratings of either horizontal or vertical was chosen, and five orientations spanning

±40 deg. around the base orientation were used. Contrast-oscillating plaids were composed of

every possible combination of the five oscillating grating stimuli, giving 5 grating and 10 plaid

stimuli for each experiment. A single trial consisted of a blank period (50% luminance screen)

presented for 20 s, as well as presentations of each of the gratings and plaids for 5 s each, pre-

ceded by 5 s of a blank 50% luminance screen, all presented in random order. Frames from

0.25 s to 4.75 s during the stimulus period were averaged to estimate the response of a neuron.

Analysis of calcium transients

Analysis of two-photon calcium imaging data was conducted in Matlab using the open-source

FocusStack toolbox [33]. During acquisition, individual two-photon imaging trials were visu-

ally inspected for Z-axis shifts of the focal plane. Affected trials were discarded, and the focal

plane was manually shifted to align with previous trials before acquisition continued. Frames

recorded from a single region were composed into stacks, and spatially registered with the first

frame in the stack to correct lateral shifts caused by movement of the animal. Only pixels for

which data was available for every frame in the stack were included for analysis. A background

fluorescence region was selected in the imaged area, such as the interior of a blood vessel, and

the spatial average of this region was subtracted from each frame in the stack. The baseline

fluorescence distribution for each pixel was estimated by finding the mean and standard devia-

tion of pixel values during the 10 s blank periods, separately for each trial. Regions of interest

(ROIs) were selected either manually, or by performing low-pass filtering of the OGB (green)

and sulforhodamine (red) channels, subtracting red from green and finding the local peaks of

the resulting image.

A general threshold for responsivity was computed to ensure that ROIs considered respon-

sive were not simply due to neuropil activity. The responses of all pixels outside any ROI were

collected (defined as “neuropil”), and the Z-scores of the mean ΔF/F0 responses during single

visual stimulus presentations were computed per pixel, against the baseline period. A threshold

for single-trial responses to be deemed significant (ztrial) was set by finding the Z-score which

would include only 1% of neuropil responses (α = 1%). A similar threshold was set for compar-

ison against the strongest response of an ROI, averaged over all trials (zmax). These thresholds

always exceeded 3, implying that single-trial responses included for further analysis were at

least 3 standard deviations higher than the neuropil response. Note that this approach does not

attempt to subtract neuropil activity, but ensures that any ROI used for analysis responds to

visual stimuli with calcium transients that can not be explained by neuropil contamination

alone.

The response of an ROI to a stimulus was found on a trial-by-trial basis by first computing

the spatial average of the pixels in an ROI for each frame. The mean of the frames during the

blank period preceding each trial was subtracted and used to normalise responses (ΔF/F0), and
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the mean ΔF/F0 of the frames during the analysed trial period was computed. The standard

deviation for the baseline of a neuron was estimated over all ΔF/F0 frames from the long base-

line period and the pre-trial blank periods. ROIs were included for further analysis if the ROI

was visually responsive according to trial Z-scores (maximum response > zmax) and reliable

(trial response > ztrial for more than half of the trials). The response of a neuron to a stimulus

was taken as the average of all single-trial ΔF/F0 responses.

Receptive fields of neurons recorded under natural movie and drifting grating stimulation

were characterised by presenting small, masked high-contrast drifting gratings from a 5 × 5

array, in random order (see above; S1A Fig). A receptive field for each neuron was estimated by

a Gaussian mixture model, composed of circularly symmetric Gaussian fields (ρ = 7.5 v.d.)

placed at each stimulus location and weighted by the response of the neuron to the grating stim-

ulus at that location. The centre of the receptive field was taken as the peak of the final Gaussian

mixture. Neurons were included for further analysis if the centre of their receptive field lay

within a 7.5 v.d. circle placed at the centre of the natural movie visual stimulus. Example single-

trial and trial-averaged calcium responses to natural movie stimuli are shown in S1C Fig.

Response similarity measures and response metrics

The similarity in response between two neurons was measured independently for grating and

plaid stimuli. The set of grating responses for each neuron were composed into vectors R1g

and R2g, where each element of a vector was the trial-averaged response of a neuron to a single

grating orientation. The similarity in grating responses between two neurons was then given

by the Pearson’s correlation coefficient between R1g and R2g: ρg = corr(R1g, R2g) (see S1B Fig,

inset). The similarity in response to plaid stimuli was computed analogously over the sets of

trial-averaged plaid responses R1p and R2p: ρp = corr(R1p, R2p) (see Fig 5A, inset). Similarity

was only measured between neurons recorded in the same imaging site.

The similarity between neurons in their responses to movie stimuli (ρm) was measured by

computing the signal correlation as follows. The calcium response traces for a pair of neurons

were averaged over trials. The initial 1 s segment of the traces following the onset of a movie

segment were excluded from analysis, to reduce the effect of transient signals in response to

visual stimulus onset on analysed responses. The Pearson’s correlation coefficient was then cal-

culated between the resulting pair of traces (ρm; see S1C Fig, inset). Note that correlations

introduced through neuropil contamination were not corrected for, with the result that the

mean signal correlation is positive rather than zero. For this reason we used thresholds for

“high” correlations based on percentiles of the correlation distribution, rather than an absolute

correlation value. The similarity between neurons in their responses to flashed natural stimuli

(ρCa; S1F Fig) was measured as the linear correlation between the vector of responses of a sin-

gle neuron to a set of 1800 natural stimuli [24].

The Orientation Selectivity Index (OSI) of a neuron was estimated using the formula OSI =

[max(Rg)−min(Rg)]/sum(Rg), where Rg is the set of responses of a single neuron to the set of

grating stimuli. The OSI of a neuron ranges from 0 to 1, where a value of 1 indicates that a neu-

ron responds only to a single grating stimulus; a value of 0 indicates equal, nonselective

responses to all grating stimuli.

The Plaid Selectivity Index (PSI) of a neuron, describing how selective a neuron is over a set

of plaid stimuli, was calculated using the formula PSI = 1−[−1 + ∑jRp,j/max(Rp)]/[#(Rp)−1]

where #(Rp) is the number of stimuli in Rp [30]. The PSI of a neuron ranges from 0 to 1, where

a value of 1 indicates a highly selective response, where a neuron responds to only a single

plaid stimulus; a value of 0 indicates equal, nonselective responses to all plaid stimuli.
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A plaid Modulation Index (MI), describing the degree of facilitation or suppression of a

neuron in response to plaid stimuli, was calculated using the formula MI = [max(Rp)−max

(Rg)]/[max(Rp)+max(Rg)], where Rp is the set of responses of a single neuron to the set of plaid

stimuli [30]. The MI of a neuron ranges from -1 to 1. Values of MI < 0 indicate stronger

responses to grating stimuli compared with plaid stimuli; values of MI > 0 indicate stronger

responses to plaid stimuli. A value of MI = -1 indicates that a neuron responds only to grating

stimuli; a value of MI = 1 indicates that a neuron responds only to plaid stimuli.

The proportion of facilitating and suppressing neurons was compared between mouse V1

and model responses using two-tailed Fisher’s exact tests. The population of responsive neu-

rons was divided into three groups: facilitating (MI> 0.05); suppressing (MI < -0.05); and

non-modulated (-0.05 < = MI< = 0.05). These categories were arranged into three 2 × 3 con-

tingency tables, with each table tested to compare facilitation and suppression between mouse

V1 and one model.

Generation of V1 control responses

We used single-cell, single-trial responses to oscillating contrast grating stimuli to explore

whether we could distinguish between correlated and decorrelated responses to plaid stimuli,

given experimental variability and noise. For each cell in the experimentally-recorded data set,

we used the set of grating responses Rg to generate plaid responses Rp for the same cell, under

the assumption that the response to a plaid was linearly related to the sum of the responses to

the two grating components. For each plaid, we randomly selected a single-trial response for

each of the grating components of the plaid. The predicted single-trial plaid response was the

sum of the two grating responses. We generated 100 bootstrap samples for each experimental

population, with each sample consisting of the same number of trials and neurons as the

experimental population. We then quantified the relationship between grating and plaid

responses as described for the experimental data.

Statistical methods

We used a sample size commensurate with those used in the field, and sufficient for statistical

analysis of our observations. No explicit sample size computation was performed. Two-sided,

non-parametric statistical tests were used unless stated otherwise in the text.

Supporting information

S1 Fig. Connected neurons span a wide range of preferred orientations in mouse V1. a

Characterisation of receptive field location using sparse drifting/rotating grating stimuli. Sin-

gle-trial OGB calcium responses (black); presentation time of optimal stimulus and sub-opti-

mal stimulus indicated (black and grey bars). Right inset: estimated RF location for the same

neuron. b Single-trial OGB calcium response to drifting grating stimuli (black); presentation

of optimal stimulus orientation indicated above, all stimulus presentation times indicated

below. Right inset: calculation of grating response similarity ρg between two neurons. c Single-

trial (grey) and trial-averaged OGB calcium response (black) to natural movie stimuli. Vertical

lines indicate timing of movie sequence onset. Right inset: calculation of movie response simi-

larity (ρm), using signal correlations over trial-averaged responses from two neurons. d Pairs

of neurons with high signal correlations to natural movies (ρm), which predicts a high proba-

bility of connection [21], can have similar or dissimilar grating responses. Pairs of neurons

with similar orientation preference are not more likely to have high ρm (e) or high signal corre-

lation to flashed natural scenes ρCa (f) than pairs with dissimilar orientation preference. g Con-

nected pairs are slightly more likely to share similar orientation preferences than unconnected

Feature integration in mouse V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005888 December 14, 2017 26 / 33

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005888.s001
https://doi.org/10.1371/journal.pcbi.1005888


pairs [21,24], but nevertheless span almost arbitrary orientation differences (�20% of pairs

with close to orthogonal orientation preference). h In data from functionally characterized

neurons with connections reconstructed under electron microscopy [25], connected pairs are

more likely to share similar preferred orientations. An excess of connections was present at

orientation preference differences of around 30˚ (p = 0.005, Monte-Carlo test). Dashed lines:

95% bootstrap confidence intervals (CI). d–e: in vivo two-photon calcium imaging; f–g: in vivo
calcium imaging coupled with in vitro simultaneous patching to detect connected pairs; data

from [24]. h: in vivo calcium imaging coupled with electron microscopy (EM) reconstruction

to identify connected neurons; data from [25]. e–f: Kruskal-Wallis tests; g: Ansari-Bradley test;

h: Monte-Carlo test. n.s.: p> 0.05. Strong connections: strongest 50% of connected pairs, mea-

sured by EPSP amplitude. Corr: correlation; conn.: connection.

(PDF)

S2 Fig. Estimated parameters for cortex place it in an Inhibition-Stabilised Network (ISN)

regime, with competition provided by specific excitatory connectivity. a The network stabil-

ity regimes in the parameter space defined by total inhibitory weight gI�nI and total excitatory

weight gE�nE for a random network (proportion of specific synapses s = 0%). Nominal parame-

ter estimates for rodent cortex (cross) place the network in a regime that requires inhibitory

feedback for stability (an ISN; [50]), but which does not lead to competition between excitatory

neurons. Inhibition must be unrealistically strengthened to obtain competition (100× and

200× estimates for rodent cortex; top of panel; shading indicates competition). However,

overly-strong inhibition leads to inhibition-driven oscillations (IO). b When the proportion of

specific synapses s is raised to 20%, nominal parameters for rodent cortex permit competition

(shading indicates strength of competition; see Methods). Note that the maximum excitatory

strength permitted while maintaining network stability is reduced. c When s = 40%, nominal

parameters for rodent cortex become unstable (cross is just outside stable region). d Network

stability regimes for the parameter space defined by s and gE�nE, with nominal value chosen for

gI�nI (crosses in a–c). Nominal value for gE�nE is indicated by a dashed line. Both excitatory

strength gE�nE and the proportion of specific synapses s affect network stability and the

strength of competition. Abbreviations: gI,E: Synaptic strength per inhibitory or excitatory syn-

apse; nI,E: Number of synapses made by each inhibitory or excitatory neuron; AS: Intrinsically

stable network, stable in the absence of inhibition; ISN: Inhibition-Stabilised Network, requir-

ing inhibitory feedback for stability; Exp: Runaway activity due to exponentially divergent

unstable fixed point; IO: Oscillatory activity due to strong inhibition. a.u.: arbitrary units.

(PDF)

S3 Fig. Grating and plaid responses are highly correlated in a model with random connec-

tivity. a Under the non-specific connectivity model, synapses between pairs of neurons are

formed without regard to functional response similarity of the neurons. Neurons form synap-

ses stochastically, according to spatial proximity. Two example pairs of neurons are shown,

and their responses to a set of grating and plaid stimuli. b Neurons with similar responses to

grating stimuli (high ρg) have similar responses to plaid stimuli (high ρp), and vice versa.

Conn.: connectivity; stim.: stimuli.

(PDF)
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56. Schüz A, Palm G. Density of neurons and synapses in the cerebral cortex of the mouse. Journal of

Comparative Neurology 1989; 286(4):442–55. https://doi.org/10.1002/cne.902860404 PMID: 2778101

57. Gabott PLA, Somogyi P. Quantitative distribution of gaba-immunoreactive neurons in the visual cortex

(area 17) of the cat. Experimental Brain Research 1986; 61:323–31. PMID: 3005016

Feature integration in mouse V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005888 December 14, 2017 30 / 33

http://www.ncbi.nlm.nih.gov/pubmed/9744894
https://doi.org/10.1162/NECO_a_00182
http://www.ncbi.nlm.nih.gov/pubmed/21732859
https://doi.org/10.1162/08997660360675053
http://www.ncbi.nlm.nih.gov/pubmed/14511514
http://www.ncbi.nlm.nih.gov/pubmed/9722089
https://doi.org/10.1103/PhysRevE.93.022302
http://www.ncbi.nlm.nih.gov/pubmed/26986347
https://doi.org/10.1016/j.neuron.2011.02.025
https://doi.org/10.1016/j.neuron.2011.02.025
http://www.ncbi.nlm.nih.gov/pubmed/21435562
https://doi.org/10.1038/nature09802
https://doi.org/10.1038/nature09802
http://www.ncbi.nlm.nih.gov/pubmed/21390124
https://doi.org/10.1016/j.cub.2011.04.026
http://www.ncbi.nlm.nih.gov/pubmed/21640899
https://doi.org/10.1523/JNEUROSCI.3131-11.2011
https://doi.org/10.1523/JNEUROSCI.3131-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21917809
http://www.ncbi.nlm.nih.gov/pubmed/12662807
https://doi.org/10.1162/NECO_a_00613
http://www.ncbi.nlm.nih.gov/pubmed/24877732
https://doi.org/10.1016/j.neuron.2008.12.020
https://doi.org/10.1016/j.neuron.2008.12.020
http://www.ncbi.nlm.nih.gov/pubmed/19186171
http://www.ncbi.nlm.nih.gov/pubmed/8939866
http://www.ncbi.nlm.nih.gov/pubmed/9151754
https://doi.org/10.1016/j.neuron.2009.03.028
https://doi.org/10.1016/j.neuron.2009.03.028
http://www.ncbi.nlm.nih.gov/pubmed/19477158
https://doi.org/10.1016/j.neuron.2011.12.013
https://doi.org/10.1016/j.neuron.2011.12.013
http://www.ncbi.nlm.nih.gov/pubmed/22243754
http://www.ncbi.nlm.nih.gov/pubmed/7731993
https://doi.org/10.1371/journal.pone.0127547
http://www.ncbi.nlm.nih.gov/pubmed/26083363
https://doi.org/10.1002/cne.902860404
http://www.ncbi.nlm.nih.gov/pubmed/2778101
http://www.ncbi.nlm.nih.gov/pubmed/3005016
https://doi.org/10.1371/journal.pcbi.1005888


58. Kerlin AM, Andermann ML, Berezovskii VK, Reid RC. Broadly tuned response properties of diverse

inhibitory neuron subtypes in mouse visual cortex. Neuron 2010, Sep; 67:858–71. https://doi.org/10.

1016/j.neuron.2010.08.002 PMID: 20826316

59. Hellwig B. A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of

the rat visual cortex. Biol Cybern 2000; 82(2):111–21. https://doi.org/10.1007/PL00007964 PMID:

10664098

60. Boucsein C, Nawrot MP, Schnepel P, Aertsen A. Beyond the cortical column: Abundance and physiol-

ogy of horizontal connections imply a strong role for inputs from the surround. Front Neurosci 2011;

5:32. https://doi.org/10.3389/fnins.2011.00032 PMID: 21503145

61. Holmgren C, Harkany T, Svennenfors B, Zilberter Y. Pyramidal cell communication within local net-

works in layer 2/3 of rat neocortex. The Journal of Physiology 2003, Aug; 551(1):139–53. https://doi.

org/10.1113/jphysiol.2003.044784 PMID: 12813147

62. Binzegger T, Douglas RJ, Martin KAC. Stereotypical bouton clustering of individual neurons in cat pri-

mary visual cortex. Journal of Neuroscience 2007, Nov 7; 27(45):12242–54. https://doi.org/10.1523/

JNEUROSCI.3753-07.2007 PMID: 17989290

63. Niell CM, Stryker MP. Highly selective receptive fields in mouse visual cortex. J Neurosci 2008, Jul; 28

(30):7520–36. https://doi.org/10.1523/JNEUROSCI.0623-08.2008 PMID: 18650330

64. Medini P. Cell-type-specific sub- and suprathreshold receptive fields of layer 4 and layer 2/3 pyramids

in rat primary visual cortex. Neuroscience 2011, Sep 8; 190:112–26. https://doi.org/10.1016/j.

neuroscience.2011.05.026 PMID: 21704132

65. Hofer SB, Ko H, Pichler B, Vogelstein J, Ros H, Zeng H, et al. Differential connectivity and response

dynamics of excitatory and inhibitory neurons in visual cortex. Nat Neurosci 2011, Aug; 14(8):1045–52.

https://doi.org/10.1038/nn.2876 PMID: 21765421

66. Liu B-H, Li P, Li Y-T, Sun YJ, Yanagawa Y, Obata K, et al. Visual receptive field structure of cortical

inhibitory neurons revealed by two-photon imaging guided recording. J Neurosci 2009, Aug; 29

(34):10520–32. https://doi.org/10.1523/JNEUROSCI.1915-09.2009 PMID: 19710305

67. Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z, Leinweber M, et al. Single-cell- initiated monosyn-

aptic tracing reveals layer-specific cortical network modules. Science 2015, Jul 3; 349(6243):70–4.

https://doi.org/10.1126/science.aab1687 PMID: 26138975

68. Li L-Y, Li Y-T, Zhou M, Tao HW, Zhang LI. Intracortical multiplication of thalamocortical signals in

mouse auditory cortex. Nat Neurosci 2013, Aug 11; 16(9):1179–81. https://doi.org/10.1038/nn.3493

PMID: 23933752

69. Lien AD, Scanziani M. Tuned thalamic excitation is amplified by visual cortical circuits. Nat Neurosci

2013, Aug 11; 16(9):1315–23. https://doi.org/10.1038/nn.3488 PMID: 23933748

70. Li Y-T, Ibrahim LA, Liu B-H, Zhang LI, Tao HW. Linear transformation of thalamocortical input by intra-

cortical excitation. Nat Neurosci 2013, Aug 11; 16(9):1324–30. https://doi.org/10.1038/nn.3494 PMID:

23933750

71. Zagha E, Ge X, McCormick DA. Competing neural ensembles in motor cortex gate goal- directed motor

output. Neuron 2015, Nov 4; 88(3):565–77. https://doi.org/10.1016/j.neuron.2015.09.044 PMID:

26593093

72. Rust NC, Mante V, Simoncelli EP, Movshon JA. How MT cells analyze the motion of visual patterns.

Nat Neurosci 2006, Nov; 9(11):1421–31. https://doi.org/10.1038/nn1786 PMID: 17041595

73. Lamme VAF, Zipser K, Spekreijse H. Figure-ground activity in primary visual cortex is suppressed by

anesthesia. Proceedings of the National Academy of Sciences 1998, Mar 17; 95(6):3263–8. PMID:

9501251

74. Mariño J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, et al. Invariant computations in local

cortical networks with balanced excitation and inhibition. Nat Neurosci 2005; 8(2):194–201. https://doi.

org/10.1038/nn1391 PMID: 15665876

75. Ma WP, Liu BH, Li YT, Huang ZJ, Zhang LI, Tao HW. Visual representations by cortical somatostatin

inhibitory neurons—selective but with weak and delayed responses. J Neurosci 2010, Oct 27; 30

(43):14371–9. https://doi.org/10.1523/JNEUROSCI.3248-10.2010 PMID: 20980594

76. Wilson NR, Runyan CA, Wang FL, Sur M, Wilson NR, Runyan CA, et al. Division and subtraction by dis-

tinct cortical inhibitory networks in vivo. Nature 2012, Aug 8. https://doi.org/10.1038/nature11347

PMID: 22878717

77. Litwin-Kumar A, Rosenbaum R, Doiron B. Inhibitory stabilization and visual coding in cortical circuits

with multiple interneuron subtypes. J Neurophysiol 2016, Jan 6; 115:1399–409. https://doi.org/10.1152/

jn.00732.2015 PMID: 26740531

78. Somers DC, Nelson SB, Sur M. An emergent model of orientation selectivity in cat visual cortical simple

cells. Journal of Neuroscience 1995, Aug; 15(8):5448–65. PMID: 7643194

Feature integration in mouse V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005888 December 14, 2017 31 / 33

https://doi.org/10.1016/j.neuron.2010.08.002
https://doi.org/10.1016/j.neuron.2010.08.002
http://www.ncbi.nlm.nih.gov/pubmed/20826316
https://doi.org/10.1007/PL00007964
http://www.ncbi.nlm.nih.gov/pubmed/10664098
https://doi.org/10.3389/fnins.2011.00032
http://www.ncbi.nlm.nih.gov/pubmed/21503145
https://doi.org/10.1113/jphysiol.2003.044784
https://doi.org/10.1113/jphysiol.2003.044784
http://www.ncbi.nlm.nih.gov/pubmed/12813147
https://doi.org/10.1523/JNEUROSCI.3753-07.2007
https://doi.org/10.1523/JNEUROSCI.3753-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17989290
https://doi.org/10.1523/JNEUROSCI.0623-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18650330
https://doi.org/10.1016/j.neuroscience.2011.05.026
https://doi.org/10.1016/j.neuroscience.2011.05.026
http://www.ncbi.nlm.nih.gov/pubmed/21704132
https://doi.org/10.1038/nn.2876
http://www.ncbi.nlm.nih.gov/pubmed/21765421
https://doi.org/10.1523/JNEUROSCI.1915-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19710305
https://doi.org/10.1126/science.aab1687
http://www.ncbi.nlm.nih.gov/pubmed/26138975
https://doi.org/10.1038/nn.3493
http://www.ncbi.nlm.nih.gov/pubmed/23933752
https://doi.org/10.1038/nn.3488
http://www.ncbi.nlm.nih.gov/pubmed/23933748
https://doi.org/10.1038/nn.3494
http://www.ncbi.nlm.nih.gov/pubmed/23933750
https://doi.org/10.1016/j.neuron.2015.09.044
http://www.ncbi.nlm.nih.gov/pubmed/26593093
https://doi.org/10.1038/nn1786
http://www.ncbi.nlm.nih.gov/pubmed/17041595
http://www.ncbi.nlm.nih.gov/pubmed/9501251
https://doi.org/10.1038/nn1391
https://doi.org/10.1038/nn1391
http://www.ncbi.nlm.nih.gov/pubmed/15665876
https://doi.org/10.1523/JNEUROSCI.3248-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20980594
https://doi.org/10.1038/nature11347
http://www.ncbi.nlm.nih.gov/pubmed/22878717
https://doi.org/10.1152/jn.00732.2015
https://doi.org/10.1152/jn.00732.2015
http://www.ncbi.nlm.nih.gov/pubmed/26740531
http://www.ncbi.nlm.nih.gov/pubmed/7643194
https://doi.org/10.1371/journal.pcbi.1005888


79. Herzog MH, Ernst UA, Etzold A, Eurich CW. Local interactions in neural networks explain global effects

in gestalt processing and masking. Neural Computation 2003; 15(9):2091–113. https://doi.org/10.1162/

089976603322297304 PMID: 12959667

80. Li Z. A saliency map in primary visual cortex. Trends in Cognitive Sciences 2002; 6(1):9–16. PMID:

11849610

81. O’Hashi K, Fekete T, Deneux T, Hildesheim R, van Leeuwen C, Grinvald A. Interhemispheric syn-

chrony of spontaneous cortical states at the cortical column level. Cereb Cortex 2017, Apr 13:1–14.

https://doi.org/10.1093/cercor/bhx090 PMID: 28419208

82. Blumenfeld B, Bibitchkov D, Tsodyks M. Neural network model of the primary visual cortex: From func-

tional architecture to lateral connectivity and back. Journal of Computational Neuroscience 2006;

20:219–41. https://doi.org/10.1007/s10827-006-6307-y PMID: 16699843

83. Landsman A, Neftci E, Muir DR. Noise robustness and spatially-patterned synchronisation of cortical

network oscillators. New Journal of Physics 2012, Dec; 14(12):123031. https://doi.org/10.1088/1367-

2630/14/12/123031

84. Li Z. A neural model of contour integration in the primary visual cortex. Neural Computation 1998, May;

10(4):903–40. PMID: 9573412

85. White LE, Fitzpatrick D. Vision and cortical map development. Neuron 2007; 56:327–38. https://doi.org/

10.1016/j.neuron.2007.10.011 PMID: 17964249

86. Rochefort NL, Narushima M, Grienberger C, Marandi N, Hill DN, Konnerth A. Development of direction

selectivity in mouse cortical neurons. Neuron 2011, Aug 11; 71(3):425–32. https://doi.org/10.1016/j.

neuron.2011.06.013 PMID: 21835340

87. Galuske RA, Singer W. The origin and topography of long-range intrinsic projections in cat visual cortex:

A developmental study. Cerebral Cortex 1996; 6:417–30. PMID: 8670668

88. Luhmann HJ, Millán LM, Singer W. Development of horizontal intrinsic connections in cat striate cortex.

Experimental Brain Research 1986; 63:443–8. PMID: 3758263

89. Luhmann HJ, Singer W, Martinez-Millán L. Horizontal interactions in cat striate cortex: I. Anatomical

substrate and postnatal development. European Journal of Neuroscience 1990; 2:344–57. PMID:

12106041

90. Katz LC, Callaway EM. Development of local circuits in mammalian visual cortex. Annu Rev Neurosci

1992; 15:31–56. https://doi.org/10.1146/annurev.ne.15.030192.000335 PMID: 1575445

91. Miller B, Blake NM, Erinjeri JP, Reistad CE, Sexton T, Admire P, Woolsey TA. Postnatal growth of intrin-

sic connections in mouse barrel cortex. The Journal of Comparative Neurology 2001, Jul 17; 436

(1):17–31. PMID: 11413543

92. Kampa BM, Letzkus JJ, Stuart GJ. Dendritic mechanisms controlling spike-timing-dependent synaptic

plasticity. Trends Neurosci 2007, Sep; 30(9):456–63. https://doi.org/10.1016/j.tins.2007.06.010 PMID:

17765330
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