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Abstract 

Background:  Biomarkers, such as leukocyte count, C-reactive protein (CRP), and procalcitonin (PCT), have been 
commonly used to predict the occurrence of life-threatening bacteremia and provide prognostic information, given 
the need for prompt intervention. However, such diagnosis methods require much time and money. Therefore, we 
propose a method with a high prediction capability using machine learning (ML) models based on complete blood 
count (CBC) and differential leukocyte count (DC) and compare its performance with traditional CRP or PCT bio‑
marker methods and those of models incorporating CRP or PCT biomarkers.

Methods:  We collected 366,586 daily blood culture (BC) results, of which 350,775 (93.2%), 308,803 (82.1%), and 
23,912 (6.4%) cases were issued CBC/DC (CBC/DC group), CRP with CBC/DC (CRP&CBC/DC group), and PCT with CBC/
DC (PCT&CBC/DC group), respectively. For the ML methods, conventional logistic regression and random forest mod‑
els were selected, trained, applied, and validated for each group. Fivefold validation and prediction capability were 
also evaluated and reported.

Results:  Overall, the ML methods, such as the random forest model, demonstrated promising performances. When 
trained with CBC/DC data, it achieved an area under the ROC curve (AUC) of 0.802, which is superior to the prediction 
conventionally made with CRP/PCT levels (0.699/0.731). Upon evaluating the performance enhanced by incorporat‑
ing CRP or PCT biomarkers, it reported no substantial AUC increase with the addition of either CRP or PCT to CBC/DC 
data, which suggests the predicting power and applicability of using only CBC/DC data. Moreover, it showed com‑
petitive prognostic capability compared to the PCT test with similar all-cause in-hospital mortality (45.10% vs. 47.40%) 
and overall median survival time (27 vs. 25 days).

Conclusions:  The ML models using only CBC/DC data yielded more accurate bacteremia predictions compared to 
those by methods using CRP and PCT data and reached similar prognostic performance as by PCT data. Thus, such 
models are potentially complementary and competitive with traditional CRP and PCT biomarkers for conducting and 
guiding antibiotic usage.
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Background
Bacteremia presents high mortality rates of 22.0–27.7% 
in health-care and nosocomial settings [1, 2]. To coun-
ter this, critical measures, including the prescription 
of antimicrobics and early diagnosis using various bio-
markers, such as leukocyte count, C-reactive protein 
(CRP), and procalcitonin (PCT), have been adopted 
into clinical settings for predicting bacteremia before 
completing a blood culture (BC) [3, 4]. In particular, 
PCT is well validated for accurately predicting bac-
teremia, discriminating between contamination and 
true bacteremia, and even guiding the discontinua-
tion of antimicrobial therapy [5, 6]. It is also capable 
of determining the prognosis, including the length of 
hospital stay, mortality [7], and other recovery-related 
measurements. However, the substantially high cost of 
PCT testing compared to CRP (USD 39 vs. USD 1) has 
limited its broader usage [7, 8]. In contrast, despite its 
lower power (area under the ROC curve [AUC] = 0.569) 
to predict bacteremia than PCT (AUC = 0.729) [8, 9], 
CRP remains an effective yet cheaper and more widely 
available inflammatory marker for guiding antimi-
crobial therapy. Apart from these biomarkers, recent 
studies have also shown the ability of machine learn-
ing (ML) to predict bacteremia by training prediction 
models with various clinical data, including vital signs, 
biochemical and hematologic biomarkers, and so on 
[9–11]. Although ML models in previous studies have 
demonstrated promising results, their input data were 
primarily from various sources that require additional 
costs and are difficult to obtain in a uniform and timely 
manner [9–13].

Complete blood count (CBC) and differential leuko-
cyte count (DC) are the two most common laboratory 
tests applied to patients with unidentified infections. 
Their turnaround times in the laboratory can be as 
short as 22  min after implementing the total automa-
tion system [14], and the cost per test is about USD 7.00 
for CBC and USD 3.50 for DC. Features in CBC/DC 
have even shown more accurate prediction capability 
than CRP in the case of bacteremia [3]. Nevertheless, 
the analysis of CBC/DC data through ML methods, 
which might provide additional prediction capability 
instead of using multiple laboratory test results, has not 
been fully explored.

To fill the gaps, we developed ML models to further 
utilize readily existing CBC/DC data to determine the 
occurrence and prognosis of bacteremia using CRP and 
PCT. Furthermore, we examined whether including 

CRP or PCT as an additional predictor can improve 
machine prediction capability. Given that PCT has 
proven to be more accurate than CRP in determining 
the prognosis of bacteremia [3], this study excluded 
CRP when comparing the prognoses of bacteremia. 
Thus, we formulated the following research questions 
(RQs).

RQ1	� How accurate are predictions of bacteremia 
made with ML models based on CBC/DC com-
pared to predictions traditionally made using 
only CRP or PCT levels?

RQ2	� Will adding CRP or PCT as a predictor improve 
the CBC/DC ML model’s prediction capability?

RQ3	� How accurate are determinations of bacteremia 
prognosis regarding all-cause in-hospital mor-
tality and overall median survival time made 
with ML models based on CBC/DC compared 
to those made using PCT levels?

Methods
Study population
This retrospective study was conducted at Linkou Chang 
Gung Memorial Hospital (CGMH) in Taiwan, a 3400-bed 
tertiary medical center that provides care for patients 
with high degrees of comorbidity. All data used in this 
study were obtained from Chang Gung Research Data-
base, a duplicate of the CGMH clinical database that 
was entirely anonymized and delinked [15]. The Institu-
tional Review Board of CGMH (IRB No.: 202001786B0) 
approved the study and waived informed consent.

A total of 376,196 consecutive daily BC results were 
collected (Fig. 1). These were extracted from the records 
of all adults admitted to CGMH from January 1, 2014, 
to December 31, 2019, with CBC/DC and BC results 
concurrently issued on the same day regardless of the 
order of specimen collection. After excluding 9610 pos-
sible contaminations, 366,586 BC cases were obtained. 
This will be explained in more detail in the “Label cases 
for ML” section. Of the total number of cases, 350,775 
(93.2%) cases issued CBC/DC (CBC/DC group), 308,803 
(82.1%) cases issued CRP with CBC/DC (CRP&CBC/DC 
group), and 23,912 (6.4%) cases issued PCT with CBC/
DC (PCT&CBC/DC group) on the same day (Table  1). 
The patients’ characteristics (age and gender) and yearly 
case distributions of the three groups were also reported. 
Cases from 2014 to 2018 were assigned as training and 
validation sets to build the ML models, whereas those 
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from 2019 were used as testing sets. In investigating 
RQ3, only 3070 of the 6879 cases were used for predic-
tion because 3809 outpatient cases lacked the prognostic 
information needed to implement the study.

Training data preparation
A  complete CBC/DC test  measures several features of 
the blood, including the following: abnormal lympho-
cyte, abnormal monocyte, atypical lymphocyte, band, 

basophil, blast cell, eosinophil, hematocrit, hemoglobin, 
hypersegmented cell, lymphocyte, mean corpuscular 
hemoglobin, mean corpuscular hemoglobin concentra-
tion, mean corpuscular volume, megakaryocyte, meta-
myelocyte, monocyte, myelocyte, nucleated red blood 
cell, platelet, plasma cell, plasmacytoid cell, promono-
cyte, promyelocyte, red blood cell, red cell distribution 
width, segmented neutrophil, and leukocyte. Because 
only a small fraction of patients tested CBC/DC mul-
tiple times in 1  day (0.67%; [16]) and minimal intraday 
variation was expected, the mean result of such multiple, 
same-day tests was, therefore, used instead of individual 
test results. For RQ1 and RQ3, each CBC/DC data set 
was combined into a vector of 28 elements as 1 CBC/DC 
record in the training set. Regarding RQ2, the patients’ 
CRP and PCT test values were added to the CBC/DC ele-
ments to form the CRP&CBC/DC and PCT&CBC/DC 
training sets, respectively. Other patient demographic 
data, such as gender, were excluded in the study, as previ-
ous studies have indicated that such data did not signifi-
cantly affect the probability of bacteremia [9, 13].

Label cases for ML
Bacteremia  refers to the recovery of any bacteria in at 
least one BC set. To avoid mislabeling data and con-
sequently reducing the ML model’s performance, the 
recovered coagulase-negative staphylococci, diphther-
oids, Micrococcus sp., and Bacillus sp. were considered to 
be contaminated and were excluded in establishing and 
training the predicting model [4]. Only cases of noncon-
tamination with positive recovery were labeled as posi-
tive cases (n = 30,146) for the ML training model (Fig. 1). 

Cases with BCa results in a day

(n = 376196)

Exclude cases of possible 
contamina�ons

Cases of noncontamina�on for 
training the MLb model 

(n = 366586)

Posi�ve BC cases

(n = 30146)

Nega�ve BC cases

(n = 336440)

Combine cases of possible 
contamina�ons and nega�ve BC for

prognosis analysis

(n = 346050)

Fig. 1  Flowchart of research samples. aBlood culture. bMachine learning

Table 1  The three research groups: CBC/DCa, CRP&CBC/DCb, 
and PCT&CBC/DCc

a Complete blood count/differential leukocyte count
b C-reactive protein and complete blood count/differential leukocyte count
c Procalcitonin and complete blood count/differential leukocyte count
e Of the 6879 cases, only 3070 inpatients’ data were used for prediction
d Numbers in bold represent the total number of cases

Groups CBC/DC CRP&CBC/DC PCT&CBC/DC

Number of cases 350,775d 308,803 23,912
Training and validation set 290,425 253,009 17,033

 2014 54,729 44,846 2434

 2015 55,982 46,775 2898

 2016 61,438 53,959 2924

 2017 59,843 53,784 4246

 2018 58,433 53,645 4531

Testing set 60,350 55,794 6879
 2019 60,350 55,794 6879e

Age 48.7 ± 30.0 46.8 ± 30.7 53.3 ± 27.6

Male 54.6% 54.3% 58.3%

Female 45.4% 45.7% 41.7%
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However, all excluded cases (n = 9610) were merged with 
the negative culture cases (n = 336,440) to analyze RQ3 
further.

ML methods
We included the logistic regression method into our 
model comparison following its frequent usage in mul-
tivariate analyses. Moreover, the random forest model 
has been shown to readily differentiate the importance 
of features and obtain a satisfying AUC [9, 16, 17]. How-
ever, considering that other ML methods, such as the 
artificial neural network (ANN), showed a mixed com-
parative performance compared to the logistic regression 
and random forest models [18], we also compared their 
performance using the CBC/DC group to justify the ML 
method selection.

Model training, validation, and testing
The training and validation sets for building ML models 
based on CBC/DC in RQ1 included data from 290,425 
cases collected from 2014 to 2018 (Table 1). For RQ2, in 
comparing the capability of the ML models obtained with 
and without a biomarker (i.e., CRP), both ML models 
were trained and validated with 253,009 cases. Similarly, 
in comparing the addition of PCT as a predictor, 17,033 
cases were used for training and validating both ML 
models. In line with RQ3, the better ML model obtained 
in RQ1 was used. Fivefold cross-validation was used for 
all ML methods, and the last validated model was saved 
to make predictions in this study. Data were split annu-
ally, and models were trained over 4 years and tested over 
the 5th year. Data from 2019 on 60,350 cases served as 
testing sets for RQ1; 55,794 cases, for RQ2; and 3070 
cases, for RQ3.

Performance evaluation
RQ1 was addressed by measuring the AUC to represent 
the ML models’ capability. In response to RQ2, aside 
from evaluating AUCs, the Pearson correlation coef-
ficient was used to test the correlation between models 
with and without CRP or PCT as predictors.

As for RQ3, Youden’s index [19] was calculated to 
select the optimal cutoff value for ML models and bio-
markers in the last cross-validation. Sensitivity, specific-
ity, positive predictive value (PPV), negative predictive 
value (NPV), positive likelihood ratio (LR+), and nega-
tive likelihood ratio (LR−) were also calculated to evalu-
ate the performance of the selected optimal cutoff on the 
testing set. The last validated ML model based on CBC/
DC data was used to predict each case in the testing set 
of the PCT&CBC/DC group. Furthermore, positive cases 
were defined by the selected optimal cutoff value, and 
their survival curve was compared to that of the negative 

cases through the Kaplan–Meier survival analysis and 
log-rank test. Overall median survival time and all-cause 
mortality were also documented and compared.

Meanwhile, initially excluded cases of possible con-
taminations were merged with BC negative cases and 
then evaluated with the last validated model and PCT 
value in the same manner as the noncontaminated data 
previously described. Because the AUC, sensitivity, and 
specificity were relatively unreliable in these possibly 
contaminated cases, the trained model would be evalu-
ated in terms of the accuracy of prognosis. The impor-
tance of each feature in the random forest model was 
then plotted to depict the model’s behavior and provide 
implications for clinical judgment. Coefficients of logistic 
regressions were also calculated for comparisons.

As previous studies have mainly focused on using 
the lens of the ROC curve [5, 20] in comparing the ML 
model performance with past literature, this study will 
thus retain reporting its AUC. For imbalanced data, the 
Precision-Recall AUC (PRAUC) has been shown to pro-
vide more information given its focus on the tradeoff 
between sensitivity and PPV [21]. Thus, we also provided 
the PRAUC results of the comparisons between random 
forest models and PCT for a better understanding of 
their comparative performance.

All ML models and calculations, including the AUC, 
Youden’s index, Kaplan–Meier survival analysis, log-
rank test, and other metrics, were performed using the 
“sklearn,” “statsmodels,” “lifelines,” and “kaplanmeier” [22] 
packages in Python 3.4 (https://​www.​python.​org/). In 
addition, statistical analyses of variance and the correla-
tion coefficient were executed in SPSS (IBM SPSS Statis-
tics 19, Chicago, IL).

Results
In addressing RQ1, the bacteremia prediction capabil-
ity of ML models and those predictions made by differ-
ent biomarkers (CRP or PCT) were measured through 
cross-validation and testing data, and the results of the 
AUC were presented (Table 2). The random forest model 
trained with CBC/DC showed satisfactory performance 
in predicting bacteremia in the CBC/DC group with an 
AUC of 0.802 (Table 2; the ROC graph is also shown in 
Additional file 3: Figure S1.a). Then, the model was com-
pared to CRP and PCT in terms of bacteremia prediction 
for the CRP&CBC/DC group and PCT&CBC/DC group, 
respectively. While the random forest model obtained an 
AUC of 0.806 and 0.767 on the two groups, the predic-
tions made by traditional biomarkers alone only achieved 
an AUC of 0.699 and 0.731, respectively. The ROC graphs 
that use PCT as their only marker for predicting bacte-
remia in the PCT&CBC/DC group compared to that of 
the random forest model trained solely with CBC/DC for 

https://www.python.org/
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predicting bacteremia in the PCT&CBC/DC group are 
shown (see Additional file 3: Figs. S2a and S3a). The evi-
dence supports the competitive performance of random 
forest models based on CBC/DC data compared to that 
based on traditional CRP or PCT biomarkers.

As a response to RQ2, the random forest model 
using only CBC/DC data excluded CRP data from the 
CRP&CBC/DC group, obtaining an AUC of 0.806 for 
the testing set. Adding CRP as a predictor to CBC/DC 
only slightly enhanced its bacteremia prediction capabil-
ity (AUC = 0.814). In contrast, adding PCT as a predic-
tor to CBC/DC did not change its prediction capability 
(AUC = 0.767). Similar to what was found in RQ1, the 
random forest model performed better than the logis-
tic regression model in both the CRP&CBC/DC and 
PCT&CBC/DC groups. It also showed a similar result in 
which adding a biomarker (CRP or PCT) did not signifi-
cantly change prediction capability.

The model trained using only CBC/DC data was then 
used to evaluate performance metrics, and Youden’s 
index optimal cutoff was determined from the last cross-
validation model, as previously stated. Optimal cutoffs of 
CRP and PCT were also calculated for the CRP&CBC/
DC and PCT&CBC/DC groups using the last cross-val-
idating data. Other evaluation metrics were calculated 
as well. The random forest model and CRP biomarker 
method (cutoff = 46.1  mg/L) used on CRP&CBC/DC 
group testing data had the following values: sensitiv-
ity (75.0% vs. 63.9%), specificity (72.3% vs. 63.9%), PPV 
(20.0% vs. 14.0%), NPV (96.9% vs. 95.1%), LR+ (2.70 vs. 
1.77), and LR− (0.35 vs. 0.56), respectively. These results 
demonstrate the superior performance of the random 

forest model. Meanwhile, in the PCT&CBC/DC group, 
the random forest model also displayed overall superior 
performance in sensitivity (82.8% vs. 74.8%), specificity 
(55.8% vs. 59.5%), PPV (20.2% vs. 20.0%), NPV (96.0% vs. 
94.6%), LR+ (1.87 vs. 1.85), and LR− (0.31 vs. 0.42) com-
pared to PCT (cutoff = 0.47 ng/mL) on PCT group test-
ing data. These metrics have consistently indicated that 
ML methods outperform biomarkers (CRP or PCT).

Concerning RQ1 and RQ2, the results demonstrated 
that the random forest model possesses a better predic-
tion capability than logistic regression, which is con-
sistent with previous publications where random forest 
models outperformed logistic regression models. Thus, 
our study mainly focused on the random forest model. 
To reveal the correlations of prediction capability when 
excluding or including a biomarker in the predicting 
model, we further tested and obtained a high correlation 
(r = 0.851, p < 0.005, strong positive correlation) between 
the CBC/DC random forest model and CRP&CBC/DC 
random forest model in predicting PCT&CBC/DC test-
ing sets. Similar prediction results were obtained from 
the CRP&CBC/DC group (r = 0.951, p < 0.005, very 
strong positive correlation) [23]. Detailed correlation 
plots between (A) models excluding CRP vs. including 
CRP and (B) models excluding PCT vs. including PCT 
were then shown (Fig. 2).

Regarding RQ3, the prognostic information of the 
positive and negative groups, determined by optimal 
cutoff values, was summarized (Table 3). All-cause in-
hospital mortality and overall median survival time 
were applied as prognostic information. The last model 
provided a similar prognostic performance with PCT 

Table 2  Bacteremia prediction capability indicated with AUCsa of biomarkers (CRP/PCT) and models (random forest/logistic 
regression)

a Areas under the ROC curve
b Complete blood count/differential leukocyte count
c C-reactive protein and complete blood count/differential leukocyte count
d Procalcitonin and complete blood count/differential leukocyte count
e Machine learning
f Trained and validated based on CBC/DC data of CRP&CBC/DC group (n = 253,009)
g Trained and validated based on CBC/DC and CRP data of CRP&CBC/DC group
h Trained and validated based on CBC/DC data of PCT&CBC/DC group (n = 17,033)

Methods/Group CBC/DCb CRP&CBC/DCc PCT&CBC/DCd

Cross-validation Testing Cross-validation Testing Cross-validation Testing

Used biomarker – – CRP 0.692 ± 0.017 0.699 PCT 0.748 ± 0.021 0.731

MLe models

 Random forest 0.792 ± 0.010 0.802 CRP excludedf 0.797 ± 0.010 0.806 PCT excludedh 0.759 ± 0.022 0.767

Includedg 0.806 ± 0.011 0.814 Included 0.777 ± 0.018 0.767

 Logistic regression 0.763 ± 0.009 0.772 Excluded 0.769 ± 0.009 0.775 Excluded 0.735 ± 0.030 0.734

Included 0.784 ± 0.011 0.790 Included 0.761 ± 0.024 0.745
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alone in all-cause in-hospital mortality (45.10% vs. 
47.40% for the positive group and 14.50% vs. 19.40% for 
the negative group) and overall median survival time 
(27 vs. 25 days for the positive group and 58 vs. 58 days 
for the negative group). Prognostic performance still 
showed similar results even in evaluating the model’s 
performance in cases of possible contaminations. The 
Kaplan–Meier survival analysis and log-rank test also 
demonstrated a significant difference over four risk 
groups (p < 0.005) for the last model (random forest) 
and through prediction with PCT level alone for both 
sets of the pathogenic bacteria isolates group and con-
taminations group.

Feature importance in the latest random forest mod-
els, models trained from the CBC/DC set within the 
CBC/DC group, models trained from additional CRP 
data within the CRP group, and models from additional 
PCT data within the PCT group were all plotted (Fig. 3). 
Although CRP and PCT provided the highest contribu-
tion compared to other features, CRP only provided 
importance slightly higher than platelet count and mono-
cyte percentage. From our CBC model, we found that 
platelet count, monocyte percentage, lymphocyte per-
centage, segmented neutrophil percentage, and leukocyte 
count ranked top five in feature importance, whereas fea-
tures ranked 6th–12th were all those related to the red 
blood cell series. The average feature importance was 
0.0357. Twelve features had relatively higher importance, 
which dropped drastically in those after the 12th rank. 
Coefficients, p-values, and confidence intervals in the 
logistic regression analysis were also shown (see Addi-
tional file 1: Table S1).

Discussion
We demonstrated a desirable performance in determin-
ing the occurrence and prognosis for evaluating bac-
teremia using ML analysis with solely CBC/DC data, 
even without PCT. The results implied the applicabil-
ity of ML models for predicting bacteremia in daily 
clinical practice. In addressing RQ1, we found that 
the random forest model trained with CBC/DC data 
achieved an AUC of 0.802, which is superior to pre-
dictions made with CRP or PCT levels. As a response 
to RQ2, we found that the AUC has not substantially 
increased upon the addition of either CRP or PCT to 
CBC/DC data compared to the ML models purely 
based on CBC/DC data. Moreover, the detailed correla-
tion plots between (A) models excluding vs. including 
CRP and (B) models excluding vs. including PCT also 

Fig. 2  Testing set correlation between models. (A: excluding/including CRPa , r = 0.851, p < 0.005; B: excluding/including PCTb. (r = 0.851, p < 0.005); 
(, r = 0.951, p < 0.005). aC-reactive protein. bProcalcitonin

Table 3  Comparative prediction capability for prognosis 
through PCTa level and random forest model based on CBC/DCb

a Procalcitonin
b Complete blood count/differential leukocyte count

Blood cultures Prediction methods

Random forest PCT level

With pathogenic bacterial 
isolates

 Group Positive Negative Positive Negative

  N 1888 1098 1536 1450

  All-cause in-hospital 
mortality

45.10% 14.50% 47.40% 19.40%

  Overall median survival 
(days)

27 58 25 58

With possible contaminations

 Group Positive Negative Positive Negative

  N 1604 1067 1285 1386

  All-cause in-hospital 
mortality

42.50% 14.40% 44.50% 19.00%

  Overall median survival 
(days)

29 58 28 58
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showed very strong and strong correlations with a high 
significance of Pearson correlation coefficients, respec-
tively. Therefore, the predictive model trained with only 
CBC/DC data can be inferred to have provided a simi-
lar level of prediction capability on the occurrence of 
bacteremia without using any CRP and PCT test results 
as predictors. As for RQ3, in the PCT&CBC/DC group, 
our ML prediction has shown competitive capability 
in determining prognosis for PCT. Building on previ-
ous studies, which have substantiated the role of CRP 
and PCT in facilitating antimicrobial therapy [7, 8], 
the results allow us to conclude that ML models using 
solely CBC/DC data may substitute or enhance both 
biomarkers for guiding antibiotic usage.

The results used in answering RQ1 demonstrated the 
value of the study’s ML method. Previously, two sys-
tematic reviews were conducted in 2015, reassuring the 
prediction performance of PCT in sepsis/bacteremia [5, 
20] and reported an overall ROC (0.79 and 0.77), sensitiv-
ity (76% and 76%), and specificity (69% and 64%), which 
are consistent with the predicting power of PCT in our 
study (ROC = 0.731, sensitivity = 74.8%, and specific-
ity = 59.5%). The most widely used and optimal cutoff 
of 0.5 ng/mL in one study is also almost identical to our 
PCT results calculated from Youden’s index (0.47  ng/
mL) [5]. While the diagnostic capability is consistent with 
those studies, our random forest model trained solely 
from CBC/DC data (ROC = 0.759, sensitivity = 82.8%, 
and specificity = 55.8%) provides both higher LR+ and 
lower LR− while comparing them with PCT in the same 
group of patients. This indicates that our study’s overall 
predicting capability is higher, as it identifies patients 
with and without suspected bacteremia. In addition, a 
PPV of 20.2% and NPV of 96.0% were obtained, which 
are both superior to PCT. This further demonstrates the 
strong potential of implementing the model into clinical 
scenarios where excluding bacteremia is needed.

Notably, the comparative performance of the ANN, 
random forest, and logistic regression models (see 
Additional file  2: Table  S2) showed that the ANN dem-
onstrated a similar performance as random forest. The 
random forest and logistic regression models both 
showed relative consistency in the final cutoff value, pro-
viding the variable’s importance/influence level to some 
extent. Hence, the inclusion of random forest and logistic 
regression models in our study is justified.

Fig. 3  Feature importance of final A CBC/DCa, B CBC/DC&CRPb, 
and C CBC/DC&PCTc models. aComplete blood count/differential 
leukocyte count. bComplete blood count/differential leukocyte count 
and C-reactive protein. cComplete blood count/differential leukocyte 
count and procalcitonin
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As mentioned previously, the PRAUC provides a closer 
look into the prediction performance of imbalanced data. 
The performance of our random forest model (see Addi-
tional file 3: Fig. S3b) has also demonstrated that it out-
performed the prediction made using PCT as the only 
marker (Additional file 3: Fig. S2b) in each of the cross-
validation and testing sets (e.g., 0.320 vs. 0.315 in 2014, 
0.376 vs. 0.328 in 2015, etc. Data shown in Additional 
file 3: Figs. S2b and S3b). The results of PCT’s PRAUC are 
also consistent with the previous study, which provided 
the sensitivity and PPV of different cutoff levels of PCT 
for the diagnosis of bacteremia in acute fever settings 
[24]. These results (Additional file 3: Figs. S1a–S3b) prove 
the robustness of our model performances.

As stated in the “Training data preparation” section, 
the ML methods in this study are mainly trained from a 
vector of 28 elements obtained from patients’ complete 
CBC/DC tests, of which no other biochemistry data, such 
as sodium, potassium, blood urea nitrogen, creatinine, 
and alanine aminotransferase, were used for the analysis. 
The reasons are twofold: first, the percentages of miss-
ing biochemistry data in current hospital testing settings 
(see Additional file  2: Table  S3) would cause a problem 
in building a functional prediction model. Second, even 
for retained cases with those biochemistry data, the ML 
models developed by including additional biochemistry 
data showed a decreased performance compared to ML 
models developed in this study based on CBC/DC (see 
Additional file 2: Table S4). As incorporating biochemis-
try data decreases model performance and limits overall 
usage compared to adopting solely CBC/DC, abandoning 
biochemistry data in our final analysis leads us to estab-
lish more applicable and reliable prediction models.

Although the BC results can be unreliable in groups of 
possible contaminations, our model still obtained simi-
lar effective prognostic performance as that with PCT. 
As previous studies successfully discriminated between 
bacteremia and contamination with PCT levels [5, 6], 
this study’s model may provide a similar quality of infor-
mation to avoid unnecessary antimicrobial usage and 
decrease microorganism selection pressure. With these 
benefits, related expenditures can be reduced, as false-
positive results may increase the length of one’s hospital 
stay by 4.5 days and total charge by USD 6878 per case 
[25, 26].

Regarding our study’s medical resources and financial 
aspect, CRP and PCT were ordered 60,350 and 6879 
times in 2019 and cost approximately USD 60,350 and 
USD 268,281, respectively [7]. Despite physicians’ judi-
cious and careful selection of cases in current practice, 
while most of the cases are tested with CRP, PCT tests 
and BCs do not indicate bacteremia [27–29]. Our model, 
in particular, is more accessible given the widespread 

implementation of CBC/DC tests in clinical settings, 
whereas CRP and PCT frequently need additional blood 
drawn, labor, and testing expenses. Furthermore, our 
model can be executed in a timely manner because of 
the computing power nowadays (about 0.05 s per case on 
a personal computer), and it can provide results almost 
simultaneously following the CBC/DC report. This pro-
vides the opportunity to steward antimicrobial therapy 
earlier and avoid unnecessary antimicrobial usage com-
pared to the current CRP- and PCT-guided practices. A 
previous study has also confirmed that both CRP- and 
PCT-guided practices provide comparable performances 
from aspects of mortality, length of hospital stay, and 
antibiotics usage [7]. PCT-guided practices certainly save 
overall costs after the expense of relatively small addi-
tional costs on PCT tests themselves [8]. In comparison, 
our ML approach could have greater savings on overall 
cost as clinicians may then initiate an infection workup 
and consider early antimicrobial therapy if identified as 
a high risk of bacteremia and discontinue unnecessary 
antibiotics more promptly and accurately after a compre-
hensive evaluation of the patient’s clinical condition.

After depicting feature importance in the models, 
the five most vital features were platelet count, mono-
cyte percentage, leukocyte count, segmented neutrophil 
percentage, and lymphocyte percentage. This finding 
is consistent with previous studies regarding infectious 
markers and recent studies that emphasize the monocyte 
as an indicator of infection [30–32]. Our study included 
all red blood cell indexes and analyzed their importance 
in ML models, whereas previous studies only depicted a 
few selected items [13]. Conventionally, leukocyte count 
is often considered an essential marker of infectious dis-
eases. However, our model has shown that both platelet 
count and monocyte percentage are even more impor-
tant than leukocyte count in diagnosing bacteremia [33].

Recent ML studies have exhibited promising results in 
predicting bacteremia from multiple sources of training 
data, such as vital signs, sequential organ failure assess-
ment scores, biochemical and hematologic biomarkers, 
and so on [9–13]. A study in 2018 also concluded that an 
ML method trained with data consisting of biochemical 
and hematologic biomarkers and cytokines is unable to 
improve the diagnostic accuracy of PCT [9]. However, 
our study presented the first ML method based solely on 
CBC/DC data and trained with a big set of data, which 
is feasible with only one blood draw and one hematol-
ogy analyzer. With this, a short turnaround time of about 
22 min in clinical settings can be achieved [14].

Although our study provided a potentially powerful 
approach to improving bacteremia prediction, it has sev-
eral limitations. First, because it is a retrospective single-
center study, the patient population might gradually shift 
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once the model is implemented into clinical practice. In 
cases wherein training data are obtained from patients 
tested with CBC/DC, CRP, and PCT after the physician’s 
clinical judgment, training data might affect the final per-
formance in different organizations. However, our ML 
approach demonstrated robustness and a desirable AUC 
across the CBC/DC, CRP&CBC/DC, and PCT&CBC/
DC groups. The results also indicated that our model 
could still perform well even in different patient popula-
tions. Second, our study was only limited to investigat-
ing bacterial bloodstream infections. Third, our study 
focused only on laboratory data and did not incorporate 
any patient’s underlying conditions and comorbidities. 
Further study implementing patient condition stratifica-
tion may provide a more promising result. Fourth, it was 
conducted before the COVID-19 pandemic, so the mod-
el’s performance under specific pandemic settings has yet 
to be explored. Fifth and last, it only evaluated the prog-
nostic performance in terms of in-hospital mortality rate 
and overall median survival time. Future randomized, 
prospective studies may be needed to confirm this ML 
approach’s performance in the stewardship of antimicro-
bial usage and identification of contamination.

Conclusions
In summary, this study has demonstrated that ML 
approaches using solely CBC/DC data may better predict 
the occurrence of bacteremia and determine its prog-
nosis similar to PCT and could potentially discriminate 
contamination from true bacteremia. Both advantages 
have shown the models’ high potential as a complemen-
tary and competitive method for CRP and PCT tests 
once implemented in clinical settings.
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