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ABSTRACT
Following the global COVID-19 pandemic, nanotechnology has been at the forefront of research efforts
and enables the fast development of diagnostic tools, vaccines and antiviral treatment for this novel virus
(SARS-CoV-2). In this review, we first summarize nanotechnology with regard to the detection of
SARS-CoV-2, including nanoparticle-based techniques such as rapid antigen testing, and nanopore-based
sequencing and sensing techniques.Then we investigate nanotechnology as it applies to the development of
COVID-19 vaccines and anti-SARS-CoV-2 nanomaterials. We also highlight nanotechnology for the
post-pandemic era, by providing tools for the battle with SARS-CoV-2 variants and for enhancing the global
distribution of vaccines. Nanotechnology not only contributes to the management of the ongoing
COVID-19 pandemic but also provides platforms for the prevention, rapid diagnosis, vaccines and antiviral
drugs of possible future virus outbreaks.
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INTRODUCTION
The current global coronavirus disease 2019
(COVID-19) pandemic caused by the novel
coronavirus (severe acute respiratory syndrome
coronavirus 2, SARS-CoV-2) that began in 2019
has greatly changed the world. According to the
World Health Organization (WHO), the number
of confirmed cases has exceeded 418 million, with
over 5.8 million deaths across over 200 countries
and territories (as of February 2022) [1].

In the battle against surges in infection with
SARS-CoV-2, nanotechnology has been at the fore-
front, enabling the rapid development of diag-
nostic methods, vaccines and antiviral medicines
[2,3]. Nanoparticle-based detection methods such
as lateral flow assays (LFAs) for SARS-CoV-2 anti-
gens have been used for rapid antigen testing.
Nanopore-based sequencing platforms have pro-
vided alternatives for molecular genetic analyses us-
ing the real-time reverse transcription-polymerase
chain reaction (RT-PCR) [4].Antiviral nanomateri-
als are also emerging as pandemic countermeasures
[5]. Nanoparticles have been prominent in mRNA

vaccine designs, where lipid nanoparticles have been
used to deliver mRNA in the vaccines from Pfizer
and Moderna, with over 10 billion doses having
been administered within the first two years of the
pandemic.

At the global level, the struggle with contain-
ing the virus continues, as more contagious variants
have emerged, such as the Delta (B.1.617.2) and
Omicron strains (B.1.1.529). The Omicron variant
spread at unprecedented speed, with over 125 mil-
lion new infections each day during January 2022,
which was 10 times faster than Delta. With ris-
ing levels of COVID-19 vaccination, including the
use of booster third vaccine doses, combined with
high levels of infection-acquired immunity, some
observers have predicted the end of the pandemic
in 2022, but with SARS-CoV-2 continuing as a fifth
endemic human coronavirus in global circulation for
the foreseeable future [6].Thus, the world’s popula-
tionwill be livingwith the virus in thepost-pandemic
era.

Nanotechnology will likely continue to con-
tribute to the management of COVID-19-related
issues, including the multiple health problems of
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‘long haul COVID’ that develop more than three
months after the acute infection. In the post-
pandemic era, the application of nanotechnology is
important in terms of global preparation for future
viral pandemics. In this review, we discuss the role
of nanotechnology in the diagnosis and treatment
of COVID-19 and its role in the post-pandemic era.
We discuss nanotechnology as applied to the de-
tection of SARS-CoV-2, vaccine development and
the development of antiviral medicines. From there,
we discuss the role of nanotechnology in the post-
pandemic era and highlight nanoscale information
in the battle with SARS-CoV-2 variants and the
global distribution of vaccines. Finally, we present
our perspectives on nanotechnology for the man-
agement of viral diseases, considering the lessons
learnt that will inform the management of future
pandemics, in terms of nanotechnology for preven-
tion, diagnosis and treatment.

NANOTECHNOLOGY FOR DETECTION
OF SARS-COV-2
Rapid identification of infected patients is essential
for effective isolation and quarantine protocols, to
help limit the spread of infection. Within weeks af-
ter the first published report of COVID-19, the full
sequence of the SARS-CoV-2 genome had been de-
termined, and it was shared globally, informing the
development of vaccines and medicines. Nanoscale
features of the SARS-CoV-2 virus were character-
ized using cryo-electron microscopy [7,8]. These
analyses revealed that for viral entry into human
cells, the viral spike (S) protein binds to angiotensin-
converting enzyme2(ACE2), and this is followedby
membrane fusion of the viral envelope and the host
cell membrane.

Traditional immunoassays and nucleic-acid-
amplification tests using RT-PCR have been
deployed to measure antibody levels and viral
load, to assess past infection and current infection,
respectively. Due to high levels of demand for these
laboratory-based tests, greater emphasis has been
placed on point-of-care and self-administered rapid
antigen testing (RAT). Such testing has allowed
timely identification of asymptomatic cases, in
workplaces, in the general community and in critical
services such as health care.RATuses nanoparticles,
particularly colloidal gold (Fig. 1a), for generating a
visual change. For nucleic acid detection, in addition
to traditional RT-PCR, nanopore-based sequencing
techniques for virus detection can also be used
(Fig. 1b). Nanomaterial-based sensors for virus
detection have also been developed (Fig. 1c) [9].

Nanoparticle-based techniques
for detection of SARS-CoV-2
A range of nanoparticles, including colloidal gold
nanoparticles, quantum dots (QDs), rare earth
nanoparticles, magnetic nanoparticles, carbon nan-
otubes and hybrid nanoparticles such as QD-doped
mesoporous silica nanoparticles, can be used in
immunoassays to detect various targets (Fig. 1a)
[10,11]. The tests can be used with nasal swabs,
throat swabs, sputum samples, saliva samples or
serum. There are 49 US FDA-approved antigen di-
agnostic devices for COVID-19, as of 28 May 2022,
under emergency-use authorizations. Most of these
diagnostic devices are LFA that use colloidal gold
nanoparticles or QDs. In immunological assays, var-
ious nanoparticles are conjugated with antibodies,
to either reveal a visible colour change or to allow
fluorescent/electrochemical/magnetic signal detec-
tion when the conjugated antibody has bound to
the antigen. Colloidal-gold-nanoparticle-based LFA
is the most common one, with the advantages of
low cost and a simple result-readingmethod (just by
sight; no instrument is needed). The fluorescence-
based detection method uses fluorophores such
as QDs and rare earth nanoparticles (upconver-
sion and downconversion nanoparticles) and of-
fers higher sensitivity and a lower detection limit
compared to colourimetric detection.QD-based flu-
orescence assays can achieve a sensitivity at least
10 times higher than gold-based ones due to the
lower background and higher brightness. However,
special fluoresce reading instruments are needed for
the results reading. The strategy of using a smart
phone’s camera with a simple light source may pro-
vide a cheap and simple method of fluorescence-
based detection. Magnetic LFA provides another
strategy for antigens tests, by measuring the stray
field changes from the magnetic nanoparticles.
These methods offer very high sensitivity and low
detection limits due to no or negligible background
noise. However, special instruments such as gi-
ant magnetoresistance sensors are needed for the
detection and are thus not widely used yet. Re-
cently, hybrid nanoparticles such as QD-loaded
mesoporoussilica-based LFA could improve detec-
tion sensitivity by 104 times compared to commer-
cial colloidal-gold-based LFA, and thus may be used
for early detection of SARS-CoV-2 infection [11].

To detect the SARS-CoV-2 virus in an LFA, the
primary targets are the spike (S) protein, the nucleo-
capsid (N) protein of the virus, the antibodies or the
viral nucleic acid [12]. N protein antigen-detecting
LFAs have superior sensitivity over traditional sero-
logical assays, with a limit of detection (LOD)
of 3.03 ng/mL [13]. To exploit the widespread
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Figure 1. Nanotechnologies used for detection of SARS-CoV-2. (a) Nanoparticle-based rapid antigen tests use various
nanoengineered approaches, including colloidal gold nanoparticles, quantum dots, rare earth nanoparticles (upconversion
and downconversion nanoparticles), magnetic nanoparticles, carbon nanotubes and hybrid nanoparticles with sizes ranging
from several to several hundred nanometers. (b) The nanopore-based sequencing technique for virus detection. (c) A porous
nanomaterial-based sensor for virus detection. Panel b reproduced with permission from ref. [16]. Panel c reproduced with
permission from ref. [9]. NPs = nanoparticles.

availability of smartphones and the high quality of
cameras in smartphones, a novel assay has been de-
veloped that uses a nano-enzyme-based chemilumi-
nescence process to detect the S protein. This assay
has an LOD of 0.1 ng/mL [14].

RAT has been deployed on a massive scale in
many countries, and the cost per test is low. The
trade-off for RAT is that it is less sensitive than ex-
pensive laboratory assays, by a factor of 105 times
compared to RT-PCR, and by 103 times for cell cul-
ture assays [15]. One way of reducing this perfor-
mance gap in terms of sensitivity is to use multi-
plex approaches and fluorescence detection for im-
munoassays, rather than simple visual readouts.

Nanopore-based techniques for
detection of SARS-CoV-2
Nanopore sequencing
Nanopore sequencing allows real-time analysis of
long DNA or RNA fragments by using voltage-
biased nanoscale pores in a membrane [16,17]. By
engineering protein nanopores with a 5 nm long
stem and an inside channel diameter that varies from

∼1.4 to ∼2.4 nm [18,19], the passage of a linear,
single-stranded(ss)DNAorRNAmolecule through
that pore can cause changes in current flow(Fig. 1b).
The measurement of these changes can be decoded
using an algorithm to generate a nucleic acid se-
quence [16]. This nanopore sequencing technique
was used to sequence the transcriptome of SARS-
CoV-2 [20], and then the full-length genomic RNA
of the virus [21].

Bull et al. evaluated the analytical performance of
nanopore sequencing for COVID-19 using the se-
quencing devices fromOxfordNanoporeTechnolo-
gies, and specimens from SARS-CoV-2-positive pa-
tients (total number: 157) and synthetic RNA con-
trols.The results showed highly accurate consensus-
level sequencedetermination,with>99%sensitivity
and>99%precisionwith regard to single nucleotide
variants detected above a minimum ∼60-fold cov-
erage depth. This study demonstrates the value
of nanopore sequencing for SARS-CoV-2 genome
analysis.However, it was also reported that this tech-
nique failed to detect variants at low read-count
frequencies accurately [4]. Likewise, Wang et al.
combined real-time nanopore sequencing with tar-
geted amplification methods for the detection of
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SARS-CoV-2. Within 6–10 hours, this approach
can detect and categorize SARS-CoV-2 variants and
other respiratory viruses. Clinical diagnostic tests
have validated this technique [22].

Nanomaterial-based sensing
Sensors based on nanomaterials, especially porous
nanomaterials, have been developed for the direct
detection of infectious virions of SARS-CoV-2.
DNA aptamers, which bind intact infectious virions
(but not non-infectious virions), have been incorpo-
rated into solid-state nano-sized pores. This allows
the nanomaterial to strongly bind and confine the
virus, which increases the sensitivity and lowers
the detection limit down to 10 000 copies/mL for
SARS-CoV-2, and 1 pfu/mL for human adenovirus
(Fig. 1c) [9]. These combined aptamer-nanopore
sensors have been used with different sample
types, including water, saliva and serum, for the
detection of both enveloped and non-enveloped
viruses. Aptamer-nanopore sensors have broad
application when it comes to detecting viruses of
public health concern. More recently, metal-organic
framework (MOF)-based sensors have also been
developed for SARS-CoV-2 detection; these utilize
the porous structure and high surface area ofMOFs.
Rabiee and co-authors synthesized MOF-5 with
CoNi2S4 (for enhancing the selectivity of sensors)
and decorated it with the porphyrin, H2TMP (as
a sensitizer for sensors) and achieved a detection
limit of 5 nM for the SARS-CoV-2 spike antigen
[23]. This proof-of-concept study demonstrates the
potential of using MOFs as low-cost and efficient
sensors for COVID-19 detection.

In addition to single-plexed detection, multi-
plexed sensing of SARS-CoV-2 has also been re-
cently developed based on nanomaterials. Gao
and his group designed a multiplexed and wire-
less electrochemical platform based on graphene for
ultra-rapid detection of COVID-19 [24,25]. This
nanomaterial-based detection technique can test
SARS-CoV-2 antigens, antibodies and C-reactive
proteins to provide key information, including the
viral infection, immune response and disease sever-
ity. They also validated this platform using COVID-
19 patient blood and saliva samples.

NANOTECHNOLOGY AND COVID-19
VACCINES
Vaccines remain the most efficient strategy for pro-
tection against viral infections. An appropriate vac-
cine will generate antibodies and memory T cells as
well as sensitized cytotoxic cells. Vaccine design in-
cludes the identification of antigens and adjuvants,

as well as an appropriate delivery method to de-
liver the antigens and trigger proper immune reac-
tions. Nanotechnology provides powerful tools to
deliver the antigens and present them to the im-
mune system, and also acts like adjuvants to elicit
stronger immune responses. During this pandemic,
the Pfizer and Moderna mRNA vaccines are using
lipid nanoparticles to deliver the mRNA that en-
codes for the spike protein of SARS-CoV-2, and
these represent a milestone for both nanotechnol-
ogy and the mRNA technique. The mRNA induces
the expression of the spike protein, triggering the
host immune response. Both the Pfizer and Mod-
erna mRNA vaccines have a reported efficacy of
around 95% for preventing hospitalizations caused
by laboratory-confirmed COVID-19 in people aged
16 or older who have not been previously infected
with SARS-CoV-2 [26–28].

As shown in Fig. 2, the mRNA is encapsulated
in lipid nanoparticles comprised of lipid, cholesterol
and polyethylene glycol (PEG). Since nakedmRNA
is not stable and is degraded readily by extracellu-
lar RNase enzymes, the lipid nanoparticle protects
the mRNA during storage and after administration,
and is essential for vaccine efficacy [29,30]. Cells in-
ternalize the nanoparticles, and the mRNA uses the
normal cellular machinery for translation into pro-
teins [31].These lipid nanoparticles range in size be-
tween80 and200nmand are synthesized by the self-
assembly of cationic lipids [32].

In addition to lipid nanoparticles, other types of
nanoparticles can be used as nanocarriers to deliver
nucleic acids for vaccines, including PEG-lipid
functionalized dendrimer nanoparticles, cationic
peptides, cationic polymer nanoparticles and
polyethyleneimine nanoparticles [33,34].

Nanoparticles can possess their own immuno-
genic properties, which can stimulate protective
immune responses against coronaviruses and
other viruses [35]. Relevant examples include
gold nanoparticles, polymeric nanoparticles and
spike protein nanoparticles [36]. Such particles
could be administered orally, intranasally, and by
subcutaneous or intramuscular injection. These
alternative administrationmethods overcome tissue
barriers and result in greater uptake of the particles
into regional lymph nodes [37,38].

In addition to serving as a delivery system,
nanoparticles can also be used as adjuvants, to boost
the overall efficiency of the immune response gen-
erated by vaccines. Adjuvants also reduce the re-
quired antigen dose [39]. Of the various COVID-
19 vaccines in development, 10 candidate vaccines
have used protein subunits in combination with a
nanoparticle adjuvant (6 at preclinical and 4 at clini-
cal testing stage).
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Figure 2. Lipid nanoparticle-based mRNA vaccines for COVID-19. (a) A schematic of the structure of an mRNA lipid nanopar-
ticle vaccine. (b) The immune response to the mRNA vaccine. (c) The efficacy of the Pfizer mRNA vaccine for COVID-19 (red)
versus a placebo (blue), with the cumulative incidence over four months after the first injection. Panel b and c reproduced
with permission from ref. [26].

Vaccination using protein subunits also in-
volves nanotechnology. These protein subunits
comprise various external structural components
of the SARS-CoV-2 virus and are combined with
adjuvants to increase the extent of stimulation of
the immune response [40]. An example of novel
design is the so-called ‘molecular clamp’ approach,
where the relevant subunit of the virus is confined in
a nano-sized ‘clamp’ to keep the protein or peptide
in the correct configuration [41].

Nanoparticles can be potent adjuvants in vac-
cines because of their immune-stimulating activity.
Theyalsohavemodifiable surface chemistry [42,43].
As an example, alumina nanoparticles coated with
antigen have been shown to enhance humoral and
cellular immune responses, because they facilitate
antigen cross-presentation to T cells, and induce
autophagy in dendritic cells [44]. Likewise, gold
nanoparticles can drive increased expression of in-
flammatory cytokines [45]. Table 1 provides an
overview of the landscape of nanotechnology-based
vaccines that are under preclinical/clinical investi-
gations, based on the information compiled in the
WHO COVID-19 vaccine tracker, as of 16 May
2022 [46–49]. In total, there are 198 vaccines in the
preclinical stage and 156 vaccines under clinical in-
vestigation. Among these vaccines, at least 69 have
been developed with nanotechnology (41 preclini-
cal development and 28 clinical development). So
far, 10 vaccines have been granted emergency use
listing (EUL) by theWHO (16May 2022).

NANOTECHNOLOGY FOR THE
MANAGEMENT OF COVID-19
Unlike traditional therapeutics, which tend to tar-
get a specific viral species andmay lose their efficacy
as the virus accumulates mutations, antiviral nano-
materials can target many types of viruses, because
of their customized chemical and physical proper-
ties. DNA-based nanostructures can trap viruses,
whilemodified polymers can serve as cell membrane
decoys. Other nanomaterials can disrupt viral en-
velopes. Using such approaches may offer advan-
tages in the context of countermeasures in a pan-
demic, as they can be formulated rapidly (Fig. 3).

Nanomaterials with direct
anti-SARS-CoV-2 activity
Although SARS-CoV-2 can be transmitted readily
by droplets and aerosols, contact transmission is an
important additional route, via contaminated inani-
mate surfaces and poor hand hygiene [50].The virus
SARS-CoV-2 remains active on a range of surfaces,
including glass, metal, wood and plastic, for up to
several days [51]. As a result, there is interest in us-
ing antiviral nanomaterials [52,53] and nanoparti-
cles that can carry antiviral agents [54]. Antiviral
activity against SARS-CoV-2 has been shown for a
number of nanoparticles, including silver [55], zinc
oxide [56], cuprous oxide [57], silica, gold [58]
and graphene oxide graftedwithmetal nanoparticles
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Table 1. The landscape of nano-assisted coronavirus vaccine candidates in clinical and pre-clinical trials.

Pre-clinical development

Vaccine platform Type of vaccine Developer

Protein subunit Nanoparticle vaccine LakePharma, Inc.
Spike-based Nanografi Nano Technology, Middle East Technical University, Ankara

University
RBD protein delivered in mannose-conjugated
chitosan nanoparticle

Ohio State University/Kazakh National Agrarian University

Recombinant protein, nanoparticles (based on
S-protein and other epitopes)

Saint Petersburg Scientific Research Institute of Vaccines and Serums

Protein subunit nano-formulated Vaxinano, CEA, INRAE
Peptide antigens formulated in lipid nanoparticles
(LNPs)

IMV Inc.

Nanoparticle vaccine LakePharma, Inc.
S subunit intranasal liposomal formulation with
GLA/3M052 adjs.

University of Virginia

RNA-based vaccine LNP-encapsulated mRNA encoding S Max Planck Institute of Colloids and Interfaces
LNP-mRNA Translate Bio/Sanofi Pasteur
LNP-mRNA CanSino Biologics/Precision NanoSystems
LNP-encapsulated mRNA cocktail encoding
virus-like particle (VLP)

Fudan University/Shanghai JiaoTong University/RNACure Biopharma

LNP-encapsulated mRNA encoding RBD Fudan University/Shanghai JiaoTong University/RNACure Biopharma
LNP-encapsulated mRNA University of Tokyo/Daiichi-Sankyo
D614G variant LNP-encapsulated mRNA Globe Biotech Ltd
ZIP1642–a self-amplifying RNA (saRNA) vaccine
encapsulated in an LNP, which encodes for multiple
antigens, including the Spike (S) protein.

Ziphius Vaccines and Ghent University

LNP-mRNA Certest Biotec
Liposome-encapsulated mRNA BIOCAD
mRNA Selcuk University
Several mRNA candidates RNAimmune, Inc.
mRNA FBRI SRC VB VECTOR, Rospotrebnadzor, Koltsovo
mRNA China CDC/Tongji University/Stermina
mRNA in an intranasal delivery system eTheRNA
mRNA Greenlight Biosciences
mRNA IDIBAPSHospital Clinic, Spain
mRNA ProvidenceTherapeutics
mRNA Cell Tech Pharmed
mRNA ReNAP Co.

DNA-based vaccine Plasmid DNA, nanostructured RBD National Institute of Chemistry, Slovenia

Virus-like particle Enveloped virus-like particle (eVLP) VBI Vaccines Inc.
S protein integrated in HIV VLPs IrsiCaixa AIDS Research/IRTA-CReSA/Barcelona Supercomputing

Centre/Grifols
VLP+ Adjuvant Mahidol University/TheGovernment Pharmaceutical Organization

(GPO)/Siriraj Hospital
VLPs, lentivirus and baculovirus vehicles Navarrabiomed, Oncoimmunology group
VLP, based on RBD displayed on VLPs Saiba GmbH
ADDomerTMmultiepitope display Imophoron Ltd and Bristol University’s Max Planck Centre
VLP OSIVAX
eVLP ARTES Biotechnology
VLPs peptides/whole virus University of Sao Paulo
VLPs produced in BEVS Tampere University
Plant-derived VLP Shiraz University
Plasmid-driven production of VLPs containing S,
M, N and E proteins of SARS-CoV-2

Arizona State University
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Table 1. Continued.

Clinical development

Vaccine platform Type of vaccine Developer Phase Vaccine efficiency Ref

Protein subunit SARS-CoV-2 rS/Matrix M1-adjuvant
(full-length recombinant SARS-CoV-2
glycoprotein nanoparticle vaccine adjuvanted
withMatrix M) NVX-CoV2373

Novavax Phase 3 90.4% (CI
82.9–94.6)—1
dose

[46]

Recombinant SARS-CoV-2 Spike protein,
aluminium adjuvanted (NanoCovax)

Nanogen Pharmaceutical
Biotechnology

Phase 3 No report yet -

SpFN (spike ferritin nanoparticle)—uses spike
proteins with a liposomal formulation QS21
(ALFQ) adjuvant

Walter Reed Army Institute
of Research (WRAIR)

Phase 1 No report yet -

T-cell-priming specific cocktail of coronavirus
peptides mounted on a gold nanoparticle

Emergex Vaccines Phase 1 No report yet -

RNA-based vaccine CoV2 SAM LNP vaccine. A self-amplifying
mRNA LNP platform+ Spike antigen

GlaxoSmithKline Phase 1 No report yet -

mRNA-1273 Spikevax Moderna and National
Institute of Allergy and
Infectious Diseases
(NIAID)

Phase 4 93.2% (CI 91.0 to
94.8)—2 doses

[47]

ChulaCov19 mRNA vaccine Chulalongkorn University Phase 1/2 No report yet -
PTX-COVID19-B, mRNA vaccine ProvidenceTherapeutics Phase 2 No report yet -
Chimpanzee Adenovirus serotype 68 (ChAd)
and self-amplifying mRNA vectors expressing
spike alone, or spike plus additional
SARS-CoV-2 T cell epitopes

Gritstone Oncology Phase 1 No report yet -

MRT5500, an mRNA vaccine candidate Sanofi Pasteur and
Translate Bio

Phase 2 No report yet -

mRNA-1283.211 ModernaTX, Inc. Phase 1 No report yet -
mRNACOVID-19 vaccine Shanghai East Hospital and

StemirnaTherapeutics
Phase 1 No report yet -

ARCT-154 mRNA vaccine ArcturusTherapeutics, Inc. Phase 3 No report yet -
ARCT-165 mRNA vaccine ArcturusTherapeutics, Inc. Phase 1/2 No report yet -
ARCT-021 mRNA vaccine ArcturusTherapeutics, Inc. Phase 1/2 No report yet -
Coronavirus mRNA vaccine (LVRNA009) AIMVaccine and Liverna

Therapeutics
Phase 2 No report yet -

mRNA-1273.529–Booster ModernaTX, Inc. Phase 2/3 No report yet -
CV2CoV, mRNA vaccine CureVac AG Phase 1 No report yet -
mRNA vaccine (MIPSCo-mRNA-RBD-1) University of Melbourne Phase 1 No report yet -
A Lyophilized COVID-19 mRNA vaccine Jiangsu Rec-Biotechnology

Co., Ltd
Phase 1 No report yet -

COVID-19 mRNA vaccine (SYS6006) CSPC ZhongQi
Pharmaceutical
Technology Co., Ltd

Phase 1 No report yet -

HDT-301: self-replicating mRNA vaccine
formulated as an LNP

SENAI CIMATEC Phase 1 No report yet -

mRNA-1273.351: LNP encapsulated
mRNA-based vaccine that encodes for a
full-length, prefusion stabilized S protein of the
SARS-CoV-2 B.1.351 variant

Moderna and National
Institute of Allergy and
Infectious Diseases
(NIAID)

Phase 4 No report yet -

LNP-nCoVsaRNA Imperial College London Phase 1 No report yet
(seroconversion at
week six was related
to dose, ranging
from 8% (3/39;
0.1μg) to 61%
(14/23; 10.0μg))

[48]
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Table 1. Continued.

Clinical development

Vaccine platform Type of vaccine Developer Phase Vaccine efficiency Ref

BNT162b2 (three LNP-mRNAs), also known
as ‘Comirnaty’

Pfizer/BioNTech and
Fosun Pharma

Phase 4 91.3% (CI
89.0–93.2)—2
doses

[49]

LNP-nCOV saRNA-02 vaccine: saRNA
encapsulated in LNPs

MRC/UVRI and LSHTM
Uganda Research Unit

Phase 1 No report yet -

mRNA-1273.211: multivalent booster
candidate combining mRNA-1273 plus
mRNA-1273.351

Moderna TX, Inc. Phase 2/3 No report yet -

Direct anti-SARS-CoV-2 nanomaterials Nanomaterials for anti-virus drug delivery

Nano-engineered
anti-virus surface

Nanoparticles that
bind with virus 

PDT/PTT 

Nanoparticles that
denature virus

Anti-virus drugs
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Increase local
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SARS-CoV-2
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a b

Figure 3. Nanotechnologies for the management of COVID-19. (a) Nanotechnologies
that fight directly against SARS-CoV-2. (b) Nanomaterials as drug delivery systems
against SARS-CoV-2.

[59]. When used to coat personal protective equip-
ment, the combination of graphene oxide with sil-
ver, iron, zinc and copper nanoparticles improves
antiviral activity against both enveloped and non-
enveloped viruses [59].

Given the importance of respiratory protection
via surgical respirators for health care workers dur-
ing the pandemic, there has been interest in using
such composite nanomaterials to coat the fibres
within the respirators, or on the outer surface of the
filtering facepiece. Study has demonstrated that a
silver nanocluster/silica composite coated respira-
tor has an effect against SARS-CoV-2 [60], with the
presence of silver on fibres confirmed using energy
dispersive spectroscopy. Such coatings could be
deposited on polymeric, metallic and glass surfaces.

A further method for providing a smart antimi-
crobial surface is to use nanomaterials that are light
responsive [61], to achieve disinfecting actions after
activation by specific light wavelengths through
photodynamic, photothermal or photocatalytic pro-

cesses [62,63]. As an example, a nanoscale coating
of a TiO2 photocatalyst can inactivate SARS-CoV-2
on the surface when there is exposure to light [61].
Nanotechnology can also improve conventional
disinfection methods, and overcome the limitations
of common biocides (such as ethanol and sodium
hypochlorite) when levels of surface protein biobur-
den are high [64]. Several approaches have been
introduced thus far. Temperature-responsive an-
timicrobial nano-coatings can provide a prolonged
disinfecting action by damaging the envelope of the
virus, in response to applied heat.

Nanomaterials can target different stages of
SARS-CoV-2 viral infection, such as fusion of the
virus with the host cell membrane, internalization,
viral genome transcription, translation and replica-
tion.Nanomaterials canbedesigned to trap andneu-
tralize SARS-CoV-2 with high efficiency. For exam-
ple, Nie et al. prepared silica nanoparticles with 5 to
10 nm spikes, which could be inserted into the sur-
face glycoproteins of the influenza A virus and neu-
tralize them [65]. It is likely that nanomaterials with
various combinations of geometry-matching topog-
raphy and virus-binding sites will be developed to
target SARS-CoV-2 as well as other viruses.

Photothermal antiviral actions can be achieved
rapidly when nanoparticles absorb near-infrared
light, and the resulting heat causes photothermal
disinfection [66]. The heat generated will denature
pathogens by damaging envelopes or nucleic acids,
or by denaturing enzymes [67,68]. As an exam-
ple, Miyako et al. have described PEG-carbon nano-
horns tagged by an antibody that specifically targets
the T7 bacteriophage, and binds the nano-horns to
the virus [53]. Irradiation of the attached nanoparti-
cles with near-infrared light from an Nd : YAG laser
(wavelength 1064 nm) generates heat and causes
photothermal inactivation of the bacteriophage ef-
fect. Such functionalized nanoparticles can also be
effective against other viruses, including HIV, in-
fluenza and SARS-CoV [53]. Another light-to-heat
conversion platform with powerful photothermal
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disinfecting actions features sulfonated magnetic
nanoparticles that have been functionalized with re-
duced graphene oxide. When these nanomaterials
were irradiated by near-infrared laser light (808 nm,
1.6 W/cm2 for 10 min), the temperature rose to
55◦C, and this inactivated 99.99% of type-1 herpes
simplex virus [69,70].

A further photothermal process uses gold
nanorods that have been functionalized with
angiotensin-converting enzyme-2, which will bind
SARS-CoV-2. These particles can be activated
by near-infrared laser irradiation (798 nm), to
achieve selective elimination of SARS-CoV-2. This
type of approach may have value when patients
are hospitalized with severe pulmonary infections
[71]. Several major concerns would need to be
addressed before such clinical applications of pho-
tothermal disinfection using nanoparticles could be
contemplated, including the safety and toxicity of
the nanorods, and the extent of bystander thermal
effects on host tissues.

Compared to traditional antiviral drugs, which
usually work only for specific viruses, nanomateri-
als may provide broader targeted virus ranges as
the antiviral effects are mainly from their chemi-
cal and physical properties. For example, the spiky
silica nanoparticles may work for the mutations
of the viruses as well as bind to the glycopro-
teins of the virus with their nano-topography [65].
Nanomaterial-based strategies can provide fast and
cheap tools for the management of pandemics, as
they can be developed quickly and work against a
large range of viruses including their variants.

Nanomaterial-based drug delivery
for managing SARS-CoV-2 infection
Nanomaterials can be used as smart carriers in tar-
geted drug delivery systems for antiviral medicines.
This leverages their distinct properties, including
large surface area, good biocompatibility and ease
of surface modification, all of which can be cus-
tomized during design [72]. Using a nanotechnol-
ogy approach may overcome challenges with an-
tiviral medicines, such as poor aqueous solubility
and low bioavailability. It may also lower the doses
needed, and thereby reduce toxicity [73,74]. It is
also possible to use nanoparticles to target specific
organs or cells that are involved in the pathophysiol-
ogy of the infection [75]. In addition to smallmolec-
ular drugs, nanoparticles can also effectively deliver
other bioactivemolecules, such as nucleic acids, pro-
teins and peptides [76]. Various types of nanoparti-
cles, including inorganic nanoparticles such as met-
als andorganicnanoparticles such as lipid/liposome,

and polymer nanoparticles, have been explored for
antiviral drug delivery, including anti-SARS-CoV-2
drugs.

Inorganic nanoparticles with small size (1 to
100 nm) such as metal nanoparticles can be synthe-
sized, and the corresponding increase in the surface
area gives them a high loading capacity for antiviral
agents [77]. Several metal nanoparticles have been
investigated for antiviral therapy. For example,
selenium nanoparticles have been used to deliver
several antiviral medicines, including ribavirin,
oseltamivir and zanamivir, to prevent apoptosis
induced by H1N1 strains of the human influenza
virus [78]. Since ribavirin shows some effects against
coronaviruses, including SARS-CoV and MERS-
CoV [79,80], using selenium nanoparticles to carry
ribavirin may also have value in the treatment of
SARS-CoV-2 infections. Gold nanoparticles can
also be used to deliver ribavirin. This approach
has been used in cell cultures with measles viral
infections in an African green monkey cell line.
Using the gold nanoparticles as carriers improves
the effectiveness >5-fold [77]. Gold nanoparticles
with long linkages of mercaptoethanesulfonic acid
and sulfonate undecanesulfonic acid can reduce
membrane fusion caused byMERS-CoV [81], mak-
ing this of interest for SARS-CoV-2 treatment. In
addition to selenium and gold, other nanoparticles,
including silver [82], mesoporous silica [83,84]
and iron oxide [85], are prospective candidates
for delivering antiviral medicines. In addition to
metal nanoparticles, cyclodextrin-functionalized
multi-walled carbon nanotubes have been used
successfully to treat herpes simplex viral infection
through the sustained release of acyclovir [86].

Potential concerns with metal nanoparticles in-
clude poor biodegradability, with attendant risks of
accumulation within organs. Lipid-based nanopar-
ticles are attractive for clinical use because of their
good biocompatibility and biodegradability. Lipid
nanoparticles have been used as nanocarriers for an-
tiviral agents, for treating hepatitis C and B, herpes
simplex and HIV [87,88]. Liposomes can be used
to deliver both hydrophobic and hydrophilic agents.
Liposomes containing acyclovir applied via the in-
tranasal route achieve greater bioavailability for the
drug (by 60%) compared with intravenous admin-
istration [89]. Lipid coating of other nanoparticles,
such as mesoporous silica nanoparticles, can also be
undertaken to enhance biocompatibility and dura-
tion of action in circulation in vivo, and to improve
efficiency [90].

Polymeric nanoparticles have attracted interest
because of the considerable flexibility of their design
and ease of modification. Poly (lactic-co-glycolic
acid) (PLGA) nanocarriers have been shown to
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boost the antiviral actions of dyphylline inH1N1 in-
fluenza infections, because of the sustained release of
the drug in the lung. Optimized PEGylation of these
nanoparticles prevented activation of macrophages
in the lung for four weeks [91,92]. Such immune
modulation effects of nanoparticles could poten-
tially be useful when treating severe SARS-CoV-2
infections.

Polymeric nanoparticles can be loaded with cor-
ticosteroids and inhaled. This approach has been
used to treat asthma and severe chronic obstruc-
tive pulmonary disease, but could also be applied to
SARS-CoV-2 infection in patients experiencing se-
vere illness because of a cytokine storm. Multifunc-
tional polymeric nano-delivery systems have con-
siderable potential for clinical application, and with
emergency or expedited approval could be deployed
in the current COVID-19 pandemic [93].

Dendrimers are synthetic nanostructures with a
well-definedbranching architecture.Theyhave good
biocompatibility, high solubility and are effective
for drug encapsulation. Previous works have shown
their efficiency as a delivery system in the context of
herpes simplex virus type-2,HIV and influenza [94],
and dendrimer nanoparticles are tested for the man-
agement of SARS-CoV-2 [5].

NANOTECHNOLOGY FOR THE
POST-PANDEMIC ERA
With several highly effective COVID-19 vaccines
deployed at scale in many countries, an important
question is whether the use of nanotechnology in
vaccines provides the necessary ability to rapidly re-
design vaccines when concerning variants appear
that are more virulent. Outlined below are the ma-
jor advantages of mRNA delivered in lipid nano-
carriers.

Nanoscale information in the battle
with SARS-CoV-2 variants
As SARS-CoV-2 continues to mutate, new variants
of concern are being generated with altered viru-
lence and transmissibility, resulting in altered levels
of protection from existing vaccines [95].The Omi-
cron variant has shown a particularly rapid global
spread and has replaced Delta as the most prevalent
variant. With the help of nanotechnology, scientists
determined the nano structure of theOmicron spike
protein in complex with human ACE2 at 2.45 Å res-
olution using Cryo-electron microscopy [96]. This
study also revealed the strong interaction between
themutated spikeprotein andACEsdue to the form-
ing of new salt bridges and hydrogen bonds, which

explains the rapid spread and increase in antibody
evasion of the Omicron variant [96].This nanoscale
information, and the new understanding based on
that nanoscale information, will help us to limit the
spread of Omicron and other potential variants.

Nanotechnology that enhances
the global distribution of vaccines
Lipid nanoparticles that contain mRNA have been
proven to be an efficient method for develop-
ing immunity. Low or ultra-low temperature stor-
age of these lipid nanoparticle-mRNA vaccine for-
mulations (−20 or −80◦C) is not convenient
for shipping, storage and distribution, especially
in developing countries and in remote areas. A
new thermostable lipid-nanoparticle-encapsulated
mRNA (mRNA-LNP) vaccine, known as ARCoV,
has been developed by a modified fabrication pro-
cess. ARCoV was manufactured through rapid mix-
ing of mRNA in an aqueous solution and a mix-
ture of lipids in ethanol, followed by tangential flow
filtration to remove ethanol and concentrate the
solution. ARCoV particles are solid spheres with-
out an aqueous core and can be stored at room
temperature for at least one week without losing
activity. The mRNA encodes the receptor-binding
domain (RBD) of SARS-CoV-2. ARCoV is cur-
rently being evaluated in phase one clinical trials
[97].

Another nanotechnology approach of interest is
the so-called ‘nano patch’. This comprises arrays of
densely packed projections with a defined geom-
etry, which can penetrate through the epidermis
painlessly. Using a patch rather than an injection
delivers the vaccines to thousands of antigen-
presenting cells in the dermis and epidermis. A nano
patch vaccine can be kept at room temperature
without needing to be refrigerated. This approach
overcomes storage issues and also avoids the need
for injections, tackling two barriers at the same time.

Nanotechnology in preparations
for the next pandemic
Development of vaccines and nanomaterials
for vaccine delivery
The widespread use of lipid nanoparticles to deliver
mRNA vaccines has increased the awareness of this
platform.The relative ease of production makes this
appealing for ‘first response’ vaccines for future in-
fluenza or coronavirus pandemics. Lipid nanoparti-
cles could also be used to deliver DNA gene thera-
pies and CRISPR gene-editing therapies.
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In addition, other polymer nanoparticles,
protein-based nanoparticles, inorganic nanoparti-
cles and exosomes are also worth considering as
vehicles for future vaccines.

Development of antiviral nanomaterials
As already discussed, nanoparticles can deliver an-
tiviral medicines and can also, in some cases, exert
their own antiviral actions against multiple viruses.
Thismakes them rather different from traditional an-
tiviral agents, which have a limited range of targets.
Many viruses, including SARS-CoV-2, rely on glyco-
proteins on their surface to bind to and then enter
host cells. Nanomaterials can be designed to mimic
binding sites. As an example, Zhang et al. prepared
‘nanosponges’ that displayed the same protein re-
ceptors as human cells and showed that these can
bind to and neutralize the SARS-CoV-2 virus, pre-
venting it from infecting cells. This nanosponge ap-
proach is not expected to be affected by viral muta-
tions [98].

CONCLUSIONS AND OUTLOOK
Nanotechnology has empowered the global re-
sponse to the COVID-19 pandemic, through pow-
erful tools for prevention, diagnosis and treat-
ment.Detection systemsbasedonnanoparticles and
nanopores have enabled rapid and inexpensive de-
tection of the virus, and have informed public health
measures. One lesson we have learned during this
COVID-19 pandemic is that rapid, large-scale virus
detection can greatly help disease control and re-
quires the development of virus detection methods
that are simple to use, and have high accuracy and
low cost. The power of nanotechnology-driven de-
tection such as the LFA and nanopore sequence can
be further explored tomanageCOVID-19 and other
potential virus diseases.

During this pandemic, lipid nanoparticles for de-
livering mRNA in vaccines have played a major role
in population-level vaccination strategies, and will
likely play an increasing role in the future, both as
a platform for the rapid development of vaccines,
and for updating vaccines to address viralmutations.
New nanoparticles with higher antigen-delivery ef-
ficiency, better stability, especially thermal stability,
and target delivery are desired for vaccines.This abil-
ity to adjust to the challenges posed by a rapidly mu-
tating virus is a major advantage of nanotechnology.
Nanomaterials that have potent antiviral actions also
have considerable promise.

In the long term, nanotechnology will serve as
a technological foundation for the prevention and
management of future viral-infection pandemics.
Appreciation of the opportunities that nanotech-

nologies offer is necessary for effective collaboration
between scientists, policymakers and health care
professionals when addressing the long-term chal-
lenges caused by SARS-CoV-2 and potential virus
outbreaks.
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