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Abstract

Insulin increases cellular glucose uptake and metabolism in the postprandial state by acutely stimulating the translocation
of the Glut4 glucose transporter from intracellular membrane compartments to the cell surface in muscle and fat cells. The
intracellular targeting of Glut4 is dictated by specific structural motifs within cytoplasmic domains of the transporter. We
demonstrate that two leucine residues at the extreme C-terminus of Glut4 are critical components of a motif (IRM, insulin
responsive motif) involved in the sorting of the transporter to insulin responsive vesicles in 3T3L1 adipocytes. Light
microscopy, immunogold electron microscopy, subcellular fractionation, and sedimentation analysis indicate that mutations
in the IRM cause the aberrant targeting of Glut4 to large dispersed membrane vesicles that are not insulin responsive.
Proteomic characterization of rapidly and slowly sedimenting membrane vesicles (RSVs and SSVs) that were highly enriched
by immunoadsorption for either wild-type Glut4 or an IRM mutant revealed that the major vesicle fraction containing the
mutant transporter (IRM-RSVs) possessed a relatively small and highly distinct protein population that was enriched for
proteins associated with stress granules. We suggest that the IRM is critical for an early step in the sorting of Glut4 to insulin-
responsive subcellular membrane compartments and that IRM mutants are miss-targeted to relatively large, amorphous
membrane vesicles that may be involved in a degradation pathway for miss-targeted or miss-folded proteins or represent a
transitional membrane compartment that Glut4 traverses en route to insulin responsive storage compartments.
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Introduction

The rapid rise in circulating insulin levels after the ingestion of a

carbohydrate-containing meal stimulates glucose transport into fat

and muscle cells by causing the acute redistribution of the Glut4

glucose transporter from intracellular membrane storage com-

partments to the cell surface [1,2,3,4,5]. The resulting increase in

glucose catabolism and storage in the form of glycogen and fat in

these cells acts to buffer increases in blood glucose levels and

prevent protracted postprandial hyperglycemia. A defect in the

ability of Glut4 in muscle and fat cells to appropriately translocate

to the cell surface in response to elevated circulating insulin levels

is the proximal cause of peripheral insulin resistance [6,7], a

pathological state that is associated with obesity, metabolic

syndrome, and type 2 diabetes mellitus [8,9,10,11]. Consequently,

much effort has been expended in an attempt to understand the

molecular mechanism by which insulin regulates the subcellular

trafficking of Glut4 and the possible derangements in this process

that may result in insulin resistance.

The subcellular trafficking of Glut4 has been most thoroughly

studied in cultured primary rat adipocytes and in the murine 3T3-

L1 adipocyte cell line [12,13,14,15]. Under steady-state basal

conditions, i.e., in the absence of insulin, the bulk of Glut4 has

been detected in several distinct intracellular membrane compart-

ments, including endosomes, the trans-Golgi reticulum, and what

appears to be a highly specialized membrane compartment that is

usually referred to as Glut4 storage vesicles (GSVs) [16,17,18]. It is

believed that in the basal state Glut4 moves among these

intracellular compartments via vesicular-mediated budding and

fusion events [18,19]. Very little Glut4 can be detected in the

adipocyte plasma membrane in the basal state [12,13,19,20].

There is disagreement as to whether Glut4 recycles through the

plasma membrane in the absence of insulin, and the extent to

which recycling occurs may be dependent on the specific

experimental conditions used, at least in 3T3-L1 adipocytes

[14,21,22].

Although the precise subcellular itinerary that Glut4 follows

after its biosynthesis in adipocytes remains poorly understood, it is

generally agreed upon that very few other proteins share the

intracellular trafficking of this molecule [23]. This implies that

Glut4 possesses specific structural information that dictates its

unusual insulin-regulated subcellular trafficking, and many studies

have addressed this question over the past two decades

[24,25,26,27]. The complexity of Glut4 membrane trafficking

suggests that several distinct structural targeting motifs are likely to
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be involved in this process, and experimental evidence is consistent

with this assumption [28,29,30,31,32]. Several putative Glut4

trafficking motifs have been identified, including a di-leucine

motif, a TELEY motif, and the IRM motif, all localized to the

cytoplasmic carboxyl terminal domain [32,33,34,35]. An FQQI

targeting motif has been identified within the N-terminal

cytoplasmic domain [36,37], and undefined structural information

within the central cytoplasmic loop of Glut4 appears to be crucial

for the intracellular trafficking of newly synthesized molecules

[38]. The specific phenotypes exhibited by mutations in these

various putative trafficking motifs appear to vary depending on cell

type and specific experimental conditions. A recent study in

3T3L1 adipocytes suggests that the FQQI and the TELEY motifs

are involved in the intracellular retention of Glut4 in the basal

state via recycling between endosomal compartments and the

trans-Golgi network and GSVs, respectively [18,39]. Mutation of

either motif causes a partial redistribution of Glut4 to the cell

surface and thus blunts the relative magnitude of insulin-induced

redistribution to the cell surface. The di-leucine motif appears to

be involved in the rapid internalization of Glut4 from the cell

surface after insulin withdrawal [18].

Co-localization of wild type and mutant Glut4 molecules in

individual cells under basal conditions is consistent with the roles

proposed above for the 3 trafficking motifs. Mutant Glut4

molecules largely co-localize with wild-type Glut4, but in the case

of mutations in the FQQI and/or TELEY motifs, an increase in

cell surface localization is evident under basal conditions [18,32].

In contrast, mutations in the IRM motif, which partially overlaps

with the TELEY motif within the carboxy terminal cytoplasmic

tail of Glut4, totally abolish insulin-stimulated translocation of

Glut4 to the cell surface in addition to any detectable recycling of

Glut4 through the plasma membrane in the basal state. The bulk

of IRM mutant molecules are present in large dispersed

cytoplasmic vesicles (LDVs) that lack wild type Glut4 [34].

In this study we further investigate the role of the IRM in Glut4

trafficking. We demonstrate that the two leucine resides within the

IRM (L500 and L503) are critical for the appropriate subcellular

trafficking of Glut4. Six different single or double point mutations

involving either or both of these residues resulted in the mis-

targeting of Glut4 similar to that observed for the original IRM

mutant. In contrast to wild-type Glut4, The IRM mutant was

heavily enriched in rapidly sedimenting vesicles after subcellular

fractionation of 3T3L1 adipocytes. Immunogold electron micros-

copy indicated a high concentration of the IRM mutant in 150–

250 nm vesicles that were closely associated with many unlabeled,

smaller vesicles. Lastly, a sensitive proteomics analysis of immuno-

enriched vesicles containing either wild type Glut4 or the IRM

mutant demonstrated highly divergent protein compositions,

suggesting that mutations in the IRM divert Glut4 to a ‘‘dead-

end’’ trafficking pathway whereby Glut4 is unable to reach insulin-

responsible membrane compartments.

Materials and Methods

Chemicals and Antibodies
DMEM and calf serum were purchased from Gibco. Fetal calf

serum was purchased from ATLANTA biologicals (Lawrenceville,

GA). BCA protein assay kits were purchased from Pierce

(Rockford, Ll). RapiGest was from Waters (Milford, MA).

Lipofectamin RNAiMAX Reagent, G3bp1 siRNA products

‘‘ggaacuuucuaugaucaga’’ and ‘‘agccuguaguggaaccaga’’, G3bp2

siRNA ‘‘gaaugaugcgugaucguga’’ and ‘‘ggaaguuuaugcaaaccuu’’,

negative control#1 siRNA were from Life Technologies (Grand

island, NY). All other chemicals from Sigma-Aldrich (St. Louis,

MO). Polyclonal antibody against hemaglutinin (HA) was

purchased from Abcam (Cambridge, MA). Monoclonal antibody

against HA was purchased from Covance (Berkeley, CA). The

Glut4 polycolonal antibody was described previously (Song et al.).

Polyclonal antibody against Dsred was from Clontech (Mountain

view, CA), Polyclonal antibody against G3bp1 was from Bethyl

Laboratories (Montgomery, TX), Polyclonal antibody against

G3bp2 was from LSBio (Seattle, WA). Rabbit IgG antibody was

from Bethyl (Montgomery, TX). Colloidal Gold-affiniPure Goat

anti-rat or mouse IgG were from Jackson ImmunoResearch (West

Grove, PA).

Cell Culture
3T3L1 fibroblasts (from American Tissue Type Culture

Collection, Virginia) were grown in 20% calf serum in DMEM

containing 25 mM glucose and supplemented with 10% gluta-

mate, 1% penicillin, and 1% streptomycin. Two days after

achieving confluence, the medium was changed to FBS medium

(10% fetal bovine serum in DMEM supplemented with 10%

glutamine and 1% penicillin and 1% streptomycin) with the

addition of 670 nM insulin, 0.5 mM 3 isobutyl-methylxanthine,

and 25 nM dexamethasome) for 2 days, and then replaced with

FBS medium containing 670 nM insulin. After 48 hours, the

differentiated cells were incubated in FBS medium, the cells were

infected with adenovirus at day 5–6 overnight, and the adipocytes

were then analyzed between days 8–10.

Expression of Glut4 Constructs in 3T3-L1 Adipocytes
3T3-L1 adipocytes were infected with recombinant adenovi-

ruses encoding Glut4 constructs as described in detail previously

[34]. Large-scale viral stocks were routinely titered to determine

the appropriate quantities required to equalize expression levels

among the different constructs.

Immunofluorescence Microscopy
3T3-L1 adipocytes were serum-starved for 2 hours, treated with

or without 1 mM insulin for 30 minutes, washed with ice cold PBS

buffer, and then fixed in 4% formaldehyde for 15 minutes at room

temperature. The cover slips were washed with PBS for

15 minutes, incubated with primary anti-HA antibody or anti-

G3bp1 antibody (Sigma-Aldrich, St. Louis, MO) and seconday

antibodies (see ref 35). After mounting in Vectashield medium

(Vector Laboratories, Inc. Burlinggame, CA) on glass slides,

fluorescence images of the protein were then recorded using a

ZEISS LSM-510 META laser confocal image system (Carl Zeiss,

Thornwood, NY).

Subcellular Fractionation and Sucrose Velocity Gradient
Analysis

Adenovirus infected or uninfected 3T3-L1 adipocytes were

serum starved overnight at day 8–9 post-differentiation. After

washing 3x with cold PBS buffer, the cells were scraped into ice-

cold HES buffer (50 mM Hepes, pH 7.4, 0.25M sucrose, 1 mM

EDTA) containing a mixture of protease inhibitors (1 mg/ml

leupeptin, 1 mg/ml benzamidine, 1 mg/ml chymostatin, 1 mg/ml

pepstatin A, 5 mg/ml trypsin inhibitory, 0.082 units/ml aprotinin),

and phosphatase inhibitor cocktail 2 (Sigma), homogenized, and

then subjected to subcellular fractionation as described previously

(Song et al, 2008). The SSV (formerly called LDM) and RSV

(formerly called HDM) membrane fractions were resuspended in

HES buffer and layered on top of a 10–30% linear sucrose

gradient. The samples were centrifuged at 35,000 rpm for 1 hour

at 4uC in a Beckman SW41 rotor, and 13 fractions were collected
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from the bottom of the tube. Equal amounts of the fractions were

then subjected to SDS-PAGE.

Immuno-isolation of Glut4 and IRM mutant membrane
vesicles

Antibodies against Glut4 or Dsred were crosslinked to protein A

Dynabeads (from Invitrogen, Carlsbad, CA) with 20 mM

dimethylpimelimidate (Pierce) in 0.2 M triethanolamine (pH 8.2)

for 30 minutes at room temperature. After quenching with 50 mM

Tris (pH 7.5) for 15 minutes, the beads were washed with PBS.

1.5 mg of RSV or SSV protein from IRM/Glut4 adenovirus

infected adipocytes or control adipocytes were resuspended in ice

cold IC buffer (140 mM potassium glutamate, 20 mM Hepes,

pH 7.4, 1 mM EGTA, 5 mM NaCl, 1 mM DTT) with protease

inhibitors (1 mg/ml leupeptin, 1 mg/ml benzamidine, 1 mg/ml

chymostatin, 1 mg/ml pepstatin A, 5 mg/ml trypsin inhibitory,

0.082 trypsin inhibitory units/ml aprotinin), and phosphatase

inhibitor cocktail 2 (sigma), incubated with Dynabeads covalently

conjugated to anti-Glut4 polyclonal antibody (for IRM/Glut4

expressing cells) or anti-rabbit IgG (for control cells) overnight at

4uC. The resulting supernatant was incubated with Dynabeads

covalently conjugated with anti-Dsred polyclonal antibody (for

IRM/Glut4 expressed cells) or rabbit IgG (for control cells)

overnight at 4uC. The resulting beads were subsequently washed

with IC buffer 5 times, and the proteins were then eluted with

sample buffer containing 2% RapiGest, 100 mM Tris (PH 8.5),

16 reductant (Biorad, Hercules, CA).

Protein Endoprotease Digestion and Peptide Preparation
The eluates from the bead immunoprecipitates were precipi-

tated using the vendor protocol for the 2D clean-up kit (GE

Healthcare, Pittsburgh, PA, Cat. No. 80–6484–51). The protein

pellets were solubilized in 20 ml of Tris buffer (100 mM, pH 8.5)

containing 8 M urea. The protein disulfide bonds were reduced

with 1 mM TCEP (2 ml of a 50 mM solution) (TCEP bond

breaker, 0.5 M solution, Thermo Fisher, Waltham, MA, Cat No.

77720) and placed at room temperature for 30 min. Alkylation of

the cysteine residues was performed using iodoacetamide (2.2 ml of

a 100 mM solution). After 30 min at room temperature in the

dark, the reaction was quenched with 10 mM DTT at room

temperature for 15 min. The reduced alkylated proteins (,30 ml)

were digested in 8 M urea with 1 mg of endoproteinase Lys-C (2 ml

of a 0.5 mg/ml stock; Roche, Basel, Switzerland) after an overnight

incubation at 37uC. The samples were diluted 1:4 with 100 mM

Tris, pH 8.5, trypsin (Sigma, Cat No. T6567) was added (,1:4

enzyme ratio), and the incubation was continued for 24 h at 37uC.

The digests were acidified with aqueous 5% formic acid (3.3 ml)

(Fluka, St. Louis, MO, Cat No. 56302). The peptides were

extracted with a conditioned Nutip carbon tip (Glygen, Columbia,

MD) (Cat No. NT3CAR). The tips were prepared by repetitive

pipetting with 25 ml (63) of the peptide elution solvent (60%

acetonitrile in 1% formic acid and then equilibrated with 10

washes (25 ml) of extraction solvent (1% formic acid). The sample

was loaded with 50 pipetting cycles. The tips were then washed

four times with extraction solution. The peptides were recovered

by 20 pipetting cycles with 25 ml of elution solution, followed by

four washes (20 ml each) of elution solution. The extraction and

wash solutions were combined in an autosampler vial (SunSri,

Rockwood, TN, Cat No. 200 046) and dried in a Speed Vac

(Thermo-Savant). The vial caps for the AS2 autosampler was from

National Scientific (Rockwood, TN, Cat. No. 03–396AA).

High-resolution Nano-LC-MS
Peptide mixtures were analyzed using high-resolution nano-LC-

MS on a hybrid mass spectrometer consisting of a linear

quadrupole ion-trap and an Orbitrap (LTQ-Orbitrap XL,

Thermo Fisher Scientific). Chromatographic separations were

performed using a nanoLC 2D PlusTM (Eksigent) for gradient

delivery and a cHiPLC-nanoflex (Eksigent) equipped with a 15 cm

675 mm C18 column (ChromXP C18-CL, 3 mm, 120 Å,

Eksigent). The liquid chromatograph was interfaced to the mass

spectrometer with a nanospray source (PicoView PV550; New

Objective). Mobile phases were 1% FA in water (A) and 1% FA in

acetonitrile (B). After equilibrating the column in 98% solvent A

(aqueous 1% FA) and 2% of solvent B (acetonitrile containing 1%

FA), the samples (5 ml) were injected from autosampler vials using

the LC-system’s autosampler at a flow rate of 500 nl/min followed

by gradient elution (250 nl/min) with solvent B: isocratic at 2% B,

0–5 min; 2% B to 25% B, 5–110 min; 25% to 80%, 110–170 min;

80% to 2%, 170–175; and isocratic at 2% B, 175–190 min. Total

run time, including column equilibration, sample loading, and

analysis was 217 min. The maximum injection times for the MS1

scan in the Orbitrap and the LTQ were both 500 ms, and the

maximum injection times for the MSn scan in the Orbitrap and

the LTQ were 500 ms and 1000 ms respectively. The automatic

gain control targets for the Orbitrap and the LTQ were 26105

and 36104 respectively, for the MS1 scans and for the MSn scan

were 16105 and 16104 respectively. The MS1 scans were

followed by six MS2 events in the linear ion trap with collision

activation in the ion trap (parent threshold = 1000; isolation width

= 2.0 Da; normalized collision energy = 30%; activation Q

= 0.250; activation time = 30 ms). Dynamic exclusion was used to

remove selected precursor ions (20.20/+1.0 Da) for 90 s after

MS2 acquisition. A repeat count of 1, a repeat duration of 45 s,

and a maximum exclusion list size of 500 was used. The following

ion source parameters were used: capillary temperature 200uC,

source voltage 4.0 Kv, source current 100 uA, and the tube lens at

110 V. The data were acquired using Xcalibur, version 2.0.7

(Thermo Fisher).

MS Data Processing and Protein Quantification
The LC-MS data processing pipeline is detailed in Figure S2.

For protein identification, the LC-MS/MS files that were acquired

using Xcalibur were processed using Mascot Distiller software (ver

2.0.3) for the preparation of files for database searching. A

UNIPROT mouse protein database (downloaded May 2011, with

135387 sequences) with an added bovine serum albumin sequence

(Uniprot accession No., P02769) was searched using Mascot

software (ver. 2.2.04) with the parameters previously described

(Morales DM et al (2011) Molecular and Cellular Proteomics (see

Figure 1). The protein database searches were further processed

using Scaffold software (ver. 3_00_07) and the proteins were

identified using the Protein Prophet algorithm [40] with protein

and peptide thresholds of 95% and 50%, respectively. The

identified peptide sequences and mass spectrometric data that

were used for protein identifications are given in Table S4.

For relative protein quantification, the LC-MS unprocessed files

were imported into Rosetta ElucidatorTM (Rosetta Biosoftware,

ver 3.3) for retention time alignment of the peptide ion currents

across the chromatographic time window using previously-

described parameters [41] that are detailed in Figure S1. The

aligned, normalized peptide ion currents were annotated within

the alignment software by generating database search files (*.dta)

and were annotated at the feature level of the software. By

correlating the protein identifications with the Protein Prophet

criteria used in Scaffold, as stated above. The ion current signals
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from all charge states for each peptide were concatenated unique

using a visual script within the software. The table of peptides and

peptide intensities was exported in Excel *.csv format. The

peptides were grouped as individual genes. The gene-grouped and

peptide intensity data were imported into DanTE-R for statistical

analysis [42,43].

Deep-etch Electron Microscopy
Glass chips were cleaned with Chromic Sulfuric acid and

ddH2O, carbon coated and glow discharged for 1 minute. After

incubation in 0.1 mg/ml protein A for 30 minutes at room

temperature and washing with PBS, the glass chips were blocked

with 1% BSA in PBS for 30 minutes, coated with polyclonal anti-

Glut4 or Dsred antibody or control anti-rabbit IgG for 1 hour at

room temperature (see figure S2). The chips were incubated with

SSV/RSV fraction or post Glut4 immuo-adsorbed RSV/SSV

fraction overnight at 4uC. After washing with PBS, the vesicle-

caoated glass chips were fixed with 2% formaldehyde in buffer

containing 70 mM KCl, 30 mM Hepes, 5 mM MgCl2 (pH 7.2),

3 mM EGTA. After fixation for 15 minutes at room temperature,

the chips were quenched with NaHCa buffer (100 mM NaCl,

30 mM Hepes, 2 mM CaCl2), plus 50 mM Lysine, 50 mM

glycine and 50 mM NH4Cl for 30 minutes at room temperature.

The chips were blocked with 1% BSA for 30 minutes, probed with

IF8 mouse monoclonal or anti-rat Dsred or control IgG antibody

for 30 minutes, washed with NaHCa buffer and then probed with

18 nm colloid gold-conjugated anti-mouse or 12 nm colloid-gold

conjugated anti-rat IgG for 30 minutes. After washing with

D2H2O, the samples were quickly frozen, freeze dried, and then

replicated with platinum. Imaging was conducted using a ‘‘JEOL

1400 microscope’’, and photographed with an AMT digital

camera.

Results

We previously noted the presence of sequence similarity

between the extreme cytoplasmic C- terminal tail of Glut4 and a

region within the amino terminus of the insulin responsive amino

peptidase (IRAP), two membrane proteins that appear to share a

major portion of their intracellular trafficking pathways in

adipocytes (see Figure 1a). Two different sets of mutations within

the IRM sequence motif (LXXLXPDEXD) were reported to

result in aberrant subcellular targeting of Glut4 in the basal state

and completely abolished its insulin-stimulated redistribution to

the plasma membrane [34]. The possibility remained, however,

that we had inadvertently introduced an unrelated and previously

undefined dominant trafficking motif at the carboxy terminus of

Glut4 in the two IRM mutants that were analyzed. We therefore

Figure 1. Diagrams of the IRAP and Glut4 sequence alignment used to identify the IRM mutant constructs. (A) Sequence alignment
between the C-terminus of Glut4 and the N-terminus of IRAP; (B) HA/IRM and IRM/Dsred were tagged with the HA epitope within its first exofacial
loop. Glut4/eGFP and all other mutants were tagged with GFP or Dsred at their C-termini. Amino acid residues are designated by the single-letter
code. The gray and underlined letters are the amino acids that were mutated to alanine residues.
doi:10.1371/journal.pone.0068516.g001
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examined the trafficking of 6 different single and double point

mutations within the IRM sequence involving L500, L503, and P505

(see Figure 1b). The red fluorescent protein-tagged mutants were

co-expressed in 3T3L1 adipocytes with green fluorescent protein-

tagged wild type Glut4 in order to directly assess co-localization of

the two different molecules within individual cells. We have

previously demonstrated that wild type Glut4 targets indistin-

guishably whether it is tagged at its carboxyl-terminus with GFP or

RFP, and that the tagged fusion proteins target very similarly to

endogenous IRAP in 3T3L1 adipocytes [34]. Figure 2 shows that

all 5 of the mutants in which either L500 and/or L503 were

changed to alanine residues displayed aberrant targeting in the

basal state compared to the wild type control, whereas the P505

mutant exhibited targeting that was indistinguishable from the

wild type control under these conditions. Likewise, insulin-

stimulated translocation of Glut4 to the cell periphery (represent-

ing presumptive plasma membrane insertion) was abolished in all

5 of the L500 and/or L503 mutants but remained intact in the single

P505 point mutant (Figure 3). As observed previously, a much

larger fraction of the aberrantly targeted mutants was present in

large, dispersed, amorphous vesicles compared to the tagged wild-

type Glut4, which was largely observed in small, diffuse, punctate

structures and in a perinuclear compartment. Some co-localization

between the mutants and wild-type transporters was observed in

the perinuclear area.

The difference in targeting between the IRM mutant and wild

type Glut4 was also readily apparent after subcellular fraction-

ation. A much higher fraction of mutant vesicles was present in the

rapidly sedimenting vesicle (RSV) fraction on a per mg total

protein basis versus the slowly sedimenting vesicle (SSV) fraction

compared to endogenous wild type Glut4 (Figure 4A). Note that

the IRM mutant is not recognized by the anti-Glut4 carboxy-

terminal peptide antibody that was used to detect the endogenous

wild type transporter. The SSV and RSV fractions were subjected

to sucrose velocity gradient centrifugation and the distributions of

endogenous wild-type Glut4 and the IRM mutant were deter-

mined across the gradients by quantitative immunoblot analysis.

The IRM was detected using an antibody against the hemaglutinin

tag placed in the first exofacial loop (see Figure 1). In the SSV

fraction wild type Glut4 and the IRM mutant were both present in

single peaks near the tops of the gradients, with the mutant peak

displaced slightly nearer to the top of the gradient compared to

wild type Glut4 (Figure 4B). In the RSV fraction wild type Glut4

was more heterogeneously distributed across the entire gradient

but was largely present in two peaks representing smaller vesicles

near the top of the gradient and larger vesicles near the bottom of

the gradient (Figure 4C). This suggests that smaller membrane

vesicles may have remained associated with larger vesicles during

the initial differential centrifugation, but were separated or derived

from the larger vesicles at some point before or during the linear

sucrose gradient centrifugation step. Our unpublished data

indicate that the small vesicles associated with the RSV fraction

are not a non-specific sampling of trapped small vesicles from the

SSV fraction, because they have a distinct protein composition (R.

Hresko and M. Mueckler, unpublished observations). In contrast,

the distribution of the IRM mutant in the RSV fraction was much

more heavily weighted towards larger vesicles near the bottom of

the gradient in comparison to wild type endogenous Glut4. These

observations are consistent with the striking qualitative differences

observed in the distribution of wild type Glut4 and the IRM

mutant via confocal immunofluorescence microscopy [34](also see

Figures 2 and 3), which showed that the IRM mutant is

concentrated in large, dispersed, cytoplasmic vesicles under both

basal and insulin-stimulated conditions.

SSV and RSV membrane fractions from 3T3L1 adipocytes

expressing the Dsred/HA-tagged IRM mutant were immunoad-

sorbed onto glass chips coated with anti-Glut4 or anti-Dsred

antibodies, subjected to secondary immunogold labeling after

incubation with anti-Glut4 or anti-Dsred antibodies, and then

Figure 2. L500 and L503 are critical for the targeting of Glut4 to
GSVs in the basal state. After co-expression of wild-type Glut4/eGFP
and the various mutants within the IRM region of Glut4/Dsred by
recombinant adenovirus infection, adipocytes were serum starved for
2 hours, washed with cold PBS, fixed with 4% paraformaldehyde, and
then subjected to confocal microscopy analysis. The red color on the
left panels represents mutants of Glut4/Dsred, the green color in the
middle panels represents wild type Glut4/eGFP, and the yellow color in
the right panels represents the colocalization of Glut4/eGFP and
mutated Glut4/Dsred. The images were taken approximately through
the middle of the cells and are representative of 4–5 independent
experiments. The scale bar represents 10 mm.
doi:10.1371/journal.pone.0068516.g002
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visualized by deep etch electron microscopy. The SSV fractions

contained small vesicles of relatively uniform size (,100 nm),

many of which were labeled with gold particles directed against

either the endogenous wild type Glut4 (Figure 5a) or the

ectopically-expressed Dsred-tagged IRM mutant (Figure 5b).

The Glut4-adsorbed RSV fraction contained a mixture of small

(50–100 nm) free vesicles and larger vesicles (150–250 nm) that

often were associated with branching structures and smaller

vesicles (Figure 5c). Gold particles were observed on both small

and large, branching structures in this fraction. In contrast, the

Dsred-adsorbed RSV fraction contained a preponderance of

larger vesicles (100–250 nm), many of which were densely labeled

with gold particles directed against the IRM mutant (Figure 5d).

These data are consistent with the observations obtained using

light microscopy and subcellular fractionation. Interestingly, many

of the gold particles in the Glut4-RSV fraction were associated

with branching structures connected to larger vesicles, whereas

most of the gold particles in the IRM-RSV fraction were directly

associated with the bodies of large vesicles.

In a further effort to characterize the distinct membrane

compartments to which the IRM mutant was routed, vesicles

containing Glut4 or the IRM mutant were isolated from SSV and

RSV fractions by immunoadsorption using a magnetic bead

procedure. The magnetic bead procedure was critical to obtaining

highly enriched vesicles from RSV, because standard centrifuga-

tion-based immunoadsorption procedures resulted in a large

degree of non-specific sedimentation of the vesicles in this fraction

(R. Hresko and M. Mueckler, unpublished observations). RSV and

SSV fractions isolated from IRM mutant- expressing 3T3L1

adipocytes were first subjected to immuno-enrichment using beads

coated with anti-Glut4 antibodies. This resulted in a.95%

recovery of Glut4 vesicles from the membrane fraction and

a.20-fold enrichment of Glut4 in the pellets (Figure 6). The

supernatants from this initial immunoadsorption reaction were

then cleared of .99% of Glut4 by two additional immunoadsop-

tions using anti-Glut4 magnetic beads. The supernatants obtained

after the third anti-Glut4 immunoadsorptions were then used to

immunoadsorb vesicles containing the Dsred-tagged IRM mutant.

The recovery of the IRM mutant after immuno-enrichment

(,60%) was less efficient than that for Glut4 for reasons that are

not evident.

The immuno-enriched Glut4 and IRM vesicles were then

subjected to high resolution nanospray liquid chromatographic

mass spectroscopy (nano-LC-MS) and the proteins present in each

fraction were identified using the sequential scheme outlined in

Figure S1. The results from two independent large-scale immuno-

enrichment preparations and three independent nano-LC-MS

analyses are summarized in Tables 1 and Table S1–3, which

identify the proteins significantly enriched in each of the 4 different

fractions (Glut4-SSV, Glut4-RSV, IRM-SSV, IRM-RSV) relative

to control IgG fractions (P,0.05) for which a minimum of 2

distinct peptides were identified. The Glut4-SSV, Glut4-RSV,

IRM-SSV, and IRM-RSV fractions contained 132, 127, 121, and

62 proteins, respectively, according to this analysis. The control

IgG immunoadsorptions identify only those contaminant proteins

that have a non-specific affinity for IgG. Consequently, many of

these proteins, especially those that show a,2-fold degree of

enrichment, are likely to be non-specific contaminants that are

relatively abundant and/or have a high affinity for lipid/protein

vesicles. This probably includes most of the proteins listed in the

‘‘Miscellaneous’’ category, especially those proteins that are known

residents of mitochondria or the endoplasmic reticulum. As

expected, Glut4 peptides were highly enriched in all 4 fractions

with very high levels of statistical significance, confirming the

efficiency of the immunoadsorption reactions (see Supplemental

Table 1–3 and Tables 1). Note that although endogenous wild-

type Glut4 was very efficiently cleared from the IRM mutant-

enriched vesicle fractions, the ectopically expressed tagged IRM

Figure 3. L500 and L503 are critical for insulin-stimulated
translocation of Glut4 to the cell periphery. After co-expression
of wild-type Glut4/eGFP and the various mutants within the IRM region
of Glut4/Dsred using recombinant adenovirus infection, adipocytes
were serum starved for 2 hours, stimulated with 1 mM insulin for
30 minutes, washed with cold PBS, fixed with 4% paraformaldehyde,
and then subjected to confocal microscopy analysis. The red color in
the left panels represents mutants of Glut4-Dsred, the green color in the
middle panels represents wild type Glut4/eGFP, and the yellow color in
the right panels represents the colocalization of Glut4/eGFP and
mutated Glut4/Dsred. The images were taken approximately through
the middle of the cells and are representative of 4–5 independent
experiments. The scale bar represents 10 mm.
doi:10.1371/journal.pone.0068516.g003
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mutant shares peptides with the native wild type transporter that

were identified by the nano-LC-MS analyses, and the IRM

mutant does not react with the C-terminal Glut4 antibody.

Of the four vesicle fractions analyzed in the present study, only

the Glut4 SSV fraction (traditionally referred to as the Glut4 low

density microsomal (LDM) fraction) has been previously charac-

terized by proteomic and immunological analyses. Our results

Figure 4. The IRM mutant was preferentially localized to the RSV fraction with a different sedimentation pattern. IRM/dsred mutant-
(see Figure 1) infected adipocytes were serum starved overnight on day 8–9 post-differentiation and were then subjected to subcellular fractionation.
The proteins from the RSV or SSV subcellular fractions were separated by SDS-PAGE, and then subjected to immunoblot analysis. (A). A representative
western blot is shown on the left, and the quantification on the right shows the mean6SE from 3 independent experiments. ‘‘**’’ indicates P#0.01
compared with control endogenous wild type Glut4. The isolated SSV (B) and RSV (C) subcellular fractions were subjected to sucrose velocity gradient
analysis as described in ‘‘Experimental Procedures’’. The fractions were collected from the bottom of the gradients and subjected to total protein
quantification (left panels) or immunoblot analysis for endogenous wild-type Glut4 and the IRM mutant (upper pictures and lower quantifications).
The data shown are representative of 2 independent experiments.
doi:10.1371/journal.pone.0068516.g004
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confirm the presence of many proteins that have been reported to

be present in the Glut4-SSV fraction by numerous studies

[23,44,45] (proteins present in the Glut4-SSV fraction that have

not been reported in previous studies are marked with an asterisk

in Table S1). Among the best characterized of the known Glut4

vesicle proteins include sortilin, Glut1 (Slc2a1), mannose-6-P

receptor, insulin- responsive aminopeptidase (Lnpep), transferrin

receptor, IgF-II receptor, AS160 (TBC1D4), Vps45, carboxypep-

tidase D, Rab10, syntaxin16, syntaxin6, clathrin, and caveolin.

Not surprisingly, most of these proteins are also present in the

Glut4-RSV fraction (Table S2). The total RSV (‘‘HDM’’) fraction

is enriched in markers for early biosynthetic compartments and

probably contains compartments involved in the subcellular

sorting of proteins associated with Glut4 intracellular vesicles. Of

the 75 different proteins enriched at least 2-fold in either the

Glut4-SSV or Glut4-RSV fractions, 33 (44%) of these were shared

by the two compartments (see Figure 7).

Our previous studies demonstrated that the vast bulk of the

IRM mutant was present in relatively large vesicular structures

dispersed throughout the cytoplasm that lacked wild type Glut4 or

any of several markers for various subcellular membrane

compartments [34], suggesting that the mutant may be shunted

to or trapped in a previously uncharacterized membrane

compartment(s). The results shown in Figure 4 confirm the

enrichment of the IRM mutant in relatively large vesicles.

Interestingly, the IRM-SSV fraction, which contained only a

small quantity of the total IRM mutant protein, shares a few of the

well-characterized proteins present in the wild type Glut4-SSV

fraction, including the mannose-6-P receptor, syntaxin16, syn-

taxin6, transferrin receptor, and AS160 (see Table S3). Of the 104

different proteins expressed in the Glut4-SSV and/or IRM-SSV

fractions, 25 (24%) of these were shared by the two fractions

(Figure 7). Strikingly, the IRM-RSV fraction, which contains most

of the IRM mutant protein expressed in 3T3L1 adipocytes,

contained only 26 distinct proteins that were enriched .2-fold

relative to the IgG control (Table 1). A total of 90 different

proteins were enriched .2-fold in either the IRM-RSV and/or

IRM-SSV fractions, and only 4 of these (4.4%) were shared by

both fractions. Only 5 of 68 proteins (7.3%) were shared between

the Glut4-RSV and IRM-RSV fractions (Figure 7). Importantly,

the most thoroughly characterized proteins present in Glut4

storage vesicles, i.e, IRAP, AS160, and sortilin, were not detected

in the IRM-RSV fraction. The relatively small number of enriched

proteins in the IRM-RSV fraction and the small degree of overlap

in protein composition with the other three membrane fractions as

a whole suggest that this subcellular fraction may primarily

represent a single, distinct, membrane compartment.

Interestingly, the two proteins that have the greatest effect size

in the IRM-RSV fraction, a parameter based on relative peptide

intensities, are Ras GTPase binding proteins 1 and 2 (G3bp1 and

G3bp2). G3bp1 and G3bp2 are proteins with multiple RNA and

protein binding domains that are known to be involved in the

Figure 5. Immuno-gold electron microscopic localization of Glut4 and the IRM mutant in RSV and SSV vesicles. Control or IRM/dsred
mutant (see Figure 1)-infected 3T3-L1 adipocytes were serum starved overnight. The cell lysates were subjected to differential centrifugation and the
RSV and SSV fractions were used to immuno-adsorb endogenous Glut4-containing vesicles (A, C upper panel) or the exogenously expressed mutant
IRM-containing vesicles (B, D) onto glass chips. The attached vesicles were labeled with immunogold-conjugated antibodies (18 nm gold conjugated
anti-mouse IgG for Glut4 and 12 nm gold conjugated anti-rat IgG for the IRM mutant) and were then visualized by electron microscopy (see
‘‘Experimental Procedures’’). The scale bars represent 100 nm.
doi:10.1371/journal.pone.0068516.g005
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formation of RNA stress granules [46,47,48]. They are also

present in the cytosol and the nucleus but have not been previously

reported on cytoplasmic membrane structures or studied in

adipocytes [48,49]. We therefore examined their possible role in

the formation of the IRM vesicles in adipocytes. First, we

confirmed the co-localization of G3bp1 and G3bp2 with purified

IRM vesicles (Figure 8B). Next, we decreased expression of the

proteins in adipocytes infected with recombinant adenovirus

encoding the IRM mutant using siRNAs. Reducing G3bp1

and/or G3bp2 expression by 65–85% had no effect on the

distribution of wild-type Glut4 or the IRM mutant between the

RSV and SSV fractions and had no effect on the total expression

levels of either of the Glut4 proteins (Figure 9). Since IRM

expression did not alter the level of either G3bp1 or G3bp2

(Figures 8A), it appears that the IRM mutant either migrated to

pre-existing vesicles enriched in G3bp1 or that IRM expression

induced the partial migration of G3bp1/2 to a newly formed

membrane compartment.

Discussion

We previously reported the existence of a putative novel

subcellular trafficking motif in the cytoplasmic carboxyl-terminal

tail of the Glut4 glucose transporter (L500XXLXPDEXD509)

(where X is any amino acid) [34]. The motif was identified by

virtue of alignment with an identical sequence within the

cytoplasmic amino terminal domain of IRAP, which is present

in Glut4 storage vesicles and appears to share a very similar

insulin-regulated subcellular trafficking pattern with Glut4 in

adipocytes. Mutation of all 6 of the residues within this motif or of

L500, L503 and p505 together to alanine residues resulted in the

aberrant targeting of Glut4 in the basal state and totally abolished

insulin-stimulated translocation of the transporter to the plasma

membrane. Additionally, a fraction of intracellular wild type Glut4

was shown to recycle through the plasma membrane under basal

conditions and then to equilibrate with the bulk pool of

intracellular transporter molecules, whereas the IRM mutant

completely failed to recycle in the presence or absence of insulin.

This is by far the most dramatic phenotype ever reported for a

Glut4 trafficking mutant, suggesting that the IRM plays a

fundamental role, probably at an early stage, in the subcellular

sorting of Glut4 molecules in 3T3L1 adipocytes. It is important to

note that revealing the full extent of the aberrant phenotype of the

IRM mutant was dependent on the co-localization of the mutant

with a differentially tagged wild type Glut4 chimera co-expressed

in the same cell population. Simply comparing different cell

populations expressing either the wild type or IRM mutant would

not have clearly demonstrated the extreme degree of miss-

targeting of the mutant. Surprisingly, mutations in the IRM did

not discernibly affect the trafficking or insulin responsiveness of

IRAP. It is possible that IRAP ‘‘piggybacks’’ through the IRM

sorting step on another molecule, but that begs the question as to

why IRAP possesses the IRM sequence at all. Another possibility is

that the IRM functions at a different step in IRAP trafficking and

that mutations within the motif have a much more subtle

phenotype for IRAP. The IRM appears to constitutively facilitate

the trafficking of Glut4 to insulin responsive intracellular

membrane compartments. There is no evidence that recognition

of the IRM itself is regulated by the presence or absence of insulin.

It should also be mentioned that it is not know whether mutations

within the IRM affect transport activity of the protein, since IRM

mutants are never inserted into the plasma membrane.

In the present study we examined the properties of the IRM

mutant and the uncharacterized membrane compartments to

which it is targeted. Both L500 and L503 are critical determinants of

the IRM, since point mutations in either residue resulted in a

phenotype very similar to that exhibited by the original IRM

mutant. All 4 of the other residues within the IRM tolerate

mutation to alanine residues, although this observation by itself

does not negate the possibility that these residues do play a role in

the recognition of the IRM by targeting factors. These data

strongly suggest that mutations within the IRM do not result in the

fortuitous creation of a dominant trafficking motif that results in

the miss-targeting of Gut4, but that the IRM sequence comprises a

motif that is critical for the eventual movement of the transporter

into insulin responsive intracellular compartments. Because the

IRM mutant never appears to reach the plasma membrane either

in the presence or absence of insulin, it likely functions at a very

early stage of Glut4 sorting, perhaps at the TGN. This hypothesis

is also supported by data (X. Song and M. Mueckler,

unpublished), which demonstrate that the IRM motif acts in a

dominant fashion to the FQQI, di-leucine, or TELEY motifs when

mutations in two of the motifs are introduced into the same Glut4

molecule.

The IRM mutant was much more highly enriched in the RSV

fraction compared to wild type Glut4. When the RSV fraction was

analyzed by sucrose velocity gradient centrifugation, wild-type

Glut4 was present in two distinct peaks representing larger and

smaller vesicle populations. Presumably the smaller vesicles

associated with larger structures during the initial differential

centrifugation, but separated from the larger vesicles during the

velocity centrifugation step. In contrast, the IRM mutant was

present in a single broad peak near the bottom of the gradients,

representing a relatively large vesicle population. In the SSV

fraction, which contained a relatively small proportion of the total

IRM mutant, both endogenous wild type Glut4 and the mutant

were present in single peaks representing small vesicles. These

observations were confirmed and extended by immunogold

Figure 6. Immuno-adsorption of Glut4 and IRM mutant vesicles
for Mass Spectrometry. RSV and SSV vesicles were pre-cleared with
anti-rabbit IgG beads for 2 hours and the supernatant fractions were
immuno-adsorbed with polyclonal anti-Glut4 magnetic beads. The
supernatant fractions were subsequently subjected to immuno-
adsorption with anti Dsred beads (to adsorb the mutant-containing
vesicles). After washing, equal aliquots of the eluates from the beads
were subjected to SDS PAGE and then subjected to immuno-blotting
with monoclonal IF8 anti-Glut4 or anti-HA antibody (to detect the IRM
mutant).
doi:10.1371/journal.pone.0068516.g006
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Table 1. Proteins Identified in the IRM Mutant RSV Fraction from 3T3-L1 Adipocytes by Nano-LC-MS.

Primary protein name Effect Size P Value Protein Description

Membrane cargo proteins:

Slc2a4 5.86 1.75E-07 Solute carrier family 2, facilitated glucose transporter member 4

Scp2 3.04 4.51E-03 Non-specific lipid-transfer protein (EC 2.3.1.176) (NSL-TP) (Sterol carrier protein 2).

Atp6v1b2 2.44 6.00E-04 V-type proton ATPase subunit B, brain isoform

Igf2r 1.79 5.90E-03 Cation-independent mannose-6-phosphate receptor

Lrp1 1.75 1.49E-02 Prolow-density lipoprotein receptor-related protein 1

Anxa1 1.72 1.45E-04 Annexin A1

Anxa6 1.71 4.73E-09 Annexin A6

Anxa4 1.46 2.49E-02 Annexin A4

Atp5h 1.38 3.77E-03 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit d (Fragment)

Slc25a5 1.27 3.48E-02 ADP/ATP translocase 2

Membrane trafficking/sorting proteins

Bst2 3.46 1.27E-02 Bone marrow stromal antigen 2

Naca 2.92 4.91E-04 Nascent polypeptide-associated complex subunit alpha, muscle-specific form

Dctn1 1.57 3.84E-02 Dynactin subunit 1

Scamp3 1.48 1.89E-02 Secretory carrier-associated membrane protein 3

Snares

Stx12 1.64 1.24E-02 Syntaxin-12

Vamp8 1.50 1.45E-02 Vesicle-associated membrane protein 8

Kinase and phosphatase

Gapdh 3.05 2.63E-03 Glyceraldehyde-3-phosphate dehydrogenase

Pygb 1.64 1.95E-05 Glycogen phosphorylase, brain form

Coated and adaptor

G3bp2 7.31 1.05E-05 Ras GTPase-activating protein-binding protein 2

G3bp1 6.68 1.09E-06 Ras GTPase-activating protein-binding protein 1

Cltc 1.46 1.04E-04 Clathrin heavy chain 1

Iqgap1 1.42 5.91E-03 Ras GTPase-activating-like protein IQGAP1

Mapksp1 1.37 1.90E-02 Mitogen-activated protein kinase scaffold protein 1

Secreted

Alb 3.48 5.98E-06 Serum albumin

Aimp1 3.23 6.02E-04 Aminoacyl tRNA synthetase complex-interacting multifunctional protein 1

Anxa2 1.31 4.63E-02 Annexin A2

Cytoskeletal

Sptan1 2.16 5.73E-03 Spectrin alpha chain, brain

Myh9 2.06 2.62E-03 Myosin-9

Vim 1.80 2.73E-05 Vimentin

Tuba1b 1.44 9.07E-03 Tubulin alpha-1B chain

Tubb5 1.19 2.40E-02 Tubulin beta-5 chain

Miscellaneous

Caprin1 3.71 7.88E-06 Caprin-1

Nudt21 3.56 1.09E-02 Cleavage and polyadenylation specificity factor subunit 5

Mrps36 3.33 3.46E-02 28S ribosomal protein S36, mitochondrial

Pabpc4 2.65 1.16E-02 Poly A binding protein, cytoplasmic 4

Psmd7 2.62 3.05E-02 26S proteasome non-ATPase regulatory subunit 7

Bckdha 2.62 9.76E-05 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial,

Bckdhb 2.56 4.51E-03 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial

Psmd11 2.27 4.50E-03 26S proteasome non-ATPase regulatory subunit 11

Eef1d 2.25 1.03E-05 Elongation factor 1-delta

Timm44 2.24 2.77E-04 Mitochondrial import inner membrane translocase subunit TIM44
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labeling following by examination of the RSV and SSV fractions

by deep etch electron microscopy. In the SSV fractions both wild

type Glut4 and the IRM mutant were observed in 50–100 nm

vesicles, and the abundance of vesicles was much lower on the

grids coated with antibodies that recognized the IRM mutant. The

Glut4-RSV fraction contained a mixture of small 50–100 nm

vesicles and large (150–250 nm) vesicles, the latter often either

associated with or consisting of branching structures. Interestingly,

Glut4 was relatively abundant on the surface of the branching

structures and was largely excluded from the bodies of the largest

vesicles. Glut4 labeling was also observed in the small vesicles of

the RSV fraction, which were abundant. In contrast, the IRM-

RSV fraction lacked branching structures and was much more

enriched in large vesicles (150–250 nm) compared to the Glut4-

RSV fraction. IRM mutant gold labeling was highly concentrated

on the surfaces of many of these large vesicles. It is tempting to

speculate that the labeled branching structures in the Glut4-RSVs

represent Glut4 moving through transitional membrane compart-

ments, and that the large vesicles heavily labeled in IRM-RSVs

represent the mutant present in a static, ‘‘dead-end’’ membrane

compartment to which it is miss-targeted.

The 4 membrane fractions characterized in this study were

analyzed by a highly sensitive nano-LC-MS procedure in order to

define their protein compositions and characterize the compart-

ments to which the IRM mutant was misdirected. The Glut4-SSV

fraction (originally termed the ‘‘low-density microsomal fraction’’)

has been subjected to proteomic analyses in two previous studies

[23,44]. Our data confirm the presence of most of the proteins

identified in these two studies (see Table S1), with a few notable

exceptions. For example, the previously identified proteins,

VAMP2, Rab4, and LRP1 were detected in the Glut4-SSV

fraction in our analysis but are not listed in Table S1, because

their enrichment above the controls did not quite achieve

statistical significance. The previous proteomic studies did not

report the statistical analysis of multiple MS runs. It should be

noted that many if not most of the proteins identified by the MS

analysis were probably associated non-specifically with the

immunoadsorbed vesicles. For example, many resident mitochon-

drial proteins are listed in the tables that clearly cannot be

specifically associated with Glut4 or IRM vesicles. The control

fractions represent proteins that sediment with magnetic beads

coated with non-specific IgG, and thus the control immunopre-

cipitates contain a small non-specific membrane vesicle content

relative to the Glut4 and IRM mutant immuno-enriched fractions.

We would therefore expect proteins that have a high affinity for

membrane lipids per se to be enriched in the Glut4 and IRM

vesicles fractions relative to the control fractions. Also, highly

abundant proteins in general are more likely to be non-specifically

trapped and detected in the larger Glut4 and IRM bead pellets.

These are problems unique to the interpretation of proteomic

analyses of immuno-enriched membrane vesicle populations that

are well recognized and cannot be avoided.

Not surprisingly, 44% of the proteins in the Glut4-SSV fraction

were also detected in the Glut4-RSV fraction (often referred to as

the ‘‘high-density microsomal fraction’’). These two vesicle

fractions undoubtedly contain specific membrane compartments

that are precursors to compartments in the other fraction, either

during initial biosynthesis of Glut4 or during its steady state

intracellular recycling, and thus it is expected that they would

share many of the same proteins.

All of our data are consistent with the conclusion that only a

very small proportion of the IRM mutant is present in small

Table 1. Cont.

Primary protein name Effect Size P Value Protein Description

Fubp3 2.23 4.46E-02 Far upstream element (FUSE) binding protein 3

Decr1 2.20 9.04E-05 2,4-dienoyl-CoA reductase, mitochondrial

Ogdh 2.13 3.48E-02 2-oxoglutarate dehydrogenase E1 component, mitochondrial

Hnrnpa2b1 2.04 3.44E-02 Heterogeneous nuclear ribonucleoproteins A2/B1

Hadhb 1.88 4.57E-02 Trifunctional enzyme subunit beta, mitochondrial

Dld 1.79 2.13E-02 Dihydrolipoyl dehydrogenase, mitochondrial

Hsp90ab1 1.76 8.36E-04 Heat shock protein HSP 90-beta

Hadha 1.73 3.10E-03 Trifunctional enzyme subunit alpha, mitochondrial

Dctn2 1.72 1.15E-03 Putative uncharacterized protein

Pabpc1 1.72 6.33E-03 Polyadenylate-binding protein 1

Hbb-y 1.71 1.75E-02 Hemoglobin subunit epsilon-Y2

Glul 1.68 2.06E-02 Glutamine synthetase

2700060E02Rik 1.66 2.16E-03 UPF0568 protein C14orf166 homolog

Fasn 1.56 4.47E-03 Fatty acid synthase

Lamp2 1.49 2.94E-03 Lysosome-associated membrane glycoprotein 2

Cct2 1.45 3.78E-02 T-complex protein 1 subunit beta

Gpd1 1.42 4.66E-02 Glycerol-3-phosphate dehydrogenase [NAD+], cytoplasmic

Anxa5 1.34 4.29E-02 Annexin A5 (Lipocortin V) (Calphobindin I) (CBP-I) (Placental anticoagulant protein I).

Arl8b 1.32 2.12E-02 ADP-ribosylation factor-like protein 8B

Mdh2 1.27 1.67E-02 Malate dehydrogenase, mitochondrial precursor (EC 1.1.1.37).

The ‘‘Effect Size’’ represents the values relative to the corresponding IgG control group, the ‘‘P Value’’ represents the statistical significance of enrichment compared to
the corresponding IgG control groups.
doi:10.1371/journal.pone.0068516.t001
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membrane vesicles. The IRM-SSV fraction shares 25 proteins

with the Glut4-SSV fraction. This includes several proteins that

are known to recycle, including the transferrin and mannose-6-P

receptors [23,50]; AS160, (TBC1D4) a protein known to be

involved in the regulation of Glut4 trafficking [51]; and several

proteins previously identified in Glut4 membrane compartments,

including syntaxins 6 and 16, clathrin, and caveolin [33,52,53].

Interestingly, Cd36, a member of the class B family of scavenger

receptors, is also shared between the Glut4-SSV and IRM-SSV

fractions, but is much more highly enriched in the latter fraction.

CD36 is involved in the binding and uptake of a diverse set of

ligands, including long chain fatty acids, lipoproteins, collagen,

phospholipids, and thrombospondin [54,55]. The small propor-

tion of the IRM mutant that appears in the SSV fraction may

represent some leakage of the mutant into authentic Glut4

membrane compartments, but the majority of proteins in the

Glut4-SSV and IRM-SSV fractions are not shared, suggesting that

most of the small vesicles containing the IRM mutant represent

one or more membrane compartments from which wild type

Glut4 is excluded. For example, Glut1 (SLC2a1) is highly enriched

in Glut4-SSV, but was not detected in IRM-SSV.

The vast bulk of the IRM mutant was detected in 150–250 nm

vesicles in the IRM-RSV fraction. This fraction possessed the

smallest number of proteins (26) that were .2-fold enriched of the

IgG control and also shared the fewest number of proteins by far

with the other fractions in pair wise comparisons (5 with Glut4-

RSV and 4 with IRM-SSV). Of these shared proteins, two were

shared with both Glut4-RSV and IRM-SSV (bone marrow

stromal antigen 2 and the beta subunit of the V-type proton

ATPase). These data strongly suggest that most of the IRM

mutant molecules are present in one or more membrane

Figure 7. Diagram of the overlapping protein compositions of
the Glut4 and mutant IRM enriched vesicle fractions according
to nano-LC-MS analysis. Each number in the circle represents the
unique proteins in that fraction relative to the other. The underlined
numbers in overlapping areas between two circles represent the
number of shared proteins between the two fractions. The gray circle
represents Glut4-RSV, the blank circle represents Glut4-SSV, the small
gray shaded circle represents IRM-RSV, and the gray dotted circle
represents IRM-SSV.
doi:10.1371/journal.pone.0068516.g007

Figure 8. G3bp1/2 are present in immunoenriched IRM
vesicles. (A) Cell lysates from control or IRM/dsred expressing
adipocytes were subjected to differential centrifugation and the RSV
and SSV fractions were subjected to immunoblot analysis using the
antibodies indicated. (B) RSV fractions obtained as described above
were subject to immunoadsorption with anti-Dsred or control IgG
antibodies after pre-clearing endogenous Glut4 vesicles from the
fractions using anti-Glut4 antibody. The eluates from the beads
immuno-adsorbed with anti-IRM/dsred antibody or control IgG were
analyzed by immunoblot analysis with the indicated antibodies.
doi:10.1371/journal.pone.0068516.g008

Figure 9. siRNA-mediated knockdown of G3bp1/2 expression
does not affect levels of wild-type Glut4 or the IRM mutant in
RSV and SSV fractions. Two days after infection with recombinant
adenovirus expressing the IRM/dsred construct, the infected adippcytes
and non-infected control adipocytes were transfected with siRNA
directed against G3bp1 and/or G3bp2 mRNAs. After 2 h starvation, cell
lysates from non-infected control adipocytes or IRM/dsred expressing
adipocytes were subjected to differential centrifugation and the RSV
and SSV fractions along with total cellular homogenates were subjected
to immunoblot analysis using the antibodies indicated. Scrambled
siRNA was used as a control. The blot shown is representative of 3–4
independent experiments.
doi:10.1371/journal.pone.0068516.g009
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compartments from which wild type Glut4 and other resident

proteins of Glut4 vesicles are excluded.

The IRM-RSV fraction contains a heterogeneous mixture of

membrane proteins and proteins that associate with membranes in

various subcellular compartments. The 2 proteins that displayed

the greatest enrichment relative to the non-specific IgG -coated

beads were Ras GTPase-activating protein binding proteins 1 and

2 (G3bp1 and 2). Both G3bp-1 and G3bp2 are mRNA-binding

proteins that are present in cytoplasmic stress granules that

represent large clusters of mRNPS that are induced by various

types of cellular stress and are not bounded by membranes

[56,57]. The precise role of stress granules and of G3pb in their

formation is unclear. G3bps have also been associated with the

regulation of signaling by the Ras family of GTPases and have

been proposed to be involved in a variety of other cellular

functions [46,48,58]. One possible explanation for the association

of the IRM mutant with stress-granule associated proteins is that

the mutant is funneled into a pathway by which misfolded or mis-

targeted proteins are sequestered in a specific membrane

compartment, associated with stress granules, for subsequent

degradation. However, dozens of proteins have been identified in

stress granules, and only 3 of these appear to be associated with the

IRM compartment. An alternative explanation is that the

localization of G3bp1/2 to the IRM compartment may reflect a

currently unrecognized functional aspect of these proteins.

Supporting Information

Figure S1 Data processing for quantitative, label-free
proteomics analysis of immunoprecipitates. In step 1, the

unprocessed LC-MS/MS files that were acquired using X-calibur

(Thermofisher, ver. 2.0.7) were analyzed using Mascot Distiller

software (ver 2.0.3) for preparation of files for database searching.

After creating the *.mgf files, the MS2 data were searched using

MASCOT (ver. 2.2.04) [41] against the UNIPROT mouse

protein database (downloaded May 2011, with 135387 sequences)

(Step 2). The MS1 and MS2 mass tolerances were set at 20 ppm

and 0.8 Da, respectively. Carbamidomethyl was set as a fixed

modification for Cys residues and Met residue oxidation was

allowed as a variable modification. The protein database searches

were further analyzed using Scaffold software (ver. 3_00_07) (Step

3) and the proteins were identified using the Protein Prophet

algorithm [40] with protein and peptide thresholds of 95% and

50%, respectively (Step 4). The identified proteins and supporting

mass spectrometric data are given in Table S1. For relative

protein quantification, the same set of unprocessed LC-MS files

were imported into Rosetta ElucidatorTM (Rosetta Biosoftware,

ver 3.3) and the peptide ion chromatograms were aligned and

mean normalized using the following modification of the

previously described parameters [59]): ‘‘Peak time score minimum

= 0.5; peak m/z score minimum = 0.5; Scan width of m/z = 350–

1400; LC time range of 30–140 min; intensity scaling based on the

mean intensity of all features (Step 5). The aligned peptide ion

currents (PIC’s) were annotated within the software by generating

*.dta files (Step 6) and searching the UNIPROT human database

using MASCOT as described above (Step 7). The ion current

signals from all charge states for each peptide were concatenated

unique using a visual script within the software. The table of

peptides and peptide intensities was exported in Excel *.csv format

(Step 8). In order to group peptide data generated from the

products of each gene, the Mouse gene symbol was extracted from

the UniProt database protein descriptor for each identified

peptide. This was done using the following formula in Excel:

= LEFT(MID(AJ2, FIND(‘‘GN = ’’, AJ2)+LEN(‘‘GN = ’’),999),

FIND(‘‘PE = ’’, MID(AJ2, FIND(‘‘GN = ’’, AJ2)+-
LEN(‘‘GN = ’’),999))–1) where AJ2 is the cell where the protein

name exists. The spreadsheet was then sorted using Gene Symbol,

to group them accordingly. The gene-grouped peptide intensity

data were imported into DAnTE-R for statistical analysis [42,43]

(Step 8).

(TIF)

Figure S2 Flow Chart of Deep-Etch Electron Microsco-
py. Control or IRM mutant infected 3T3-L1 adipocytes were

serum starved overnight. The cellular homogenates were subjected

to subcellular fractionation and the RSV and SSV fractions were

used for immuno-adsorption with control IgG or anti-Glut4

polyclonal antibodies attached to magnetic beads in order to clear

the fractions by adsorption to non-specific IgG and/or to clear the

fractions of vesicles containing wild-type Glut4. After glass chips

were coated with either anti-Glut4 or anti-Dsred polyclonal

antibody, the endogenous Glut4-containing vesicles or the

exogenously expressed mutant IRM-containing vesicles were

immuno-adsorbed onto the coated glass chips (4). The vesicles

on the glass chips were fixed, probed with either mouse IF8 anti-

Glut4 monoclonal (for endogenous Glut4) or rat anti-Dsred

polyclonal antibody (for the IRM mutant), and then labeled with

immunogold-conjugated secondary antibodies (18 nm gold con-

jugated anti-mouse IgG for Glut4 and 12 nm gold conjugated

anti-rat IgG for the IRM mutant) and were then visualized by

electron microscopy (see ‘‘Experimental Procedures’’).

(TIF)

Table S1 Identified proteins in Glut4 vesicles from SSV
in 3T3-L1 adipocytes. The ‘‘Log Effect’’ and ‘‘Effect Size’’

represent the value relative to the corresponding IgG control

group, the ‘‘P Value’’ represents the significance of enrichment

compared to corresponding IgG control groups.

(XLS)

Table S2 Identified proteins in Glut4 vesicles from RSV
in 3T3-L1 adipocytes. The ‘‘Log Effect’’ and ‘‘Effect Size’’

represent the value relative to the corresponding IgG control

group, the ‘‘P Value’’ represents the significance of enrichment

compared to corresponding IgG control groups.

(XLS)

Table S3 Identified proteins in IRM mutant vesicles
from SSV in 3T3-L1 adipocytes. The ‘‘Log Effect’’ and

‘‘Effect Size’’ represent the value relative to the corresponding IgG

control group, the ‘‘P Value’’ represents the significance of

enrichment compared to corresponding IgG control groups.

(XLS)

Table S4 Mass Spectrometry and Database Search
Results. Database: the uniprot-mouse_20101228 database

(Downloaded 5/2/2011, 135387 entries). Database searching:

MASCOT DISTILLER version 2.3.0.0; MASCOT version

2.2.04. Protein Identification/Spectral Counting Quantification;

Scaffold Proteome Software version 3.0.9.1.

(XLS)
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