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Introduction

Missing data are a common challenge when analyzing 
tabular datasets such as electronic medical records.1,2 One 
approach to handle missing data is imputation where the 
missing data are estimated using observed values in the 
dataset. There is growing interest in using deep learning to 
estimate the missing data. Deep learning imputation mod-
els include denoising autoencoders (DAEs3), and genera-
tive adversarial nets (GANs4). Deep learning models have 
three advantages over statistical imputation models such as 
logistic regression, decision trees, predictive mean match-
ing (PMM), and sequential regression.5 First, deep learn-
ing imputation can be used without making assumptions 
about the underlying distribution of the data. Next, missing 

data across multiple features can be estimated using a single 
imputation model. Finally, deep learning models can capture 
the latent structure of complex high-dimensional data (e.g. 
the correlation between demographics, medical history, and 
clinical outcomes in health records).6

An important task in imputing missing data is evaluat-
ing the performance of the imputation models.7 Imprecise 
models can produce misleading instances that impact the 
distribution of the groups being analyzed. The resulting 
discrepancies can impact a deep learning model’s perfor-
mance.8 The following motivating scenario demonstrates the 
importance of evaluating imputation models.

The authors of this article are currently developing a deci-
sion support system (DSS) using deep learning that assesses 
a patient’s risk from radiation exposure due to medical 
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called reconstruction loss (RL). We also present 
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imaging (MI).9 Our dataset has approximately 2.3 million 
imaging records from 340,525 patients over 10 years in four 
hospitals in Hamilton, Ontario, Canada. Due to technical 
and privacy challenges, we could access a subset of 18,875 
DICOM (Digital Imaging and Communications in Medicine) 
headers. As a result, we need to impute the patients’ expo-
sure in the remaining imaging records in the dataset using 
other features (e.g. body part). A common approach to esti-
mating exposure is using mean values from the literature.10,11 
However, a previous study12 demonstrated that mean values 
from the literature under-estimate patients’ exposure. The 
resulting discrepancies had a cascading effect on the perfor-
mance of the deep learning model.

A commonly used metric to evaluate the quality of a deep 
learning imputation model is the root mean square error 
(RMSE) which measures the difference between the imputed 
values and their corresponding actual values.3,4,13 RMSE is a 
performance evaluation metric. However, the goal of impu-
tation in the statistical literature14 is to ensure the imputed 
data meets the underlying properties of the dataset (e.g. data 
variability and distribution) rather than achieve the best pre-
diction accuracy as in deep learning.7

Preliminary results of this research are published in 
Boursalie et al.15 where we presented a comparative analysis 
of performance metrics to assess deep learning–based impu-
tation models using the evaluation methodology commonly 
used in the literature. Two major contributions exclusively 
reported in this article are (1) our proposed methodology 
for evaluating deep learning–based imputation models and 
(2) an experimental study of the efficiency of our proposed 
evaluation methodology compared to the existing methodol-
ogy commonly used in the literature.

Materials and methods

In this section, we review existing imputation models, their 
evaluation methodology and metrics, and present our pro-
posed evaluation methodology.

Imputation models

Consider a matrix D  containing data for i  instances described 
by j  features. The objective of inferential statistics is to esti-
mate population parameters Q  such as mean ( )µ , variance 
( )σ , and regression coefficients ( )θ  by calculating statistics 
ˆ ˆ ˆ ˆ( , , )Q u= σ θ  from D . D  can also be used to train deep learn-

ing models. However, D  may contain observed ( )( )D 1  and 
missing ( )( )D 0  data. Together, D D D= ( , )( ) ( )1 0  is the matrix 
with complete data. The response matrix R rij= ( )  shows the 
locations of observed ( )rij = 1  and missing values ( )rij = 0 . 
The missing data pattern of R16 can be described as missing 
completely at random (MCAR) when the probability of data 
being missing depends only on the overall probability of 
data being missing ( )ψ . Data are missing at random (MAR) 
when the probability of missing data depends on ψ  and D( )1 .  
Finally, data are missing not at random (MNAR) when the 
probability of missing data depends on ψ , D( )1 , and D( )0 .

We can estimate missing data by drawing synthetic obser-
vations from the posterior distribution of the missing data, 
given the observed data and the process that generated the 

missing data. Formally, the posterior distribution is denoted 
as P D D R( | , )( ) ( )0 1 . Rubin1 demonstrated that R  and the pro-
cess that generated the missing data are ignorable when data 
are MCAR or MAR. In these cases, the distribution of D  is 
assumed to be the same in D( )1  and D( )0 .1 As a result, we can 
model the posterior distribution using the observed data and 
then use this model to create imputations for the missing 
data ( ( , ) ( ))( ) ( ) ( ) ( )P D D R P D D0 1 0 1| |= . Note that we need to 
include R  and the process that generated the missing data 
in the model of the posterior distribution ( ( , ))( ) ( )P D D R0 1|  
when data are MNAR.

Imputation models that estimate the posterior distribu-
tion of D  can be classified as non-generative or genera-
tive. Non-generative models include PMM17 and Multiple 
Imputation with Denoising Autoencoders (MIDAS13). PMM 
constructs separate multiple Bayesian linear regression mod-
els for each target feature f j∈  using complete instances 
( )( )D 1  for all instances fi  in a dataset. The difference between 
each imputed estimate and all observed values of f  is cal-
culated.17 The final imputed value is randomly drawn from 
the m  complete cases (e.g. m = 5) with the smallest differ-
ence from the imputed estimate.14 A benefit of PMM is that 
the imputation model constructs plausible estimates by 
replacing the imputed data with the closest values from D( )1 . 
However, PMM requires complete instances which limits the 
size of the training set. On the contrary, MIDAS is a DAE that 
models the posterior distribution even when data are miss-
ing in multiple features.3,13 MIDAS consists of an encoder 
to learn to code the representation of the input in the latent 
space and a decoder that reconstructs the original input from 
the latent code. During training, missing data are introduced 
by dropping random inputs. In MIDAS, the training objec-
tive is to minimize the model’s likelihood function or recon-
struction error.18 The missing data are treated as noise that 
MIDAS removes.13

Generative imputation models generate new instances 
from the posterior distribution of D  that are closest to the 
missing data.19 Generative Adversarial Imputation Nets 
(GAIN4) is a deep learning imputation model consisting of 
a generator, a discriminator, and a hint generator. The gen-
erator is an autoencoder that learns to implicitly model the 
data distribution while the discriminator estimates the prob-
ability that a sample came from the data distribution. The 
discriminator has an output vector of length j  (one per fea-
ture). The generator and discriminator are trained using an 
adversarial process. During training, the generator learns to 
improve the imputed values while the discriminator learns 
to better identify imputed instances. A hint generator pro-
vides the discriminator partial information on the original 
sample to focus the model’s attention on certain features. As 
a result, the generator is forced to learn to generate features 
according to the posterior distribution to fool the discrimina-
tor. The training objective of generative models is to mini-
mize the distance between the generated and original data 
distributions.19

Missing data can be estimated using single or multiple 
imputation.20 Multiple imputation captures the uncertainty 
of the imputation model by performing m > 1 independ-
ent draws from the posterior distribution P D D( )( ) ( )0 1|  to 
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generate m complete datasets. Each m imputed dataset is 
then analyzed and the average performance over all m data-
sets is calculated. For example, PMM generates m  Bayesian 
coefficients for the regression model. MIDAS subsamples 
thinned networks from a trained model using dropout.13 
GAIN draws multiple synthetic examples from the esti-
mated distribution.4 Multiple imputation has been shown to 
have improved confidence intervals and P values compared 
to single imputation.5

Evaluation methodology and metrics

The evaluation methodology proposed in the literature to 
assess the quality of an imputation model is as follows21:

Step 1: Select a subset of the data with no missing values.
Step 2: Introduce increasing rates of missing data (e.g. 2–80%).
Step 3: Estimate the missing data using imputation models.
Step 4: Assess the imputation models using an evaluation 
metric.
Step 5: Repeat steps 1–4 multiple times (e.g. five times).
Step 6: Calculate and plot the average evaluation metric versus 
the rate of missing data.

In the statistical literature, the evaluation metrics (Step 4) 
can be qualitative (e.g. histogram, box, and density plots) or 
quantitative (e.g. predictive accuracy, statistical distance, and 
descriptive statistics) as shown in Table 1. Predictive accu-
racy metrics measure the difference between the imputed 
values and their corresponding actual values. RMSE is a 
predictive accuracy metric and is defined in equation (1) 
where xI k,  and xR k,  are the imputed and actual values for 
k K= …( , , , )1 2  observations. Smaller RMSE indicates better 
agreement between the imputed and actual values.

Unlike predictive accuracy metrics, statistical distance 
metrics such as Cohen’s Distance Test (CDT22) and φ -diver-
gence measure the distance between the actual ( )p  and 
imputed ( )q  probability densities.23,24 The CDT is defined 
in equation (2) where x  and SD are the mean and stand-
ard deviations of the actual and imputed distributions. 
Distributions with small, medium, and large differences 
have a CDT ⩽ 0.2, 0.2 < CDT ⩽ 0.5, and 0.5 < CDT ⩽ 0.8, 
respectively. φ -divergence metrics estimate the difference 
between p  and q  using

D p q p x
q x
p x

dxφ φ||( ) = ∫ ( ) ( )
( )
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
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where φ  is a class of distance functions. Examples of φ  are 
the Kullback–Leibler (KL) divergence,25 KL approximate 
lower-bound estimator,26 and Jensen–Shannon Distance 
(JSDist27). JSDist is defined in equation (3). A JSDist = 0 indi-
cates identical distributions while JSDist = 1 represents maxi-
mally different distributions.

Descriptive statistics describe the characteristics of the dis-
tribution such as frequency, central tendency (mean, median, 
and mode), measures of variability (standard deviation and 
skewness), and position (quantile ranks). Normal distribu-
tions are described using mean and standard deviation. 
Non-normal distributions are described using median (X) , 
interquartile range (IQR; r ), and skewness (γ) . The median 
data point splits the distribution in half. The IQR measures 
the spread of the dataset and is the difference between the 
upper (Q3) and the lower (Q1) quartiles. Skewness meas-
ures the degree and direction of asymmetry in the dataset. A 
symmetrical distribution (e.g. normal distribution), left-, and 
right-skewed distribution has a zero, negative, and positive 
skewness value, respectively.
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Existing proposals (MIDAS,13 GAIN,4 and VAE3) assessed 
the deep learning imputation models using the methodology 
proposed in Marshall et al.21 with RMSE as the evaluation 
metric. However, the goal of imputation in the statistical 

Table 1. Summary of evaluation metrics.

Metric type Metric Description Assumptions Used

Qualitative Histogram Graph of distributions Nguyen et al.7

Predictive 
accuracy

RMSE Difference between the predicted and 
observed values

-  Errors are unbiased and 
follow a normal distribution

Yoon et al.4 and Lall and 
Robinson13

Statistical 
distance

CDT Magnitude of differences between  
2+ groups

-  Similar sizes
- Similar SD

 

φ -divergence (KL and Jensen–
Shannon divergence, JSDist)

Dissimilarity between two probability 
distributions

- Xi = 0  means Yi = 0 Nazábal et al.,3 Nowozin et al.,23 
and Kingma and Welling24

Descriptive 
statistics

Median Splits the distribution so half of all values are above and below the median  
IQR The range of the middle half of the distribution  
Skewness Measures the degree and direction of asymmetry  

RMSE: root mean square error; CDT: Cohen’s Distance Test; KL: Kullback–Leibler; IQR: interquartile range.
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literature is to capture the underlying dataset properties (e.g. 
mean and distribution) that are hidden by missing data to 
prevent bias in the subsequent analysis.7,14 The qualitative, 
predictive accuracy, statistical distance, and descriptive sta-
tistics metrics evaluate different qualities of the imputation 
model’s performance. RMSE and CDT compare mean recon-
struction, φ -divergence metrics examine the divergence 
between distributions, and descriptive statistics describe 
distribution characteristics (e.g. median, skewness, and 
IQR). As a result, previous studies that have evaluated deep 
learning imputation using predictive accuracy metrics4,13 
may not capture the overall performance of their models. 
Furthermore, the aggregate RMSE is a predictive accuracy 
metric that may not represent the imputation model’s perfor-
mance for a feature of interest f . There is a need to evaluate 
deep learning imputation models based on the distribution 
of target features, reconstruction properties of interest, and 
the proportion of missing data.

Proposed evaluation methodology

To address the limitations in the existing imputation evalu-
ation methodology,21 our proposed methodology needs to 
attend to the following requirements:

Requirement 1 (R1): Evaluate multiple properties of the impu-
tation model’s reconstruction performance (e.g. mean and 
distribution).
Requirement 2 (R2): Summarize the imputation model’s over-
all reconstruction performance across multiple properties 
using one metric.
Requirement 3 (R3): Evaluate the trade-offs between recon-
struction properties.

To address R1, we evaluate the imputation model’s per-
formance on three metrics: (1) median, (2) skewness, and 
(3) IQR reconstruction. Median, skewness, and IQR were 
selected for this study because we are interested in imputing 
non-normal distributions. To address R2, we want to aggre-
gate the median, skewness, and IQR performance. However, 
we cannot sum median, skewness, and IQR because each 
metric has different ranges and definitions. For example, a 
negative skew value represents a left-skewed distribution 
while a negative median represents a number in the dataset. 
To summarize the performance of multiple metrics, we need 
to do the following: (1) make all metric values positive, (2) 
compare the differences between the metric values for the 
imputed and target distributions instead of the values them-
selves, and (3) normalize each metric. Our proposed metric, 
reconstruction loss (RL), aggregates performance using the 
following equation

RL
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such that the weights satisfy the condition

 Xw w wr

+ + =γ 1
 (5)

We are using weights w w wrX and, ,γ  to allow the trade-
offs between the reconstruction properties to be investigated 
(R3). For example, in our DSS, we prefer to under-estimate 
effective dose (ED) exposure for safety so we assign higher 
weighting for median and skewness ( . )w w

X = =γ 0 4  recon-
struction compared to IQR ( . )wr = 0 2 . Similar to hyperpa-
rameter grid searches, we consider a subset of weight tuple 
combinations (e.g. (1,0,0), (0.8,0.2,0), (0.6, 0.2, 0.2)) where 
each weight goes between 0 (not important to reconstruction 
performance) to 1 (most important to imputation perfor-
mance) by a step set size of 0.2.28,29 Unlike hyperparameter 
grid searches, we restrict the tuple combinations to sum to 
one (equation (5)) to evaluate the trade-offs between the met-
rics. Since values of all three target and model metrics can be 
negative, for equation (4), we need to adjust the sign of the 
three metrics before computing RL. Note that we are inter-
ested in the difference between the model and target distri-
bution metrics, not each metric’s absolute value. Therefore, 
to make all metric values positive, we add the absolute value 
of the smallest number of each pair (model, target) to the 
three metrics: median, skewness, and IQR, when either the 
model or target values for each metric are negative. A RL = 0 
and RL = 1 represents the best and worst reconstruction per-
formance, respectively.

Figure 1 extends the existing imputation evaluation meth-
odology with our proposed RL metric. First, we impute the 
missing data introduced into the dataset using the candidate 
imputation models. Second, we calculate the dataset proper-
ties (mean, skewness, and IQR) for the target and imputed 
distributions and perform data shifting to remove negative 
values, if necessary. Third, we calculate and plot the average 
RL metric, and the model with the best average RL value for 
the missing data rate is used for imputation. We can also do a 
parameter sweep of w w wrX and, ,γ  values to investigate the 
trade-offs between the imputation model’s median, skew-
ness, and IQR reconstruction performances.

Results

In this section, we present the comparative analysis of quali-
tative, predictive accuracy, statistical distance, descriptive 
statistics, and our proposed RL metric to assess two deep 
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learning imputation models (MIDAS and GAIN) and a 
regression-based imputation model (PMM) on two tabular 
datasets. MIDAS and GAIN represent non-generative and 
generative deep learning imputation models, respectively. 
We selected PMM as our benchmark model from the statis-
tical literature when evaluating the deep learning models’ 
performance.

Data collection and processing

We evaluated the imputation models (PMM, MIDAS, and 
GAIN) on two tabular datasets: (1) MI and (2) Credit.30 The 
MI dataset was collected in a retrospective study we per-
formed of all medical scans from 1200 patients who received 
at least one low-dose MI scan (e.g. CT and XR) from four 
hospitals in Canada between May 2006 and May 2017. The 
patients were a stratified random sample representative of 
the target population in terms of gender, age of first scan, 
and body part scanned. The patients also had above-average 
cumulative ED31 exposure. ED is a metric to estimate the 
uniform whole-body dose that has the same nominal radia-
tion risk compared to the non-uniform exposure from MI.31 
Table 2 describes the characteristics of the MI dataset. Each 
patient’s medical history contains demographic, health, and 
imaging records. Demographic data include the patient’s 
age, sex, year, and month of the medical visit. Health records 
include diagnostic codes in the International Statistical 
Classification of Diseases and Related Health Problems 
(ICD-10-CA) format. Imaging records consist of modality 
(CT or XR) and body part scan (e.g. head) in the DICOM for-
mat. The ED exposure from MI is estimated using the meth-
odology from Boursalie et al.12 All continuous features are 
normalized using min–max normalization. Our study was 
approved by the Hamilton Integrated Research Ethics Board.

The Credit dataset30 contains 30,000 banking records from 
clients at a Taiwanese bank between April and September 
2005. Table 2 describes the characteristics of 29,206 clients 
who received or paid a bill between April and September 
2005. Each client’s banking information includes the client’s 

sex, credit limit, education level, marital status, monthly 
bills, payments, and repayment status (bill paid on time 
or the amount of months payment was late). All continu-
ous features are normalized using min–max normalization. 
Additional information on the Credit dataset is available at 
Yeh and Lien.30

The MI and Credit datasets were selected for this study 
because they have continuous and discrete features with no 
missing data. The Credit dataset was also used to evaluate 
GAIN.4 Unlike previous studies,4,13 to be consistent with the 
evaluation methodology,21 we selected one target feature 
for each dataset to impute. We imputed ED fMI ED,  (MI) and 
age fCr A,  (Credit). We selected ED and age for imputation 
because they are continuous features with non-normal dis-
tributions. There is also a relationship between the target and 
the remaining features to build the imputation model. For 
example, the ED exposure is related to the scan year as older 
scanners had higher exposure rates.

fMI ED,  and fCr A,  had non-normal distributions. As a result, 
we evaluated the imputation models using the original and 
quantile transform (QT32) as a preprocessing step. QT maps 
each quantile of the non-normal feature distribution to the 
corresponding quantile of the normal distribution.33 Using 
QT, target features with non-normal distributions can be 
analyzed using statistical tests (e.g. parametric) and machine 
learning models (e.g. Gaussian Naive Bayes) that require 
normal feature distributions. Machine learning models that 
do not require target features with normal distributions have 
also shown improved performance using QT features.34

Evaluation procedure

We assessed the performance of PMM, MIDAS, and GAIN 
to impute missing data in the MI and Credit datasets. We 
introduced increasing proportions of data MCAR (2%, 4%, 
8%, 10%, 20%, 40%, and 80%) in the target features (Table 2) 
after preprocessing. We validated (Supplemental Appendix 
A) that our missing data mechanism (MCAR) did not change 
the statistical properties of the train and test sets, so no data 

Algorithm
Input: Data , Number of imputations runs R, Imputation models 1… , Missing data percentage (P)
Output: RL, Selected imputation model 
1: � Select data subset from with no missing values;
2: for i:= 1 to R do
3:       (1), (0) � Randomly split into observed (1-P data) and missing (P data) subsets;
4:     for n:=1 to M do 
5:                 �Impute missing data ( (0)) using the imputation model and (1);
6:                 Calculate X̃, γ, and for missing ( (0)) and imputed ( ) distributions;
7: for each X̃, γ, and tuple (Eq. 5) do
8:                       Calculate RL (Eq. 4) using X̃, γ, , X̃, γ, and ;

9:                 end for each
10: end for
11: end for
12: Plot the average RL for each imputation model and X̃, γ, combination;
13: return Imputation model with the best average RL for selected X̃, , ;

Figure 1. Proposed imputation evaluation methodology.
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leakage (bias) occurred by preprocessing our dataset before 
introducing missing data. We selected the data proportions 
of MCAR to be consistent with previous studies.4,13,21 We 
imputed the missing data at each proportion using PMM, 
MIDAS, and GAIN. We took the mean results ( )m = 5  from 
the multiple imputation models (MIDAS and PMM) to com-
pare performance with GAIN. Previous studies14 have dem-
onstrated that the imputation results do not significantly 
change when m > 5 . We then repeated the evaluation five 
times. Each time we removed data randomly. We investi-
gated the imputation models performances using the impu-
tation evaluation methodology proposed in Marshall et al.21 
with the following evaluation metrics: Histogram (bench-
mark), RMSE, CDT, JSDist, Median, Skewness, and IQR. 
We also investigated the imputation models’ performances 
using our proposed evaluation methodology (Figure 1) and 
RL metric. The histogram results were ranked based on a 
visual inspection of the mean and distribution reconstruction 
across all runs. The RMSE, CDT, JSDist, Median, Skewness, 
IQR, and RL results were ranked based on a visual inspec-
tion of the mean and standard deviations across all runs. The 
evaluation metrics represent qualitative (histogram), predic-
tive accuracy (RMSE), statistical distance (CDT and JSDist), 
descriptive (median, skewness, IQR), and our aggregated RL 
metric. We plotted the qualitative performance (histogram) 
for each run. In addition, we plotted the average RMSE, 
CDT, JSDist, median, skewness, IQR, and RL performance 
over the five runs.

All experiments were conducted on a 64-bit Windows 7 
laptop with a 2.8 GHz Intel Xeon CPU and 16 GB RAM. The 
default PMM5 architecture (50 epochs) was implemented 
using the open-source code. For MIDAS13 and GAIN,4 the 
default architectures (TensorFlow), loss functions (RMSE 
and cross-entropy), epochs (MIDAS: 20, GAIN: 10,000), opti-
mizers (MIDAS and GAIN: Adam Optimizer), and learn-
ing rates (MIDAS: 1, GAIN: 1.5) were implemented using 
their open-source codes. Interested readers are referred to 
Lall and Robinson13 and Yoon et al.4 for full implementation 
details for MIDAS and GAIN, respectively.

Comparative analysis

Figure 2 shows a subset of the qualitative histogram results. 
fMI ED,  and fCr A,  had non-normal distributions. The No-QT-
PMM, No-QT-MIDAS, and No-QT-GAIN models did not 
capture the distribution of fMI ED,  and fCr A, . The imputed 
values from the non-generative models (PMM and MIDAS) 
had a more normal distribution centered on the average 
value of the target features. On the contrary, the generative 
model (GAIN) suffered from mode collapse.4 Mode collapse 
occurs when the GAIN discriminator does not distinguish 
well between the actual and imputed data. As a result, the 
GAIN generator learns to fool the discriminator by gener-
ating modes of data that are not representative of the fea-
ture distribution. Our results show that PMM and MIDAS 
had improved performance when fMI ED,  and fCr A,  were 

Table 2. Medical imaging and Credit dataset characteristics.

Dataset Instances Years Target (range) Features Range

Medical 
Imaging

2565 (4 hospitals, 
1200 patients)

May 2006–May 
2007

Effective dose 
(C, 1.22–43.6 
mSv)

1. Age of first scan (C) 1–91 years
2. Year of scan (C) 2008–2016
3. Month of scan (C) Jan (1) to Dec (12)
4. Sex (D) 0 (male), 1 (female)
5–26. ICD-10 Chapters 1–21 diagnostic history (D) 0 (no previous diagnosis), 

1 (previous diagnosis)
27–48. Months since last ICD-10 Chapters 1–21 
diagnosis (C)

0–96

Credit30 29,206 (1 bank, 
29,206 clients)

April 2005 to 
September 2005

Age (C, 
21–79 years)

1. Sex (D) 0 (male), 1 (female)
2. Credit limit (C) NT$10,000–$100,000
3–6. Education (D): High school/university/graduate/other 0 (no), 1 (yes)
7–10. Marital status (D): Single/married/divorced/other 0 (no), 1 (yes)
Bills (2005):  
11. April (C) - NT$165,480 to $964,511
12. May (C) - NT$69,777 to $983,931
13. June (C) - NT$157,264 to $1.6M
14. July (C) - NT$170,000 to $891,586
15. Aug (C) - NT$81,334 to $927,171
16. September (C) - NT$339,603 to $961,664
Payments (2005):  
17. April (C) NT$0–$873,552
18. May (C) NT$0–$1,684,259
19. June (C) NT$0–$896,040
20. July (C) NT$0–$621,000
21. Aug (C) NT$0–$426,529
22. September (C) NT$0–$528,666
23–28. April–September 2005 payment delay? (D) 0 (no), 1 (yes)

C: continuous and D: discrete features.
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Figure 2. Histogram of fMI ED,  (top; bin width = 2 mSv) and fCr A,  (bottom; bin width = 2 years) imputation at 2% and 80% missing data over two runs (rows). (A color 
version of this figure is available in the online journal.)
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represented using a QT. For PMM and MIDAS, the imputa-
tion models better captured the distributions of fMI ED,  and 
fCr A, . The QT-GAIN models did not capture the mode or 

distribution of the data.
The imputation models’ RMSE performances imputing 

fMI ED,  are shown in Figure 3(a). The No-QT-MIDAS and 
QT-MIDAS model had the best and second-best RMSE per-
formance across all missing data rates, respectively. The 
No-QT-PMM and QT-PMM models performed third best 
overall. The No-QT-GAIN model had similar performance 
to the MIDAS and PMM models for 2–40% missing rates. 
However, the No-QT-GAIN model’s mode collapse was 
poorly detected using RMSE. The No-QT-GAIN models 
captured the fMI ED,  mean (Figure 2), which minimized their 
RMSE. The QT-GAIN model captured the maximum fMI ED,  
values, which resulted in the worst RMSE performance. The 
imputation models’ RMSE performances were consistent on 
the Credit imputation (Figure 3(b)) except for the No-QT-
MIDAS, QT-MIDAS, and QT-PMM models, which all had 
similar performances. Interestingly, the imputation mod-
els’ RMSE performances did not agree with the qualitative 
results (Figure 2). In addition, the improved distributional 
performance of the QT models was not captured using 
RMSE.

Figure 3(c) shows the CDT performances for the fMI ED,  
imputation models. The No-QT-MIDAS, No-QT-PMM, and 
QT-PMM models had the best CDT performances. Next, the 
QT-MIDAS had the second-best CDT performance. Then, 
the No-QT-GAIN and QT-GAIN models had the worst CDT 
performance. Similar to RMSE, the GAIN model’s mode col-
lapse was poorly detected using CDT. CDT compares the 
mean and standard deviations of the actual and imputed 
data (equation (2)). As a result, the GAIN models had com-
petitive and stable CDT performance despite not capturing 
the fMI ED,  distribution. The fCr A,  imputation had similar 
CDT performance (Figure 3(d)) across all models. The fCr A,  
GAIN imputation models also had the most unstable CDT 
results. Like RMSE, the CDT results for both datasets did not 
agree with the qualitative results (Figure 2). The improved 
distributional performance of the QT imputation models 
was also not captured using CDT.

The imputation models’ JSDist performances imput-
ing fMI ED,  are shown in Figure 3(e). The No-QT-PMM and 
QT-PMM models had the best JSDist performance for fMI ED,  
imputation. Next, the QT-MIDAS model had the second-
best JSDist performance. Then, the No-QT-MIDAS, No-QT-
GAIN, and QT-GAIN models had the worst and most 
unstable JSDist performance. Unlike RMSE and CDT, the 
JSDist metric detected mode collapse in the GAIN models. 
The GAIN model’s capture of the mean fMI ED,  values did 
not achieve competitive JSDist performance. On the Credit 
dataset (Figure 3(f)), the QT-PMM model had the best JSDist 
performance while the No-QT-PMM model performed sec-
ond best. The No-QT-MIDAS, QT-MIDAS, and QT-GAIN 
models had the worst JSDist performance. Unlike the predic-
tive accuracy metrics, the JSDist metrics for the fMI ED,  and 
fCr A,  imputation models agreed with the qualitative results. 

JSDist is a quantitative implementation of the qualitative 
comparison (Figure 2), so the agreement between the evalua-
tion metrics is understandable. The improved distributional 

performance of the QT models was also captured by the 
JSDist metric.

The median metric results of the fMI ED,  imputation mod-
els are shown in Figure 4(a). The QT-MIDAS and QT-PMM 
models had the best and second-best median reconstruction 
for fMI ED, , respectively. The No-QT-MIDAS, No-QT-PMM, 
and GAIN models had the worst median reconstruction 
performances. The GAIN models’ performance was also 
the most unstable as mode collapse enabled the models to 
achieve competitive performance in some runs. However, 
the median metric was unable to identify mode collapse in 
the GAIN models. On the Credit dataset (Figure 4(b)), the 
No-QT-PMM, QT-PMM, QT-MIDAS, and No-QT-MIDAS 
models had similar median reconstruction performance. The 
No-QT-GAIN and QT-GAIN models had the worst perfor-
mance on the credit dataset.

The skewness metric results of the fMI ED,  imputation 
models are shown in Figure 4(c). The QT-MIDAS model had 
the best skewness reconstruction for fMI ED, .  The No-QT-
PMM and QT-PMM models had the second-best skewness 
performances. The No-QT-MIDAS, No-QT-GAIN, and 
QT-GAIN models had the worst skewness performances. 
The mode collapse also resulted in poor and unstable skew-
ness reconstruction performance for the No-QT-GAIN and 
QT-GAIN models. On the Credit dataset (Figure 4(d)), the 
No-QT-PMM, QT-PMM, No-QT-MIDAS, and QT-MIDAS 
models had similar skewness reconstruction performances. 
The No-QT-GAIN and QT-GAIN models had the worst 
performances on the Credit dataset.

The IQR metric results of the fMI ED,  imputation models 
are shown in Figure 4(e). The No-QT-MIDAS model had 
the best IQR reconstruction for fMI ED, . Interestingly, the 
remaining models (QT-MIDAS, No-QT-PMM, QT-PMM, 
No-QT-GAIN, and QT-GAIN) all failed to capture the IQR 
reconstruction. The poor IQR reconstruction performance 
was not captured by the predictive accuracy and statisti-
cal distance metrics. On the credit dataset (Figure 4(f)), the 
No-QT-MIDAS and QT-MIDAS models had the best IQR 
reconstruction performance, and the No-QT-PMM and 
QT-PMM models performed second best. The No-QT-GAIN 
and QT-GAIN models had the worst performance on the 
credit dataset.

Figure 5 shows a subset of the average RL performance 
for the fMI ED,  imputation models for 80% missing data 
over five runs. Overall, QT-MIDAS (Figures 5(a) and 6(a)) 
and QT-PMM models (Figures 5(c) and 6(c)) achieved 
the highest RL performance over the entire range of 
w w wrX and, ,γ  values for fMI ED,  imputation. No-QT-PMM 
(Figures 5(d) and 6(d)) had the second-best RL perfor-
mance across all weight combinations. No-QT-MIDAS 
(Figures 5(b) and 6(b)), No-QT-GAIN (Figures 5(e) and (f)), 
and QT-GAIN (Figure 6(e) and (f)) models had the worst 
RL performance. No-QT-MIDAS poor RL performance 
captures the model’s poor mean and skewness reconstruc-
tion performance. Similarly, the poor RL performances 
for the No-QT-GAIN and QT-GAIN models capture the 
model’s mode collapse. On the Credit dataset (Figure 6), 
the No-QT-MIDAS and QT-MIDAS models had the best 
performance while the No-QT-PMM and QT-PMM mod-
els had the second-best performance. The RL metric shows 
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Figure 3. RMSE (a and b), CDT (c and d), and JSDist (e and f) evaluation results for fMI ED,  (left) and fCr A,  (right) at increasing missing data rates. Lines and error 
bars are average performance over five runs. (A color version of this figure is available in the online journal.)
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Figure 4. Median (a and b), skewness (c and d), and IQR (e and f) descriptive statistics results for fMI ED,  (left) and fCr A,  (right) at increasing missing data rates. Lines 
and error bars are average performance over five runs. (A color version of this figure is available in the online journal.)
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the trade-off between improved median and skewness 
reconstruction (MIDAS) and IQR reconstruction (PMM 
models). The No-QT-GAIN and QT-GAIN mode collapse 
was also captured by the RL metric.

Discussion

Table 3 ranks each imputation model’s performance based on 
the qualitative, predictive accuracy, and statistical distance 

Figure 5. RL values for QT MIDAS (a), No-QT MIDAS (b), QT PMM (c), No-QT PMM (d), QT GAIN (e), and No-QT GAIN (f) imputation models for 80% missing fMI ED,  
data. The axes show the w w wrx and, ,γ  values. The color of each circle shows the average RL value for the w w wrx and, ,γ  combination (RL = 0 and RL = 1 represents 
best and worst reconstructive performance, respectively). (A color version of this figure is available in the online journal.)
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metrics for each dataset we investigated. The qualitative 
results were ranked based on a visual inspection of the mean 
and distribution reconstruction (Figure 2) across all runs. 
Based on the histogram (benchmark) results, the QT-PMM 

would be selected for imputation in both datasets across all 
missing data rates. However, the predictive accuracy metrics 
did not agree with the qualitative and statistical distance 
results. The No-QT-MIDAS would be selected for the MI 

Figure 6. RL values for QT MIDAS (a), No-QT MIDAS (b), QT PMM (c), No-QT PMM (d), QT GAIN (e), and No-QT GAIN (f) imputation models for 80% missing 
fCr A,  data. The axes show the w w wrX and, ,  values. The color of each circle shows the average RL value for the w w wrX and, ,γ  combination (RL = 0 and RL = 1 
represents best and worst reconstructive performance, respectively). (A color version of this figure is available in the online journal.)
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dataset and the No-QT-PMM, No-QT-MIDAS, or QT-MIDAS 
models would be selected for the Credit dataset based on 
RMSE. Using CDT, the No-QT-PMM, QT-PMM, or No-QT-
MIDAS model would be selected for the MI dataset and 
the No-QT-PMM, QT-PMM, No-QT-MIDAS, or QT-MIDAS 
would be selected for the Credit dataset. The JSDist ranking 
agreed with the histogram results. The qualitative results 
(Figure 2) provide an initial check of the imputation mod-
el’s performance7 and provide context to the quantitative 
metrics. For example, the qualitative results demonstrate 
that the poor performance of the GAIN models is due to 
mode collapse. The qualitative results can also be reviewed 
by an expert to evaluate imputation models with similar 
performance. For example, a medical expert could review 
the qualitative results of the No-QT-PMM and QT-PMM 
models (Figure 3(e)). Our results demonstrate that the pre-
dictive accuracy metrics evaluate the imputation model’s 
ability to capture the mean of the target distributions. For 
example, RMSE directly compares the imputed estimates 
with the actual values rather than comparing the distribu-
tions (equation (1)). Similarly, CDT compares the means and 
standard deviations of the imputed and actual distributions 
(equation (2)). Interestingly, the imputation models that gen-
erate more normal distributions (MIDAS and no-QT models) 
minimized their RMSE and CDT (Figure 3(a) to (d)) without 
capturing the distribution of the target features. In fact, the 
PMM models that attempted to capture the distribution of 
the target features (Figure 2) had poorer RMSE and CDT 
performance (Figure 3(a) to (d)). In addition, the GAIN mod-
els demonstrate how competitive RMSE and CDT results 
(Figure 3(a) to (d)) can be achieved by imputing a single 
value due to mode collapse. Our results demonstrate how 
imputation models can achieve good predictive accuracy 
performance (Figure 3) without capturing the feature’s dis-
tribution (Figure 2). The φ -divergence metric (JSDist) best 
assessed the imputation model’s performance. Unlike pre-
dictive accuracy metrics, JSDist (equation (3)) compares the 
target and imputed distributions rather than comparing 
imputed instances directly with their actual values. In our 
study, the target features had a non-normal distribution. As 
a result, an imputation model that generates a more normal 
distribution (GAIN and no-QT models) will diverge from the 

target feature distribution (Figure 2). In addition, an impu-
tation model that captures the mean or mode of the model 
(Figure 2) results in poor JSDist (Figure 3(e) to (f)) perfor-
mance despite competitive RMSE and CDT (Figure 3(a) to 
(d)) results. Divergence metrics have been used to evaluate 
generative deep learning models for image generation.19 Our 
results demonstrate that φ -divergence metrics can also be 
used to evaluate deep learning imputation models.

The descriptive statistics assessed different characteristics 
of the imputation model’s performance (median, skewness, 
and IQR). Interestingly, the deep learning–based model 
(QT MIDAS) competitive reconstruction performance was 
not captured when evaluating the models using the RMSE, 
CDT, and JSDist metrics. Our results demonstrate that pre-
vious studies that have evaluated deep learning imputation 
using predictive accuracy metrics4,13 may not capture the 
overall performance of their models. However, our find-
ings also suggest that the performance metric should be 
selected based on the dataset size, distribution of features, 
and proportion of missing data. While descriptive statistic 
metrics provided us insights into the imputation model’s 
behavior on the ED dataset, the metrics were not as sensitive 
in evaluating imputation performance on the Credit dataset 
(Figure 4). Overall, our study demonstrated that qualita-
tive, predictive accuracy, statistical distance, and descriptive 
statistics investigate different properties of reconstruction 
performance, and there is a need to aggregate performance 
between these metrics.

Our proposed evaluation methodology (Figure 1) suc-
cessfully ranked the performance of the imputation models. 
Unlike the existing methodology (section “Materials and 
methods”), our methodology considered multiple aspects of 
the imputation model’s reconstruction performance (mean, 
skewness, and IQR). In addition, our methodology provides 
a mechanism for users to study the trade-offs between the 
reconstruction criteria. For example, the best balance between 
median, skewness, and IQR reconstruction was achieved 
by the MIDAS model. Unlike RMSE, CDT, and JSDist, our 
methodology did not penalize the MIDAS and PMM models 
for attempting to capture the distribution of the target fea-
tures at the expense of mean and skewness reconstruction. 
Our methodology also provides a mechanism to incorporate 

Table 3. Imputation models’ ranked performances (1 best, 4 worst) based on the evaluation metrics.

Medical imaging (ED) Credit (age)

 PMM MIDAS GAIN PMM MIDAS GAIN

 No-QT QT No-QT QT No-QT QT No-QT QT No-QT QT No-QT QT

Histogram 1 1 3 2 3 3 1 1 2 2 3 3
RMSE 3 3 1 2 3 4 1 2 1 1 3 3
CDT 1 1 1 2 3 3 1 1 1 1 2 2
JSDist 1 1 3 2 3 3 2 1 3 3 4 4
Median 3 2 3 1 4 4 1 1 1 1 2 2
Skewness 2 2 3 1 4 4 1 1 1 1 2 2
IQR 2 2 2 1 3 3 2 2 1 1 3 3
RL 2 1 3 1 3 3 2 2 1 1 3 3

ED: effective dose; PMM: predictive mean matching; MIDAS: Multiple Imputation with Denoising Autoencoders; GAIN: Generative Adversarial Imputation Nets; QT: 
quantile transform; RMSE: root mean square error; CDT: Cohen’s Distance Test; IQR: interquartile range; RL: reconstruction loss.
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expert opinion when selecting an imputation model beyond 
qualitative analysis.

In the statistical imputation literature, researchers impute 
datasets using multiple methods and investigate their impact 
on the downstream predictive model. Our proposed evalua-
tion methodology provides researchers with a quantitative 
method to select the imputation models for further study. 
For example, we can investigate how the downstream deep 
learning model’s performance changes when imputing data 
using GAIN (mean imputation), PMM (IQR imputation), and 
MIDAS (median, skewness, and IQR imputation) models.

RL can be used to evaluate the imputation model’s 
performance on normal and non-normal target distribu-
tions. However, the dataset properties may determine the 
suitability of the evaluation metrics to assess the imputa-
tion models. For example, the statistical distance metric 
(JSDist) may better capture the difference between the 
target and imputed distributions for non-normal distribu-
tions compared to predictive accuracy metrics. Similar to 
statistical tests,5 the choice of metric may depend on the 
dataset size. In our study, the metrics had similar perfor-
mances (Figures 3 to 6) between datasets with different 
sizes (Table 2).

Our study exhibits some limitations. First, we investi-
gated the imputation model’s performance on specific fea-
tures (ED and age). In addition, data MAR and MNAR were 
not investigated. Finally, we investigated the default model 
architectures. Improved model architecture and training 
could impact performance evaluation.

Related work

An important component in deep learning is evaluating per-
formance. Previous studies have evaluated various properties 
of the deep learning models’ performances such as accuracy, 
computational,35 robustness,36 privacy,37 ethical,38 and trust.39 
Increasingly, deep learning models are evaluated using mul-
tiple performance metrics.35 Furthermore, benchmarks40 are 
being developed to evaluate new models with prior work 
using open-source datasets (e.g. ImageNet41). There is also 
a growing body of literature surveying the strengths and 
limitations of evaluation metrics for deep learning19,42,43 to 
assist researchers and developers to select their evaluation 
metrics. For example, Borji19,44 and Thompson et al.43 have 
surveyed evaluation metrics to assess GANs image gener-
ation and graph generative model (GGM) performances, 
respectively. Borji19,44 demonstrated how qualitative and 
quantitative evaluation metrics assessed various aspects of 
the deep learning model’s image generation performance. 
Borji recommended using multiple metrics to assess various 
elements of the GAN’s performance. Thompson et al.43 per-
formed a comparative analysis of evaluation metrics to rank 
the GGM’s fidelity, diversity, sample efficiency, and compu-
tational performance. However, the existing surveys did not 
investigate evaluation metrics to assess deep learning–based 
imputation models on heterogeneous datasets.

In statistics, there is a large body of surveys on metrics 
that can be used to evaluate imputation models. For exam-
ple, Deza and Deza45 encyclopedia of distances provides 
an overview of available distance metrics for comparing 
distributions. Previous studies7,19 also provide guidelines 

for researchers to select their metrics to evaluate statistical 
imputation models. Nguyen et al.7 reviewed evaluation met-
rics (qualitative, predictive accuracy metrics, and posterior 
predictive checking) to assess imputation models. Like Borji, 
Nguyen et al. recommended using different metrics to assess 
various elements of imputation models.

Despite advances in the deep learning and statistical liter-
ature, existing deep learning imputation models (MIDAS,13 
GAIN,4 and VAE3) have been assessed using RMSE, a pre-
dictive accuracy metric. The studies showed the deep learn-
ing imputation models had competitive RMSE performance 
compared to statistical imputation models. However, deep 
learning imputation models can impute missing data in mul-
tiple features at once. As a result, Lall and Robinson13 and 
Yoon et al.4 assessed the deep learning imputation model’s 
aggregate performance using one metric (RMSE) across all 
features with missing data. However, there are scenarios 
where specific features need to be imputed. For example, 
we need to impute a target feature (ED) to develop our DSS 
as the remaining features in our dataset are complete. The 
deep learning imputation model’s performance for differ-
ent reconstruction properties has not been investigated. In 
addition, the deep learning imputation model’s performance 
using qualitative and quantitative metrics has not been stud-
ied. In this article, we compared two deep learning imputa-
tion models (DAE and GAN) using qualitative, predictive 
accuracy, and statistical distance metrics on two tabular 
datasets. We also proposed and evaluated extensions to the 
existing evaluation methodology to assess the performance 
of deep learning–based imputation models.

Conclusions

The existing evaluation methodology commonly used to 
assess deep learning–based imputation models lacks a mech-
anism to evaluate and investigate multiple aspects of the 
model’s reconstruction performance. To address this chal-
lenge, we proposed an evaluation methodology and an RL 
metric to assess deep learning–based imputation models. 
Our methodology ranks imputation models by their per-
formance across multiple reconstruction properties such as 
median, skewness, and IQR. Our methodology also provides 
researchers with a mechanism to evaluate the trade-offs 
between reconstruction properties. We used our evaluation 
methodology to assess two deep learning imputation mod-
els on two tabular datasets. We also described the strengths 
and challenges of using evaluation metrics to assess deep 
learning–based imputation models.

Given these results, we are extending our proposed impu-
tation evaluation methodology to rank the deep learning 
model’s imputation performance across multiple features 
with missing data. In addition, we will investigate how 
deep learning imputations perform for multiple features 
compared to statistical imputation models. Finally, we are 
investigating methods to improve visualizing the trade-offs 
between imputation performance metrics.
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