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ABSTRACT: Solar-driven coupling of water oxidation
with CO2 reduction sustains life on our planet and is of
high priority in contemporary energy research. Here, we
report a photoelectrochemical tandem device that
performs photocatalytic reduction of CO2 to formate.
We employ a semi-artificial design, which wires a W-
dependent formate dehydrogenase (FDH) cathode to a
photoanode containing the photosynthetic water oxida-
tion enzyme, Photosystem II, via a synthetic dye with
complementary light absorption. From a biological
perspective, the system achieves a metabolically inacces-
sible pathway of light-driven CO2 fixation to formate.
From a synthetic point of view, it represents a proof-of-
principle system utilizing precious-metal-free catalysts for
selective CO2-to-formate conversion using water as an
electron donor. This hybrid platform demonstrates the
translatability and versatility of coupling abiotic and biotic
components to create challenging models for solar fuel
and chemical synthesis.

In the thylakoid membrane of plants, light-driven water
oxidation in the photosynthetic Z-scheme is coupled to

CO2 fixation for sugar synthesis via the dark Calvin−Benson−
Bassham (CBB) cycle (eq 1).1,2 Although this solar-energy-

storing reaction is one of the most fundamental processes in
biology and essential for life, it also exemplifies the
inefficiencies of solar-to-fuel conversion.3 For example, Photo-
system II (PSII) and Photosystem I (PSI) are non-
complementary light absorbers, which limits light harvesting
efficiency. Ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO) is responsible for CO2 fixation but has low
turnover rates (1−10 s−1), thereby creating a significant kinetic
bottleneck. RuBisCO also reacts with O2 to produce 2-
phosphoglycolate, which must be recycled in energy-demand-
ing, CO2-evolving photorespiration.

4,5 The CBB cycle involves

significant adenosine triphosphate (ATP) consumption, which
leads to a lower biomass production efficiency compared to the
prokaryotic reductive acetyl-coenzyme A (rAcCoA) pathway.6

This alternative, light-independent route to CO2 fixation uses
the energy vector hydrogen as electron donor to reduce two
CO2 molecules to acetate in a linear sequence of reaction
steps.7

Addressing the limitations of biological carbon fixation
presents several challenges,8−14 leading research toward in vitro
(but light-independent) carbon fixation pathways.15 As a bio-
inspired alternative, artificial photosynthesis aspires to couple
solar-light-driven water oxidation with CO2 reduction to
chemical fuels at higher efficiency than natural systems.16

However, artificial photosynthetic carbon fixation is currently
not economically feasible due to a lack of efficient, selective, or
inexpensive catalysts and light absorbers.17

One of the entry points of CO2 into the rAcCoA pathway is
its conversion to formate before transfer to tetrahydrofolate
(the second entry point involves its reduction to CO by carbon
monoxide dehydrogenase/AcCoA synthase).7 Coupling this
process to light-driven water oxidation is a compelling step
toward creating an efficient, artificial photosynthetic carbon
fixation pathway. Formate is also a stable intermediate between
CO2 and methanol/methane, a hydrogen carrier, and a viable
fuel itself.18,19 Semi-artificial photosynthesis, in which catalyti-
cally efficient redox enzymes are interfaced with synthetic
materials, offers a possibility to couple this key entry point of
the rAcCoA pathway to light-driven CO2 reduction and
bypasses the energy-demanding and inefficient use of ATP.
Mo- and W-dependent formate dehydrogenases (FDHs) are

enzymes capable of interconverting CO2 and formate.20−28

When adsorbed on an electrode, FDHs from Syntrophobacter
fumaroxidans21 and Escherichia coli24,28 have been shown to
perform reversible electrocatalysis with high efficiency through
fast interfacial electron transfer. The activity of a Mo-FDH
from E. coli has been harnessed in fuel cell devices, in which it
was immobilized in cobaltocene- and viologen-functionalized
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redox polymers.29,30 Electrochemical CO2 reduction using a
W-FDH has been reported in mediated31,32 and unmediated
systems.27 These FDHs contrast with metal-independent
FDHs, which reduce CO2 using nicotinamide adenine
dinucleotide (NADH), an unstable, expensive, and diffusive
cofactor with little driving force.33−42 Metal-independent
FDHs have been coupled to molecular,43−46 biological,47,48

and solid-state38,41 visible-light-absorbers. In addition to the
limitations of NADH utilization, these systems suffer from low
selectivity and rely on sacrificial electron donors.
Here, we report a semi-artificial photoelectrochemical

(PEC) tandem cell that wires the enzymes PSII and FDH to
perform light-driven CO2 conversion to formate using water as
an electron donor (eq 2). First, we study the CO2 reduction

activity of W-FDH from Desulfovibrio vulgaris49 adsorbed on a
hierarchically structured inverse opal titanium dioxide (IO-
TiO2) scaffold (IO-TiO2|FDH). This IO-TiO2|FDH cathode is
then wired to a recently reported PSII-based dye-sensitized
photoanode, IO-TiO2|dpp|POs-PSII,

50 which combines isolated
PSII from Thermosynechococcus elongatus, dpp (a phosphonated
diketopyrrolopyrrole dye), and POs [poly(1-vinylimidazole-co-
allylamine)-[Os(bipy)2Cl]Cl redox polymer] to realize a light-
driven rAcCoA pathway by coupling selective CO2 fixation to
light-driven water oxidation (Figure 1).
In this enzyme-catalyzed PEC system, photogenerated

electrons in PSII, which is embedded in the redox polymer
POs, are transferred to the electron acceptor plastoquinone B

(QB, Figure S1). The holes are collected at the oxygen-evolving
complex (OEC), where water is oxidized to liberate protons
and gaseous O2. The Os3+ complex in POs mediates electron
transfer between reduced QB and oxidized dpp+. The
conduction band (CB) of IO-TiO2 receives electrons from
the photoexcited dpp*.50 Electrons are transferred through the
external electrical circuit to the IO-TiO2|FDH cathode and
arrive at the CO2-reducing [WSe]-active site via interfacial
electron transfer from the TiO2 CB to iron−sulfur clusters
(Fe4S4) which connect the FDH active site to its surface.
Hierarchical macro-mesoporous IO-TiO2 electrodes (20 μm

film thickness; geometrical surface area, A = 0.25 cm2) were
assembled on a fluorine tin oxide (FTO)-coated glass substrate
(see Supporting Information).50 An FDH solution (2 μL, 17
μM with 50 mM DL-dithiothreitol, incubated for 10 min) was
drop-cast onto IO-TiO2 to give the IO-TiO2|FDH cathode.
Anaerobic conditions were employed due to possible O2
inhibition of FDH and side reactions of the electrode
components with O2. Protein film voltammetry (PFV) of
IO-TiO2|FDH in a solution of CO2/NaHCO3 (100 mM, pH
6.5, under 1 atm CO2) and KCl (50 mM) demonstrated the
high CO2 reduction activity of the electrode (Figure 2). The
current density (J) of IO-TiO2|FDH was measured as a
function of an applied potential (Eapp) in a three-electrode
configuration. The onset potential for CO2 reduction to
formate was observed close to the thermodynamic potential of
the CO2/HCO2

− couple (−0.36 V vs standard hydrogen
electrode, SHE) at approximately −0.4 V vs SHE, and a
current density of −240 μA cm−2 was reached at −0.6 V vs
SHE.

The IO-TiO2|FDH electrode exhibited good stability,
retaining approximately 83% of its initial activity after
controlled-potential electrolysis (CPE) for 2 h at Eapp = −0.6
vs SHE (Figure 2, inset). The Faradaic efficiency (ηF) of
formate production was determined as (78 ± 8)% (2.22 ± 0.23
μmol cm−2). A voltammogram recorded immediately after the
CPE experiment indicated electrode behavior similar to that
measured before CPE (Figure S2), though with slightly lower,
yet stable, activity. No H2 production was detectable by gas
chromatography (GC) analysis of the cell headspace,
suggesting that the background current was due to charging

ν+ + → + +− +h2CO 2H O 8 2HCO O 2H2 2 2 2 (2)

Figure 1. (a) Schematic representation of the semi-artificial
photosynthetic tandem PEC cell coupling CO2 reduction to water
oxidation. A blend of POs and PSII adsorbed on a dpp-sensitized
photoanode (IO-TiO2|dpp|POs-PSII) is wired to an IO-TiO2|FDH
cathode (species size not drawn to scale). (b) Energy level diagram
showing the electron-transfer pathway between PSII, the redox
polymer (POs), the dye (dpp), the conduction band (CB) of IO-TiO2
electrodes, four [Fe4S4] clusters, and the [WSe]-active site in FDH.
All potentials are reported vs SHE at pH 6.5. Abbreviations: Mn4Ca,
oxygen-evolving complex (OEC); P680, pigment/primary electron
donor; QB, plastoquinone B; [Fe4S4], iron−sulfur clusters; [WSe],
FDH active site.

Figure 2. PFV scans (v = 5 mV s−1) of IO-TiO2 (black trace) and IO-
TiO2|FDH (red traces, arrow indicates scan order). Inset: CPE at Eapp
= −0.6 V vs SHE. Conditions: CO2/NaHCO3 (100 mM), KCl (50
mM), 1 atm CO2, pH = 6.5, T = 25 °C, continuous stirring. The
three-electrode configuration employed a two-compartment cell with
Ag/AgCl (saturated KCl) reference and Pt mesh counter electrodes.
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of the CB of TiO2 (Figure 2).51 The relatively high current
densities of the IO-TiO2|FDH electrode were likely due to
high enzyme loading and effective wiring inside the porous,
hierarchically structured IO-TiO2 scaffold.52,53 Thus, the
cathode proved to be suitable for coupling to PSII-catalyzed
water oxidation in a two-electrode PEC setup.
The activity of the IO-TiO2|dpp|POs-PSII electrode in CO2/

NaHCO3/KCl electrolyte solution was measured by stepped-
potential chronoamperometry under periodic simulated solar
illumination (Figure S3), showing behavior comparable to that
of the recently reported PSII-modified dye-sensitized photo-
anode.50 The photoanode was electrically wired to the IO-
TiO2|FDH cathode via a potentiostat, and the two electrodes
were placed in compartments separated by a glass frit
membrane in a PEC cell (Figure 1).
Stepped-voltage chronoamperometry under periodic illumi-

nation with UV-filtered simulated solar light (AM1.5G;
irradiance Ee = 100 mW cm−2; λ > 420 nm, Figure 3a) was
used to study the system’s performance. Upon irradiation, a
current density of 5.5 ± 0.4 μA cm−2 was observed at zero
applied voltage (Uapp) (Figures S4 and S5). Voltage-

independent steady-state photocurrents (99 ± 4 μA cm−2)
were reached at Uapp > 0.4 V. Control experiments showed that
small background responses were also observed using PSII-free
IO-TiO2|dpp photoanodes (Figure 3, green and black traces)
due to electron transfer from photoexcited dpp to TiO2

without dye regeneration, resulting in photobleaching.50

When FDH was omitted from the system (Figure 3, blue
trace), lower photoresponses were observed than in its
presence, but the current response was higher than those
responses observed in the absence of PSII. This background
current is likely due to high capacitance of the high surface area
IO-TiO2 (charging of TiO2 CB), supported by the cathodic
discharging spikes observed upon switching off the light and
persisting photocurrents in the chronoamperometry measure-
ments with longer irradiation time (Figure S6). Substantial
capacitance currents over a long time scale consistent with
those observed in this study have been previously observed for
porous TiO2 electrodes.

51,54 At lower applied voltages (Uapp <
0.4 V), Faradaic current from CO2 reduction with FDH and
some charging of TiO2 should dominate, whereas at higher
applied voltages (Uapp > 0.5 V), substantial TiO2 CB charging
and possibly electrode degradation (e.g., FTO breakdown)
could become significantly competing processes (Figure S7).
Only a small bias was required to drive the overall reaction

(eq 2). CPE at Uapp = 0.3 V with the IO-TiO2|dpp|POs-PSII||
IO-TiO2|FDH PEC cell under illumination was performed
(Figure 3b). The photocurrent decayed from 92 to 7 μA cm−2

after 1 h irradiation with a half-life time (τ1/2) of ∼8 min
(Figure S8). Prolonged irradiation resulted in an irreversible
drop in photocurrent, most likely due to PSII photo-
degradation.3 Formate was detected (0.185 ± 0.017 μmol
cm−2) with ηF = (70 ± 6)%, but reliable O2 analysis (estimated
0.132 μmol cm−2, 0.01% O2, assuming quantitative ηF) was
prevented by the detection limit of the apparatus. Other
products such as H2 and CO could not be detected in the
cathodic chamber. No products (H2, CO, and formate) were
observed in control experiments omitting FDH at Uapp = 0.3
and 0.6 V (Figures 3b and S7).
In summary, we have demonstrated that the IO-TiO2|dpp|

POs-PSII||IO-TiO2|FDH PEC cell achieves the biologically and
synthetically challenging coupling of solar-driven water
oxidation to selective CO2 reduction with a small additional
supply of energy (applied voltage) under mild conditions. The
semi-artificial architecture employs efficient enzymes and
synthetic components that enable not only complementary
light absorption but also the coupling of unnatural redox
partners, which is challenging in vivo. The PSII-FDH tandem
PEC system reported here demonstrates how semi-artificial
photosynthesis is a translatable and versatile platform, allowing
a variety of electroactive enzymes to be studied electro-
chemically to gain a better understanding of their activity in
vitro. From a biological perspective, this system can be viewed
as an effective model for an engineered light-driven rAcCoA
pathway that bypasses limitations of the natural Z-scheme and
CBB cycle. Further biologically relevant electrochemical
reactions and redox proteins may be coupled using this
approach to introduce a plethora of model systems which
extend solar-driven CO2 reduction to production of value-
added chemicals.

Figure 3. Characterization of two-electrode PEC cell consisting of IO-
TiO2|FDH cathode wired to IO-TiO2|dpp|POs-PSII tandem photo-
anode. (a) Representative stepped-voltage chronoamperometry (0.1
V voltage steps with 30 s dark and 30 s light cycles) of the fully
assembled PEC cell (red trace). Control experiments in the absence
of PSII (green and black traces) and without FDH (blue and black
traces) are also shown. Applied voltage (Uapp) values are shown on
top of the traces. (b) CPE (Uapp = 0.3 V) of the two-electrode PSII-
FDH system (red trace) and a similar system in the absence of FDH
(blue trace). Conditions: CO2/NaHCO3 (100 mM), KCl (50 mM), 1
atm CO2, pH = 6.5, T = 25 °C, continuous stirring. Simulated solar
light source: AM 1.5G filter; Ee = 100 mW cm−2; λ > 420 nm.
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