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Abstract: Due to the increase of the use of yeast derivatives (YDs) in winemaking to improve
the technological and sensory properties in wines, in this work we evaluated the effect of the
post-fermentation application of different yeast derivative products on the physical and chemical
properties and astringency of red wines during two consecutive harvests. A commercial and two
experimental new yeast derivatives were applied at a medium-high dosage (30 g/hL). The addition
of different yeast derivatives in red wine increased the concentration of different polysaccharide
fractions and, therefore, the total polysaccharide content, producing a decrease in the duration
of the wine astringency perception over time. The use of yeast derivatives could produce an
adsorption/clarification and/or protective effect on the phenolic compounds. However, it did not
produce an important modification of the colour parameters. An intensification or a lower decrease
of the most volatile compound groups was produced, but it depended on the YDs and yeast strain
used in fermentation and post-fermentation processes.

Keywords: yeast derivatives; polysaccharides; red wine colour; phenolic compounds; volatile
compounds; astringency

1. Introduction

Yeast derivatives have been studied more and more in recent years due to the positive effects
they can produce in wines during and after alcoholic fermentation. Their use is indicated during the
winemaking process mainly to improve the technological (tartrate and protein stability) and sensorial
characteristics and to remove some undesirable wine compounds [1]. These products have been
proposed for some years as an alternative to traditional ageing via the lees technique, because they
can provide the same benefits while avoiding or reducing some of the disadvantages (the release of
polysaccharides during ageing on lees is too slow) [2].

Regarding the sensory quality of the wine, the improvements are mainly attributed to the
mannoproteins released by the yeast derivatives during wine ageing [1,3–5]. In general, yeast

Molecules 2019, 24, 1478; doi:10.3390/molecules24081478 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-0054-728X
http://www.mdpi.com/1420-3049/24/8/1478?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24081478
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 1478 2 of 17

derivatives are classified into five groups depending on the process used in the manufacture, the
composition, and the degree of purification: inactivated dry yeasts, yeast autolysates, yeast cell walls,
yeast extracts [1], and purified mannoproteins.

Generally, there are few commercial preparations based on yeast derivatives with a high degree
of purification, mainly because it is a rather laborious and expensive process. For this reason, most of
the commercial preparations available on the market for ooenological use are composed of specific
inactivated dry yeast (SIDY), yeast autolysate (YA), or yeast cell walls (CW). SIDYs are products that
are inactivated by different methods (enzymatic or thermal) and then subjected to a drying process.
YAs are obtained after an incubation period of the yeast biomass, with controlled temperature, to
favour the release of their own enzymes from the intracellular content and, subsequently, they are
inactivated and dried. Finally, the CWs are obtained from YAs by a centrifugation process [1].

Generally, for ooenological applications, these yeast derivatives are selected for their particular
characteristics, such as the high content of polysaccharides, mainly mannoproteins or other yeast
compounds such as sterols, amino acids, and peptides. SIDYs are commonly used in winemaking as
protectors during the rehydration of active dry yeast [6] and to improve the alcoholic [7] and malolactic
fermentation [8]. In addition, several studies have described that the mannoproteins released from
yeast derivatives may improve several taste characteristics of red wines such as volume and structure
as well as decrease astringency and bitterness [9–11], and thus they are considered the polysaccharides
from yeasts with the highest ooenological interest. This effect is mainly due to the interaction between
the mannoproteins and the phenolic compounds of the wine, limiting the self-aggregation of the
tannins [12], resulting in more stable polymeric structures that do not interact with the mouth salivary
proteins and, therefore improving the sensory characteristics mentioned above and contributing in
a remarkable way to contribute to wine mouthfeel properties [13]. Recent studies have shown the
ability of YDs to adsorb or interact with the wine phenolic compounds, modifying their sensory
characteristics [14,15]. The interaction between polysaccharides and phenolic compounds can also help
stabilize the colour of wines due to the formation of more stable polymer pigments that can prevent
or reduce the oxidation of wine, as mentioned in several studies [16,17]. Conversely, other studies
conclude that this interaction produces a loss of colour in red wines [4,9,11,18–20].

YDs can also modify the volatility of wine compounds, because they have the capacity to adsorb
some wine volatile compounds [3,21]. On the other hand, the application of these products may induce
an enrichment of new volatile compounds in wine, which are formed during their processing and
could be released into the wines [22].

Astringency is considered a tactile sensation; some authors point out that this phenomenon
could be due to a loss or alteration of oral cavity lubrication [23,24]. According to Bennick (2002) [25],
the proteins secreted by the parotid gland seem to have the greatest capacity to bind to phenolic
compounds. YDs’ polysaccharides could have a lubricating effect and reduce this tactile sensation.
Astringency is one of the most important characteristics that define the quality and persistence of red
wine [26,27]. Astringency is a complex sensory characteristic, which depends on time and is related to
several sensations that can be perceived simultaneously. The time intensity (TI) method has been used
in wine to analyse the bitter and astringent sensations caused by phenols [28], the interaction between
astringency and sweetness [29], and astringency characterization in commercial wines [30].

Therefore, the objective of this work was to evaluate the effect of the application of different YDs:
one commercial SIDY and two experimental new YDs (YA and CW) on the physical and chemical
properties and astringency of red wines previously fermented with two different yeasts, which produce
different contents of polysaccharides during the fermentation process. The comparative study of
polysaccharide release during the fermentation carried out by these yeasts has already been evaluated
in another study carried out by our group [31]. For this reason, it is not the objective of this study to
compare the two types of yeast.
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2. Results and Discussion

2.1. Effect of YDs on the Polysaccharide Content

Figure 1 shows the concentration of total polysaccharides and of the different fractions identified
and quantified, according to their molecular weight, after the treatment period (2MT) and three
months of bottle storage (3MB) in the 2015 harvest. Three different polysaccharide fractions were
identified and quantified, and were classified according to their molecular weight: F1 corresponds
with the polysaccharide fraction with a high molecular weight (1200-110 kDa); F2 corresponds with
the polysaccharide fraction with a medium molecular weight (110-20 kDa); and F3 corresponds with
the polysaccharide fraction with a low molecular weight (20-5 kDa).
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Figure 1. Polysaccharide fractions contents (mg/L ± SD) of the different red wines studied. Columns
with different letters indicate statistically significant differences (p < 0.05) between the different
treatments: AMLF (after malolactic fermentation); 2MT (two months of treatment); 3MB (three months
of bottle storage).

In general, it was observed that wines treated with the different YDs had a higher concentration
of all polysaccharide fractions and total polysaccharides than control wines after the 2MT and 3MB
periods for both wines fermented with Lalvin EC1118® and fermented with Uvaferm HPS® (both
supplied by Lallemand-Sudamérica (Santiago de Chile, Chile). However, in general, insignificant
differences were found between the different YDs studied and only in a few cases the wines treated
with YA have a higher content of polysaccharides than the wines treated with SIDY and CW.

The low molecular weight polysaccharide fraction (F3) was the most abundant fraction in all the
cases studied, revealing that, in general, all the wines treated with YDs had a higher content than the
control wines, and those treated with YA had the highest content.

This effect of the increase of the wine polysaccharides by the addition of YDs, after alcoholic
fermentation, has been reported in other studies carried out in red wines of other varieties [2,4,9], but
these studies did not report data about the molecular weight of the different polysaccharide fractions.

In general, it was observed that the content of polysaccharides decreased between the 2MT and
3MB periods, probably due to the filtering process.

2.2. Effect of YDs Application on the Phenolic Content

Figure 2 shows the results obtained in the analysis of total polyphenols, tannins, and anthocyanins,
and Table 1 shows the content of the different low molecular weight phenolic groups studied for both
types of fermented wines (Lalvin EC1118® and Uvaferm HPS®). In general, it was observed that the
content of the studied phenolic families decreased or remained stable throughout the study period.
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Figure 2. Total polyphenol, tannins, and anthocyanins concentration (mg/L ± SD) of the different wines
studied. Columns with different letters indicate statistically significant differences (p < 0.05) between
the different treatments: AMLF (after malolactic fermentation); 2MT (two months of treatment); 3MB
(three months of bottle storage).

The application effect of the different YDs on the phenolic families depended on the type of YDs
and the phenolic group studied. Thus, it was observed that the wines fermented with Lalvin EC1118®

and treated with the different YDs presented a similar or higher content of all the phenolic families
studied after the 2MT and 3MB periods. In general, similar results were obtained in those wines
fermented with Uvaferm HPS. However, it was observed that in some treatments carried out with YDs
a decrease in certain phenolic families’ content was also observed but there was no clear trend.

The trend of the low molecular weight phenolic groups was not clear during the study. Depending
on the YDs used, the content was higher or lower than in the control wines. These results may be
due to different effects brought out by the YDs: an adsorption effect of phenolic compounds by the
polysaccharides released by the YDs, producing a clarification effect; and another protective effect of
the phenolic compounds in the wines treated with these products, producing a greater degradation of
phenolic compounds in the control wines.

Some studies carried out with different YDs in red wines indicated that their use could modify
the phenolic composition, mainly due to the higher release of polysaccharides (mannoproteins) from
yeast cell walls. However, the results obtained have been often contradictory, probably due to the
different wine composition, as well as the different YDs composition and characteristics used. In some
studies it was observed that treatment with YDs decreased the wine’s phenolic content [4,18,31,32].
However, in other studies, the authors observed that the phenolic content of wines treated with YDs
was similar to or slightly higher than the control wines [2,33]. In addition, in a study carried out
by Watrelot et al. [34] it was observed that the exogenous addition of polysaccharides to Cabernet
Sauvignon samples produced an increase in the tannin concentration.
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Table 1. CIELab parameters and low molecular weight phenolic compounds content (mg/L ± SD) of the different red wines studied.

Lalvin EC1118® Uvaferm HPS®

2MT CONT SIDY CW YA CONT SIDY CW YA

CI 11.3 ± 0.07 b 9.52 ± 1.07 ab 9.15 ± 1.11 a 10.6 ± 0.06 ab 5.84 ± 0.01 a 5.70 ± 0.02 a 9.41 ± 0.90 c 7.49 ± 0.41 b
L* 49.3 ± 0.23 55.3 ± 4.29 56.8 ± 4.48 54.3 ± 4.21 71.0 ± 0.29 c 71.7 ± 0.17c 56.0 ± 2.71 a 63.3 ± 0.81 b
a* 44.0 ± 0.55 38.9 ± 3.60 37.7 ± 2.13 44.1 ± 2.00 31.6 ± 0.55 a 31.3 ± 0.27 a 47.3 ± 2.15 c 40.1 ± 0.49 b
b* 9.18 ± 0.24 10.0 ± 0.62 10.5 ± 1.68 8.32 ± 0.38 13.3 ± 2.15 b 11.2 ± 0.23 ab 8.4 ± a0.63 8.2 ± 1.54 a

HBA 52.2 ± 0.42 51.4 ± 0.22 53.1 ± 0.54 54.5 ± 2.78 44.8 ± 0.07a 45.5 ± 1.08 ab 45.9 ± 0.82 ab 47.2 ± 0.86 b
HCA 14.8 ± 0.10 14.6 ± 0.20 14.9 ± 0.07 15.2 ± 0.72 14.1 ± 0.29 14.0 ± 1.21 14.3 ± 0.44 14.9 ± 0.60

HCATE 1.89 ± 0.04 1.84 ± 0.07 1.93 ± 0.01 2.09 ± 0.19 4.42 ± 0.06 4.48 ± 0.02 4.42 ± 0.22 4.64 ± 0.12
TFL 43.2 ± 0.20 a 44.3 ± 0.59 ab 47.4 ± 0.04 b 45.1 ± 2.51 ab 40.8 ± 1.11 b 42.3 ± 1.02 b 37.5 ± 0.57 a 41.9 ± 1.22 b

TPRO 32.9 ± 1.35 33.3 ± 0.61 35.1 ± 0.35 33.3 ± 2.79 29.7 ± 1.69 a 32.2 ± 1.87 ab 32.1 ± 0.50 ab 34.8 ± 0.33 b
TFLAV 38.5 ± 1.34 36.4 ± 0.84 38.4 ± 0.14 38.2 ± 2.89 29.7 ± 0.38 a 30.6 ± 1.46 a 33.2 ± 1.72 b 32.8 ± 0.71 b
TSTILB 5.13 ± 0.09 4.86 ± 0.16 5.50 ± 0.15 5.38 ± 0.33 5.07 ± 0.05 5.09 ± 0.08 5.73 ± 0.30 5.54 ± 0.20
TALC 16.6 ± 0.02 16.4 ± 0.13 17.1 ± 0.15 17.7 ± 0.88 22.2 ± 1.24 21.9 ± 0.76 22.5 ± 1.11 23.2 ± 0.01

3MB CONT SIDY CW YA CONT SIDY CW YA

CI 11.1 ± 0.34 ab 9.90 ± 0.41 a 9.83 ± 1.08 a 13.1 ± 0.95 b 6.45 ± 0.34 a 6.06 ± 0.02 a 11.2 ± 0.51 c 8.73 ± 0.66 b
L 51.4 ± 0.73 ab 54.7 ± 1.47 b 55.6 ± 4.30 b 46.0 ± 2.58 a 69.1 ± 1.02 c 71.0 ± 0.24 c 51.7 ± 1.22 a 60.4 ± 2.84 b
a 43.1 ± 0.84 ab 40.3 ± 1.06 ab 39.2 ± 4.19 a 45.7 ± 1.31 b 34.4 ± 1.48 a 32.2 ± 0.35 a 46.4 ± 0.56 c 41.8 ± 0.20 b
b 13.7 ± 0.31 b 12.6 ± 0.04 a 13.0 ± 0.18 ab 13.2 ± 0.57 ab 11.8 ± 0.22 13.0 ± 1.51 14.3 ± 0.54 13.8 ± 3.21

HBA 46.1 ± 1.56 b 45.7 ± 0.57 b 45.7 ± 0.02b 41.2 ± 2.45 a 40.6 ± 0.83 43.0 ± 2.87 39.3 ± 2.40 42.8 ± 0.04
HCA 14.0 ± 0.74 b 13.7 ± 0.05 b 13.2 ± 0.62 ab 11.9 ± 0.41 a 14.1 ± 0.47 a 15.7 ± 0.27 b 14.4 ± 0.26 a 15.2 ± 0.31 ab

HCATE 2.49 ± 0.07 2.29 ± 0.13 2.25 ± 0.01 2.16 ± 0.08 3.95 ± 0.20 ab 4.46 ± 0.13 b 2.83 ± 0.02 a 4.48 ± 0.16 b
TFL 40.1 ± 2.10 b 40.8 ± 2.00 b 40.2 ± 1.83 b 30.5 ± 1.73 a 30.8 ± 1.81 ab 39.4 ± 2.03 c 28.0 ± 0.96 a 35.6 ± 2.08 b

TPRO 31.2 ± 1.85 b 31.2 ± 1.58 b 28.2 ± 1.05 ab 26.0 ± 0.69 a 26.4 ± 1.62 b 29.6 ± 0.35 c 20.1 ± 0.12 a 26.8 ± 1.23 b
TFLAV 34.7 ± 1.07 d 32.7 ± 0.57 c 30.9 ± 0.21 b 26.5 ± 0.20 a 23.5 ± 0.22 26.6 ± 1.23 23.6 ± 1.74 25.4 ± 0.48
TSTILB 3.64 ± 0.14 3.66 ± 0.01 3.56 ± 0.22 3.21 ± 0.07 5.21 ± 0.08 5.57 ± 0.29 5.05 ± 0.34 5.50 ± 0.09
TALC 16.4 ± 0.64 b 16.6 ± 0.20 b 16.8 ± 0.19 b 14.5 ± 0.01 b 19.7 ± 0.10 a 21.5 ± 1.55 ab 20.3 ± 1.03 a 22.6 ± 0.37 b

Values in the same row with different letters indicate statistically significant differences (p < 0.05). 2MT (two months of treatment). 3MB (three months of bottle storage). HBA:
hydroxybenzoic acids; HCA: hydroxycinnamic acids; HCATE: hydroxycinnamic acid tartaric esters; TFL: total flavanol monomers; TPRO: total proanthocyanidins; TFLAV: total flavonols;
TSTILB: total stilbenes; TALC: total alcohols.
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2.3. Effect of YDs Application on the Colour of Wines

Table 1 shows the colour intensity (CI) and CIELab parameters of the different wines. The Uvaferm
HPS® fermented wines treated with CW and YA presented higher colour intensity (CI) than the control
wines and those treated with SIDY.

This result is well correlated with the different CIELab parameters evaluated, showing that
CW- and YA-treated wines presented lower values of L (lightness) and b (blue-yellow chromatic
coordinates), and higher values of a (red-green chromatic coordinates) than the control wines. Lower
values of b* and higher values of a* indicated higher red-blue tonalities of wines, increasing their
CI [35]. For these reasons, the use of these YDs could help to obtain wine with more stable colour
pigments. However, these results were not obtained in the same treatments carried out with the Lalvin
EC1118® fermented wine.

Results obtained in the last few years in similar studies have shown the great ambiguity of the
impact of polysaccharides on colour stability. Some authors reported that wine polysaccharides such
as mannoproteins could improve the colour of wines [16,17,33]; others reported that these compounds
could lead to a loss of colour [4,9,10,18,20,32]. Even within the same study, where six different YDs
were tested, different results were reported: in some cases an increase in CI was observed and in others
it was not [2].

2.4. Effect of YDs on the Volatile Compounds

A total of 38 volatile compounds were identified in red wines (Tables 2 and 3). The content
of the different chemical groups of volatile compounds was different after the AMLF period as a
function of the yeast strain used (but these results were not evaluated statistically).In general, the
content of different volatile groups was higher in wines fermented with Uvaferm HPS® than in those
fermented with Lalvin EC1118®, with the exception of terpenes. With respect to the esters group, the
trend between every ester group (ethyl, methyl, acetate, and isoamyl esters) was very similar to the
global trend. However, it is important to note that the concentration of isoamyl and acetate esters
of wines fermented with Uvaferm HPS® was significantly higher than the wines fermented with
Lalvin EC1118® (Figures 3 and 4), mainly in the case of isoamyl and acetate esters (double and triple,
respectively; see the Tables 2 and 3). The trend of the different volatile compound groups studied after
2MT and 3MB periods was not always the same in the two types of wines fermented and, depending
on the treatment applied, the content of these compounds increased or decreased (Figures 3 and 4).

In the case of wines fermented with Lalvin EC1118®, no significant differences were found in
the content of total ethyl esters after the 2MT period, but the wines treated with SIDY and CW had a
significantly higher content of acetate esters than the control wines, mainly due to their high content
of isoamyl acetate. In addition, the wines treated with CW had a higher content of total fatty acids
than the control wines. However, it seems that the period of bottle storage (3MB) produced significant
changes, mainly in the wines treated with CW and YA, revealing significantly higher contents of ethyl,
methyl and isoamyl esters than in the control wines (see Table 2). Also, treatment with CW increased
the concentration of the acetate esters, producing a significant increase of the total esters content of
these treated wines at this point of bottle storage. The esters concentration in wines is usually above
their perception threshold, which is one of the reasons why they are major contributors to the global
aroma of a wine in sensory evaluations [36]. Esters such as ethyl butanoate, hexanoate, and octanoate,
which increase after bottle storage with the addition of YDs (see Table 2), have been related to the
red-berry aroma in red wine [37]. The same increase observed in esters after the 3MB period was
also observed in the total alcohols and acids. Also, the total amount of terpenes increased with all
the treatments.
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Table 2. Volatile compound composition in red wines fermented with Lalvin EC1118® (average ± standard deviation) expressed in µg/L.

LRI ID AMLF 2MT 3MB

C C SIDY1 CW YA C SIDY1 CW YA

Ethyl esters
Ethyl butanoate 1076 A 178 ± 13 144 ± 9 171 ± 10 159 ± 22 156 ± 7 138 ± 19a 158 ± 90a 204 ± 2b 201 ± 2b
Ethyl hexanoate 1246 A 291 ± 43 214 ± 4 254 ± 27 230 ± 64 199 ± 3 198 ± 34a 225 ± 32a 359b ± 3 375 ± 24b
Ethyl heptanoate 1334 B 10.9 ± 0.90 10.5 ± 1.20 12.7 ± 0.80 10.3 ± 1.20 11.3 ± 0.20 7.87 ± 0.62a 8.92a ± 0.69 10.7b ± 0.30 11.3b ± 0.60

Ethyl lactate 1413 A 19.9 ± 1.60 29.9 ± 8.40 38.2 ± 7.30 42.1 ± 1.20 38.9 ± 4.2 19.2 ± 1.70a 20.8 ± 3.50ab 31.0 ± 6.30b 28.4 ± 1.50b
Ethyl octanoate 1460 A 888 ± 83 739 ± 12 782 ± 59 728 ± 95 794 ± 69 629 ± 111a 720 ± 7a 998 ± 15b 1096 ± 152b
Ethyl nonanoate 1558 A 45.6 ± 2.7 27.0 ± 3.50 36.0 ± 0.10 32.5 ± 12.70 28.1 ± 6.50 17.9 ± 0.60a 21.7 ± 0.30ab 22.9 ± 1.10b 24.1 ± 3.60b
Ethyl succinate 1701 A 92 ± 5 108 ± 2 111 ± 9 113 ± 23 114 ± 11 134 ± 9a 142 ± 2a 176 ± 10b 195 ± 7b
Ethyl decanoate 1715 A 127 ± 7 51.0 ± 3.80a 52.6 ± 5.30ab 47.7 ± 2.0a 60.7 ± 5.60b 34.5 ± 7.80a 47.1 ± 0.30ab 61.8 ± 4.10b 70.9 ± 21b
Ethyl isovalerate 1806 A 4.09 ± 0.08 2.64 ± 1.36 2.82 ± 1.90 5.55 ± 2.19 6.27 ± 2.94 1.50 ± 0.210 3.36 ± 1.02 2.09 ± 0.34 3.18 ± 3.02

Ethyl undecanoate 1824 A 1.20 ± 0.10 0.876 ± 0.06 1.07 ± 0.09 1.07 ± 0.27 1.07 ± 0.08 0.680 ± 0.014a 0.745 ± 0.05a 0.810 ± 0.03a 1.01 ± 0.07b
Ethyl dodecanoate 1869 B 116 ± 8 31.5 ± 1.0 38.3 ± 3.30 32.3 ± 2.50 39.5 ± 12.40 14.5 ± 2.10ab 10.5 ± 2.10a 20.2 ± 0.20b 20.4 ± 5.60b

Ethyl tetradecanoate 2068 B 16.0 ± 2.10 9.90 ± 0.53 11.6 ± 1.10 11.1 ± 0.20 11.1 ± 1.30 8.26 ± 0.01a 7.02 ± 1.62a 12.1 ± 0.60b 9.37 ± 0.87a
Ethyl hexadecanoate < 2100 B 21.6 ± 1.80 14.5 ± 0.80 15.8 ± 0.10 17.2 ± 2.0 14.1 ± 1.10 11.5 ± 0.30a 11.1 ± 2.0a 14.7 ± 3.80b 16.6 ± 0.70b

Methyl esters
Methyl hexanoate 1183 A 1.63 ± 0.23 0.99 ± 0.28 1.45 ± 0.25 1.45 ± 0.16 1.36 ± 0.02 0.81a ± 0.36 1.27ab ± 0.07 2.00b ± 0.25 2.09b ± 0.50
Methyl octanoate 1420 A 6.80 ± 0.66 5.10 ± 0.12 5.65 ± 0.32 5.26 ± 0.86 6.40 ± 0.59 4.69 ± 0.50a 4.55 ± 0.69a 6.52 ± 0.06ab 7.82 ± 1.52b
Methyl decanoate 1632 A 2.06 ± 0.25 nd nd nd nd nd nd nd nd

Acetate esters
Isoamyl acetate 1163 A 2117 ± 253 584 ± 30a 1472 ± 306b 1572 ± 110b 884 ± 170a 706 ± 291a 939 ± 61a 1872 ± 90b 1084 ± 163a
Hexyl acetate 1306 A 2.39 ± 0.07 1.73 ± 0.10 1.92 ± 0.02 1.78 ± 0.00 1.92 ± 0.16 2.01 ± 0.40 1.68 ± 0.26 2.30 ± 0.05 2.82 ± 0.76

2-phenylethyl acetate 1851 A 139 ± 34 64.9 ± 2.8 68.5 ± 3.20 61.4 ± 2.70 73.5 ± 10.80 121 ± 42ab 80.6 ± 14.40a 91.4 ± 16.70a 174 ± 15b
Isoamyl esters

Isopentyl hexanoate 1478 A 0.740 ± 0.01 0.581 ± 0.03 0.605 ± 0.09 0.471 ± 0.195 0.597 ± 0.05 0.423 ± 0.185a 0.526 ± 0.09a 0.843 ± 0.045b 0.898 ± 0.06b
Isoamyl octanoate 1748 A 1172 ± 110 1152 ± 1 1252 ± 171 1055 ± 168 955 ± 64 662a ± 147 958b ± 17 1238c ± 45 1205c ± 97
Isoamyl decanoate 1909 A 138 ± 10 44.5 ± 2.0 48.2 ± 3.80 40.0 ± 2.70 51.8 ± 3.30 16.4 ± 5.10 12.7 ± 0.80 20.9 ± 2.0 28.2 ± 8.2

Alcohols
Isobutanol 1108 A 70577 ± 4434 60577 ± 1383 65910 ± 4970 63910 ± 11482 62910 ± 2805 64243 ± 6881a 68910 ± 1391a 89243 ± 6641b 90243 ± 2579b

3-Methyl-1-butanol 1197 A 107593 ± 6486 98038 ± 396 106260 ± 5796 107593 ± 3115 99704 ± 2800 97816 ± 7230a 104593 ± 4162a 134927 ± 3090b 133816 ± 3935b
Hexanol 1391 A 2377 ± 177 2227 ± 10 2477 ± 193 2377 ± 134 2327 ± 24 2402 ± 154a 2577 ± 170a 3452 ± 247b 3502 ± 76b
Heptanol 1478 B 29.4 ± 1.30 30.4 ± 1.0 32.9 ± 1.90 31.9 ± 2.60 31.4 ± 1.50 31.9 ± 0.40a 34.4 ± 2.0a 43.4 ± 3.10b 43.9 ± 1.90b
Octanol 1578 A 7.24 ± 0.43 8.61 ± 0.01 9.72 ± 1.20 9.26 ± 1.30 9.17 ± 0.45 9.44 ± 0.15a 10.3 ± 0.40a 14.3 ± 0.60b 14.5 ± 0.10b
Decanol 1773 A 3.09 ± 0.29 3.32 ± 0.02 3.56 ± 0.08 3.50 ± 0.29 3.44 ± 0.06 3.50 ± 0.00 3.74 ± 0.13 4.68 ± 0.02 4.74 ± 0.13

Benzyl alcohol 1978 B 360 ± 18 618 ± 16 675 ± 79 650 ± 164 643 ± 82 658 ± 114 705 ± 171 910 ± 334 925 ± 102
2-Phenylethanol 2020 A 15689 ± 731 14329 ± 173a 15829 ± 2002b 15209 ± 3789ab 14989 ± 1973a 15349 ± 2347a 16609 ± 176a 22109 ± 421b 22509 ± 2191b

Volatile fatty acids
Hexanoic acid 1894 A 1170 ± 20 1200 ± 15 1268 ± 135.60 1385 ± 250 1288 ± 118 1168 ± 125a 1290 ± 28ab 1568 ± 88bc 1660 ± 151c
Octanoic acid < 2100 A 209 ± 19 113 ± 45 203 ± 98.90 304 ± 125 284 ± 80 124 ± 109a 243 ± 37ab 364 ± 22b 534 ± 26c
Decanoic acid < 2100 A 102 ± 1 42.0 ± 0.5 42.8 ± 3.0 46.8 ± 4.80 66.8 ± 15.50 41.6 ± 3.90a 45.6 ± 3.60ab 52.4 ± 6.90ab 75.6 ± 22.4b

Dodecanoic acid < 2100 B 14.04 ± 0.84 14.84 ± 1.46 16.1 ± 0.10 16.8 ± 1.0 14.84 ± 0.48 15.24 ± 0.12 14.84 ± 0.62 16.4 ± 1.40 16.04 ± 0.31
Terpenes

Citronellol 1785 A 3.44 ± 0.09 3.60 ± 0.01 3.76 ± 0.50 3.76 ± 0.44 3.60 ± 0.10 3.76 ± 0.12a 3.92 ± 0.10a 4.87 ± 0.00b 5.03 ± 0.13b
Nerol 1887 A 16.6 ± 1.0 24.3 ± 1.10 25.7 ± 1.40 25.2 ± 3.10 24.8 ± 2.50 25.2 ± 0.70a 26.6 ± 0.70a 32.5 ± 2.40b 33.0 ± 0.30b

trans-nerolidol 2056 A 2.61 ± 0.09 3.66 ± 0.18 3.95 ± 0.14 3.86 ± 0.16 3.86 ± 0.08 3.86 ± 0.07a 4.05 ± 0.08a 4.91 ± 0.06b 5.01 ± 0.15b

Values with different letter in the same row, and within of each point of analysis, indicate statistically significant differences (p < 0.05). Values without letter indicate no statistically
significant differences. AAF: After alcoholic fermentation, 2MT: two months of treatment, 3MB: three months of bottle storage. LRI: Linear Retention Index. ID: reliability of identification:
A, mass spectrum and LRI agreed with standards; B, mass spectrum agreed with mass spectral data base and/or LRI agreed with the literature data.
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Table 3. Volatile compounds composition in the red wines fermented with Uvaferm HPS® (average ± standard deviation) expressed in µg/L.

LRI ID AMLF 2MT 3BS

C C SIDY1 CW YA C SIDY1 CW YA

Ethyl esters
Ethyl butanoate 1076 A 234 ± 10 203 ± 8a 214 ± 7ab 203 ± 12a 232 ± 2b 192 ± 16 213 ± 1 207 ± 5 199 ± 1
Ethyl hexanoate 1246 A 396 ± 29 310 ± 32ab 325 ± 7ab 292 ± 49a 392 ± 17b 304 ± 28a 346 ± 13b 327 ± 19ab 303 ± 13a
Ethyl heptanoate 1334 B 9.57 ± 0.21 9.24 ± 1.89 8.33 ± 1.08 9.37 ± 1.78 9.96 ± 0.42 7.41 ± 0.45 7.80 ± 0.43 8.26 ± 0.32 7.61 ± 0.04

Ethyl lactate 1413 A 3.14 ± 1.17 2.86 ± 0.21 2.82 ± 1.04 1.75 ± 0.73 3.12 ± 0.55 10.5 ± 2.8c 6.64 ± 2.73ab 14.5 ± 1.7c 3.40 ± 0.04a
Ethyl octanoate 1460 A 1143 ± 47 928 ± 117a 1049 ± 17ab 826 ± 107a 1229 ± 120b 786 ± 61a 1069 ± 96b 853 ± 70ab 924 ± 79ab
Ethyl nonanoate 1558 A 56.7 ± 0.9 31.7 ± 5.3 26.6 ± 4.5 23.8 ± 0.7 28.8 ± 9.8 14.3 ± 2.0 15.4 ± 2.0 17.7 ± 1.7 17.9 ± 1.0
Ethyl succinate 1701 A 333 ± 6 172 ± 5a 345 ± 1b 132 ± 11a 297 ± 2b 159 ± 7a 278 ± 7b 170 ± 6a 267 ± 4b
Ethyl decanoate 1715 A 22.1 ± 2.4 36.4 ± 2.2b 29.7 ± 3.8a 36.1 ± 2.4b 38.1 ± 29.3b 54.8 ± 3.8ab 54.0 ± 14.2ab 59.7 ± 0.6b 48.9 ± 7.7a

Ethyl undecanoate 1824 A 0.680 ± 0.030 0.549 ± 0.016b 0.614 ± 0.042c 0.418 ± 0.021a 0.484 ± 0.133a 2.18 ± 0.04 3.16 ± 0.05 2.44 ± 0.01 2.05 ± 0.07
Ethyl dodecanoate 1869 B 14.3 ± 1.0 6.95 ± 0.17a 20.5 ± 0.4c 5.25 ± 0.22a 12.9 ± 2.6b 22.6 ± 1.4a 34.1 ± 1.5b 23.9 ± 0.9a 24.9 ± 1.8a

Ethyl tetradecanoate 2068 B 16.0 ± 1.1 7.54 ± 0.01a 9.83 ± 0.27bc 9.05 ± 0.52ab 11.1 ± 1.1c 16.7 ± 2.5b 14.8 ± 1.5b 18.3 ± 1.8b 7.35 ± 0.52a
Ethyl hexadecanoate < 2100 B 28.3 ± 4.2 14.6 ± 0.8a 21.3 ± 0.4c 18.1 ± 1.2b 23.4 ± 0.2c 16.4 ± 1.3a 29.7 ± 1.8b 16.7 ± 0.2a 13.4 ± 1.0a

Methyl esters
Methyl hexanoate 1183 A 1.63 ± 0.27 1.17 ± 0.11a 1.27 ± 0.02a 1.08 ± 0.21a 1.72b ± 0.00 1.08 ± 0.20 1.17 ± 0.47 1.08 ± 0.32 0.807 ± 0.167
Methyl octanoate 1420 A 6.64 ± 0.29 4.33 ± 0.86a 4.98 ± 0.37ab 4.09 ± 0.83a 6.54 ± 1.35b 3.64 ± 0.51a 5.42 ± 0.41b 4.02 ± 0.41a 4.31 ± 0.55ab
Methyl decanoate 1632 A 2.72 ± 0.03 nd 1.46 ± 0.17 nd 1.26 ± 1.07 nd 1.39 ± 0.44 nd nd

Acetate esters
Isoamyl acetate 1163 A 5928 ± 400 4350 ± 560a 5328 ± 123b 4261 ± 121a 5717 ± 149b 3572 ± 111a 4695 ± 412b 3350 ± 292a 3750 ± 189a
Hexyl acetate 1306 A 8.22 ± 0.43 4.38 ± 1.83a 21.6 ± 0.4b 4.86 ± 0.51a 14.6 ± 8.1ab 3.63 ± 0.01a 17.3 ± 2.0b 3.01 ± 0.05a 8.13 ± 1.02ab

2-Phenylethyl acetate 1851 A 1069 ± 37 285 ± 21a 869 ± 47c 246 ± 11a 604 ± 56b 188 ± 48a 309 ± 8b 138 ± 15a 201 ± 36a
Isoamyl esters

Isoamyl hexanoate 1478 A 1.53 ± 0.07 1.31 ± 0.25 1.07 ± 0.07 1.14 ± 0.22 1.51 ± 0.19 0.922 ± 0.104 1.19 ± 0.10 1.10 ± 0.16 0.977 ± 0.079
Isoamyl octanoate 1748 A 1898 ± 79 2008 ± 21b 2422 ± 29c 1362 ± 12a 2155 ± 155b 1338 ± 37a 1802 ± 44b 1385 ± 87a 1685 ± 163b
Isoamyl decanoate 1909 A 533 ± 65 595 ± 24a 571 ± 6a 673 ± 77ab 743 ± 19b 44.5 ± 5.3a 96.4 ± 1.0c 38.2 ± 4.5a 74.5 ± 5.7b

Alcohols
Isobutanol 1108 A 64910 ± 4893 61577 ± 1415 60910 ± 6598 54243 ± 2798 62910 ± 94 59243 ± 4028 58910 ± 4529 63910 ± 3131 58910 ± 3525

3-Methyl-1-butanol 1197 A 136038 ± 6490 128260 ± 953a 129371 ± 5136a 123816 ± 6513a 142704 ± 3344b 134927 ± 1213 140482 ± 9572 134927 ± 3572 128260 ± 1694
Hexanol 1391 A 2402 ± 141 2252 ± 4ab 2252 ± 131ab 2152 ± 136a 2502 ± 102b 2402 ± 46 2477 ± 218 2377 ± 91 2252 ± 54
Heptanol 1478 B 20.9 ± 0.5 19.9 ± 0.3 18.9 ± 1.1 19.9 ± 0.9 21.4 ± 0.8 21.4 ± 0.1 20.9 ± 1.7 21.9 ± 1.0 19.9 ± 0.1
Octanol 1578 A 9.17 ± 0.85 8.06 ± 0.33a 8.71 ± 0.65a 8.61 ± 0.45a 10.2 ± 0.3b 9.17 ± 0.17 9.62 ± 0.56 8.98 ± 0.68 8.89 ± 0.03
Decanol 1773 A 3.38 ± 0.22 2.79 ± 0.06 2.97 ± 0.11 2.91 ± 0.21 3.21 ± 0.22 2.97 ± 0.05 3.03 ± 0.14 2.74 ± 0.03 2.74 ± 0.03

Benzyl alcohol 1978 B 265 ± 47 220 ± 4 220 ± 18 215 ± 21 240 ± 19 260 ± 17 268 ± 24 283 ± 40 213 ± 2
2-Phenylethanol 2020 A 24709 ± 4375 20509 ± 30 21109 ± 1625 20909 ± 2112 23709 ± 1537 21309 ± 452ab 26109 ± 2628b 23309 ± 2543ab 20509 ± 38a

Volatile fatty acids
Hexanoic acid 1894 A 1885 ± 262 1695 ± 16 1785 ± 132 1707 ± 179 1932 ± 120 1810 ± 7ab 2070 ± 128b 1852 ± 158ab 1760 ± 23a
Octanoic acid < 2100 A 1074 ± 246 584 ± 46a 1054 ± 185b 634 ± 116a 1124 ± 15b 754 ± 58a 1354 ± 96b 724 ± 87a 864 ± 49a
Decanoic acid < 2100 A 166 ± 12 56.8 ± 2.0a 138 ± 5b 60.0 ± 5.8a 135 ± 10b 69.2 ± 0.6a 150 ± 11c 74.0 ± 3.7a 112 ± 9b

Dodecanoic acid < 2100 B 18.1 ± 0.4 16.8 ± 0.3 16.4 ± 0.3 15.6 ± 0.8 16.4 ± 0.3 14.8b
± 0.2 18.1d

± 0.7 16.4c
± 0.4 12.4a

± 0.4
Terpenes

Citronellol 1785 A 4.56 ± 0.24 4.24 ± 0.05 4.40 ± 0.46 4.40 ± 0.32 4.87 ± 0.22 4.24 ± 0.24 4.56 ± 0.34 4.24 ± 0.12 4.08 ± 0.29
Nerol 1887 A 13.9 ± 1.5 12.5 ± 0.3 11.6 ± 0.5 13.4 ± 1.4 13.9 ± 0.5 12.0 ± 0.7 12.0 ± 0.6 11.6 ± 0.1 11.6 ± 0.2

trans-Nerolidol 2056 A 2.51 ± 0.08 2.80 ± 0.24ab 2.32 ± 0.08a 3.18 ± 0.03b 2.22 ± 0.33a 3.09 ± 0.49a 2.61 ± 0.23a 4.63 ± 0.01b 2.41 ± 0.18a

Values with different letter in the same row, and within of each point of analysis, indicate statistically significant differences (p < 0.05). Values without letter indicate no statistically
significant differences. AMLF: After malolactic fermentation, 2MT: two months of treatment, 3MB: three months of bottle storage. LRI: Linear Retention Index. ID: reliability of
identification: A, mass spectrum and LRI agreed with standards; B, mass spectrum agreed with mass spectral data base and/or LRI agreed with the literature data.
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Figure 4. Evolution of the volatile compounds during the treatment and bottle storage in Carménère
wines fermented with Uvaferm HPS®. Results expressed in µg/L ± SD.
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In the case of wines fermented with Uvaferm HPS®, those wines treated with SIDY1 and YA had
higher concentrations, after the 2MT period, of the esters from all the chemical groups compared to
the control, with the exception of isoamyl esters, where only the wines treated with SIDY1 had higher
content than the control wines. These differences were maintained after the 3MB period but only in the
case of SIDY1. However, it is important to note that the wines treated with YA also had a higher total
isoamyl ester than the controls. Another remarkable fact is the significant increase of fatty acids after
2MT in wines treated with SIDY1 and YA, which had also been observed in the wines fermented with
Lalvin EC1118® yeast but only in the wines treated with CW. Some authors have postulated that the
higher levels of fatty acids in wines aged with lees are related to the release of these compounds from
cell walls during yeast autolysis [38]. Moreover, these results are in accordance with some studies that
found a higher content of some fatty acids using ageing treatment with YDs [3,39,40]; for this reason it
is possible that the same effect as the ageing on natural lees could have occurred with the use of these
products. Other authors have identified fatty acids and their ethyl and methyl esters in several YDs
extracts [41], explaining that the great majority seemed to be produced by Maillard reactions, possibly
during the thermal processing of these products from yeast sugars and amino acids and/or peptides. In
addition, after the 3MB period, the treatment with SIDY1 accounted for the highest concentration of
volatile fatty acids. As occurred in the wines fermented with Lalvin EC1118® yeast strain, no significant
differences between the control and treated wines were observed in the total alcohols after the 2MT
period. However, the treatment with YA produced wines with higher amounts of 3-methyl-1-butanol
and octanol than control wines (see the Table 3). Similar results for the total content of fatty acids were
found for total alcohols after the 3MB period, showing that the wines treated with SIDY1 had a higher
total content than the control and the other treated wines. Conversely to what was observed in the wines
fermented with LalvinEC1118®, after the 3MB period, the terpenes group did not change considerably.

The adsorption or enhancing effect of the addition of the same YDs on red wines was mentioned
by some authors during the ageing and bottle storage periods [3,40]. Rodríguez-Bencomo et al. [40]
explained that, in general, the interactions between YDs and some volatile compounds disappeared
during bottling, mainly due to the fact that binding between these products and volatile compounds
could be reversible and the latter could be released again into the wine. Del Barrio-Galán et al. [3]
also observed an interaction effect between the YDs used and volatile compounds of red wines, but an
increase of some of these compounds was also found.

The global balance points out that the wines fermented with Lalvin EC1118® presented a higher
total amount of volatile compounds during 2MT and after 3MB compared with the control wines.
However, when fermented with Uvaferm HPS®, after 2MT the treatment with CW decreased the total
amount of volatile compounds and after 3MB the wines treated with YA also had decreased amounts.

Therefore, it seems clear that their effect on the volatile compounds depends on the type of product
used, because the soluble colloids from yeasts (especially polysaccharides) can affect the perception
of aroma substances in opposite ways, either reducing or increasing their volatility, and could be
influenced by the multiple factors mentioned above.

2.5. Effect of YDs on the Wine Astringency

Figure 5 shows the percentages of dominance over time for the astringency of the different
treatments. For the different wines studied, fermented with either Lalvin EC1118® or Uvaferm HPS®,
it can be seen that the control wines had greater dominance and persistence of astringency at the end
of the test with respect to the wines treated with YDs.

Figure 6 shows the duration and the final time of the astringency perception. Statistically significant
differences were found for both wines fermented with Lalvin EC1118® and wines fermented with
Uvaferm HPS®. The control wines obtained a longer duration and greater final time of astringency
perception. The time differences in the astringency perception are well correlated with the lower
concentrations of polysaccharides present in the control samples, and therefore a greater perception
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of the astringency over time is also present. No clear difference was observed between the different
YDs applied.
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Figure 6. Duration and final time of astringency evaluated in seconds. Columns with different letters
indicate statistically significant differences (p < 0.05) between the treatments.

Although, in general, the treatments with different YDs did not produce a significant modification
of the phenolic compounds content, they had a significant effect on the decrease of the duration of the
astringency sensation of the red wines studied. This could be due to the interaction of the polysaccharides
released by the YDs and the phenolic compounds of the wine, forming macromolecular structures that
remain as stable colloids in wine, as has already been described in some studies [42,43]. According to
these studies, polysaccharides and mannoproteins could prevent the tannins’ self-aggregation, forming
more stable aggregates that prevent their polymerization and subsequent precipitation. This could
contribute to maintaining the lubrication of the oral cavity, decreasing the sensation of dryness and
roughness that characterize the astringency attribute.
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3. Materials and Methods

3.1. Winemaking and Experimental Design

The study was carried out on a Carménère wine variety of the 2015 vintage. The wine was made
in the Popeta winery, located in the Maipo Valley region of Chile (34◦ 27′ 3, 35” (S) and 70◦ 46′4 2,
17” (W)). The alcoholic fermentation was carried out in 300-hL stainless steel tanks. The vinification
processes were carried out under the routine work conditions established by the winery.

The same volume of must from the same batch of red grapes, located in the same sector of the
vineyard, was fermented with two different yeast strains. One batch was inoculated with 20 g/hL of
Lalvin EC1118® Saccharomyces cerevisiae bayanus and the other batch with 20 g/hL of Uvaferm HPS®

Saccharomyces cerevisiae. Both yeast strains were supplied by Lallemand-Sudamérica. The alcoholic
fermentation was carried out at a controlled temperature between 25 ◦C and 28 ◦C. The malolactic
fermentation was carried out spontaneously in the winery. The classical ooenological parameters after
malolactic fermentation are detailed in Table 4.

Table 4. Classic oenological parameters of red wines after malolactic fermentation.

Lalvin EC1118® Uvaferm HPS®

Alcoholic degree (vol %) 13.8 13.7
pH 3.91 3.82

AT (g/L) 3.2 3.4
AV (g/L) 0.41 0.38

TA: Total acidity expressed in g/L of sulphuric acid. VA: Volatile acidity, expressed in g/L of acetic acid.

The free SO2 was adjusted to 30 mg/L after malolactic fermentation was completed and the two
different batches of fermented wines were divided into food-grade plastic tanks where different ageing
treatments were applied in duplicate (eight tanks × 25 L).

The different treatments were applied after malolactic fermentation (AMLF): control wines (wines
without any YDs applied (C)); wines treated with a commercial specific inactive dry yeast SIDY (SIDY)
named Optilees®; wines treated with two new experimental YDs based in a cell-wall fraction (CW)
and a yeast autolysate (YA). The treatments were performed in an underground cellar with a constant
temperature (15 ± 3 ◦C).

The YDs were supplied by Lallemand-South America and were applied in a medium-high dosage
(30g/hL) based on the technical recommendations range (20-40 g/hL). The treatments lasted two months;
a weekly “batonnage” was performed during the first month of treatment, and one every two weeks
during the second month. After the treatment period the wines were filtered (without clarification
treatment) with a cellulose plate filter and bottled, and were stored at a constant temperature (15 ±
3 ◦C) during three months in bottle.

3.2. Reagents and Standards

The standards of gallic, protocatechuic, caffeic, syringic, p-coumaric, ferulic, ellagic and caftaric
acids, tyrosol, thyptophol, quercetin, myricetin, astilbin, (+)-catechin and (−)-epicatechin, dextrans,
and pectins were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Polyethylene
membranes of 0.45 µm and 0.22 µm pore size were acquired from EMD Millipore (Billerica, MA,
USA). Sodium sulphate (anhydrous), potassium metabisulfite, vanillin (99%), ethyl acetate, diethyl
ether, sodium hydroxide, acetic acid, formic acid, sulphuric acid, ethanol, hydrochloric acid and
high-performance liquid chromatography (HPLC)-grade acetonitrile, methanol, and ammonium
formate were purchased from Merck (Darmstadt, Germany). All the reagents were of analytical grade
or higher.
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3.3. Analytical Methods

The classical ooenological parameters were analysed according to the official methods established
by the OIV (2015) [44]. The extraction, determination, and quantification (mg/L) of polysaccharides
according to their molecular weight was carried out following the methodology described by Ayestarán
et al. [45] using a High-Performance Size Exclusion Chromatography-Refractive Index Detector
(HPSEC-RID).

Total polyphenol index (TPI), total anthocyanins (expressed in mg/L of malvidin-3-glucoside),
and total tannins (expressed in g/L of catechin) were analysed according to the methods established by
Ribéreau-Gayon et al. [46]. The HPLC-DAD low molecular weight phenolic compounds extraction,
determination, and quantification were carried out according to the method proposed by Peña-Neira
et al. [47].

Colour intensity and tonality were analysed according to Glories (1984) [48]. CIELab parameters
were calculated according to the MSCV® method (Simplified method to determine the colour of wines)
developed by the colour group laboratory of the University of La Rioja (Spain) [49].

All the wines were analysed after two months of treatment (2MT) and after three months of bottle
storage (3MB). The analysis of volatile compounds was done employing the headspace solid phase
micro-extraction method described in Úbeda et al. [50] using 4-methyl-2-pentanol (0.75 mg L−1) as
internal standard. After that, gas chromatography analysis was carried out using a 7890B Agilent GC
system coupled to a quadrupole mass spectrometer Agilent 5977 inert (Agilent Technologies, Palo Alto,
CA, USA). The conditions employed were the same as in Ubeda et al. [50].

The sensory analysis was carried out by 14 trained panellists belonging to the Department of
Agro-Industry and Enology of the Agronomical Sciences of the Chile University. The evaluation of the
different wines was carried out using FIZZ software (Biosystemes, Dijon, France) and according to
the conditions established in [9]. The methodologies used to determine the threshold of astringency
perception and to train the panellists in the evaluation and characterization of the astringency attribute
are described in Medel-Marabolí et al. [51]. This software is a visual tool that allows one to use
different sensory analysis methodologies, automation, and data and processing collection [52]. The
methodology used was “Time Intensity”, which is a dynamic sensory analysis technique that allows one
to observe the progression of a specific sensory attribute over time [53]. In this study, the astringency
was evaluated. The intensity of the astringency was evaluated using a 15-cm unstructured scale, where
the “0 value” corresponded with the absence of astringency perception and the “15 value” with the
maximum intensity of astringency perception. The time evaluation established for each wine was 90 s.

This methodology can be very useful to study the temporal perception of a specific sensory
attribute in wine. Generally, according to the literature consulted, the “Time Intensity” methodology
is carried out on a small number of attributes or with a limited number of products, where only one
attribute is evaluated [53].

3.4. Statistical Analysis

The statistical analysis was carried out with the statistical program “InfoSat version 2012p”
(FCA-National University of Córdoba, Córdoba, Argentina). Data were analysed using the one-way
analysis of variance (ANOVA) followed by the LSD-Fisher test, which determined statistically significant
differences between the means with a level of significance of 95% (p < 0.05). The different yeast strains
were treated as two independent groups.

4. Conclusions

The addition of the YDs produced an increase in the different polysaccharidic fractions and the
total polysaccharide content, and it was YA that released the highest amounts after the treatment
period, regardless of the fermentation yeast used.
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In general, the addition of YDs did not produce a clear trend in the phenolic content of the wines
studied, revealing two different effects: adsorption and/or protective of phenolic compounds. In the
same way, the results obtained for the colour of wines were quite ambiguous and only in certain cases
did we observe an improvement in the red wine’s colour, probably due to the different composition of
the YDs, the wine matrix, and the harvest effect.

Two different effects were found in the red wine composition: an intensification of the most
volatile compound groups, or a lower decrease of these compounds after the treatment period, mainly
after the bottle storage period. However, although the same YDs treatments were used for both types
of fermented wines, the results were not always the same. This may be due to the importance of the
yeast strain used during the fermentation process, because the initial concentration of the evaluated
volatile compounds depends on the fermentation yeast strain.

In general, the addition of different YDs into red wines in the post-fermentation process produced
a significant decrease in their astringency perception, mainly due to a lower duration of this attribute in
the wines treated with these YDs. This could be correlated with the higher amounts of polysaccharides
released by these products, producing wines with a better mouthfeel that are thus more attractive to
the wine consumer.

Based on these results, and due to the scarce scientific studies considering the great variety of YDs
(commercial and in development), more research should be carried out in this area in order to obtain a
better understanding of the action mechanisms of these products and their effect on the sensory profile.
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