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ABSTRACT

Steroid receptors comprise an evolutionarily
conserved family of transcription factors. Although
the qualitative aspects by which individual receptors
regulate transcription are well understood, a quan-
titative perspective is less clear. This is primarily
because receptor function is considerably more
complex than that of classical regulatory factors
such as phage or bacterial repressors. Here we
discuss recent advances in placing receptor-
specific transcriptional regulation on a more quan-
titative footing, specifically focusing on the role of
macromolecular interaction energetics. We first
highlight limitations and challenges associated
with traditional approaches for assessing the role
of energetics (more specifically, binding affinity)
with functional outcomes such as transcriptional
activation. We next demonstrate how rigorous
in vitro measurements and straightforward
interaction models quantitatively relate energetics
to transcriptional activity within the cell, and
follow by discussing why such an approach is
unexpectedly effective in explaining complex
functional behavior. Finally, we examine the implica-
tions of these findings for considering the unique
gene regulatory properties of the individual
receptors.

INTRODUCTION

Steroid receptors comprise a family of ligand-activated
transcription factors (1). Included are the androgen
receptor (AR), estrogen receptor (ER), glucocorticoid

receptor (GR), mineralocorticoid receptor (MR) and pro-
gesterone receptor (PR). ER exists naturally as two
isoforms (ER-a and ER-b) as does PR (PR-A and PR-
B). As shown in Figure 1A, all receptors share a common
modular structure. Centrally located is a highly conserved
DNA binding domain (DBD); C-terminal to the DBD is
the ligand-binding domain (LBD). Activation functions
are located within the LBD and the N-terminal regions.
As shown in Figure 1B, phylogenetic studies demonstrate
that all receptors descend from a common ER-like
ancestor, with AR, GR PR and MR forming subgroup
3C, and the two ER isoforms forming the more distantly
related subgroup 3A (2).
The generally accepted framework for receptor function

is that on binding ligand, receptors dimerize, bind
hormone response elements (HREs) located within
upstream promoter sites and recruit coactivating
proteins to activate transcription. Although this model
provides a strong qualitative understanding, it nonetheless
remains incomplete. Specifically lacking is a quantitative
perspective for considering receptor-specific gene regula-
tion: how does a homologous family of transcription
factors, capable of binding identical or nearly identical
response elements, regulate different gene networks?
Although we have qualitative insight into aspects of this
question, a quantitative understanding—one that yields
physical predictions and mechanisms—has yet to be
determined.
One reason why such an understanding is lacking is due

to the great complexity associated with receptor function.
For example, the number of transcription factors that as-
semble at receptor-regulated promoters likely approaches
50 (3,4); receptor interactions at response elements are
highly dynamic both in time and structure (5,6); allosteric
coupling and chromatin play significant regulatory roles
(5,7); and functional HREs are located not only within
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promoters but also scattered throughout intronic and
intergenic regions (8). Such complexity suggests that a
quantitative and bottom-up approach to describing
receptor-specific transcriptional properties, similar to
that achieved for classical model systems (9), is unlikely
to be forthcoming. However, as we will attempt to show,
this conclusion may be premature.
Our goal here is to highlight recent advances in placing

receptor-specific functional behavior on a more quantita-
tive footing. We focus largely on the role of macromol-
ecular interaction energetics. We first discuss the
limitations associated with traditional approaches for as-
sessing the role of binding affinity with functional
outcomes such as transcriptional activation. We next dem-
onstrate how rigorous in vitro measurements and straight-
forward interaction models quantitatively relate energetics
to transcriptional activity within the cell and discuss why
such an approach is unexpectedly effective in describing
complex functional behavior. Finally, we examine the im-
plications of these findings for understanding receptor-
specific transcriptional regulation.

Simple binding models predict non-linear affinity-function
relationships

Steroid receptors recognize an array of HREs, typically
imperfect palindromes that vary by one or more base

pairs. To explore the relationship between receptor–
DNA interaction energetics and transcriptional regula-
tion, we determined the energetics of GR binding to
seven previously characterized HREs (10,11). Shown in
Figure 2A [Figures 2–8 and Tables 1–2 reproduced with
permission (10)] is a representative titration of one such
sequence (Pal), determined using quantitative footprint
titration (12,13). Two models were used to fit the data.

Figure 2. Quantitative analysis of GR-HRE binding energetics. (A)
Representative quantitative footprint titration image of GR binding
to the Pal sequence. Schematic to the right indicates position of the
HRE and approximate location of the transcriptional start site.
Fractional saturation ( �Y) was determined by integrating band
intensities across the entire HRE. (B) GR-HRE assembly model depict-
ing the total binding reaction and macroscopic product constant (Ktot),
the total affinity for assembling two GR monomers at a palindromic
response element. (C) Fractional saturation of the Pal sequence
from two independent footprint titrations. Solid line represents global
fit to both data sets using the Ktot binding model in Panel (B) and
Equation 2 (SD=0.087); dashed line represents fit to Equation 1
(SD=0.126).

Figure 1. Schematic of steroid receptor domain structure and phylo-
genetic tree. (A) Schematic of steroid receptor domains and number of
amino acids. Functional domains as labeled: DBD, DNA binding
domain; LBD, ligand-binding domain; AF, activation functions are
present in both the N-terminal region and LBD. (B) Phylogenetic
tree representing divergence of the steroid receptor family. Filled
circle represents the ER-like common ancestor for subfamily 3A (ER-
a and ER-b) and subfamily 3C (PR, AR, GR and MR). The two PR
isoforms are not shown, as they are generated from the same gene via
alternate transcriptional or translational start sites.
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The first is the Langmuir binding model, which resolves
the apparent binding affinity (Kapp):

�Y ¼
Kappx

1+Kappx
ð1Þ

where �Y is the fractional saturation at the response
element, and x is the free receptor monomer concentra-
tion. The second model, schematically depicted in
Figure 2B, resolves Ktot, the total affinity for assembling
two GR monomers at the palindromic HRE:

�Y ¼
Ktotx

2

1+Ktotx2
ð2Þ

where x is again in units of free monomer concentration.
The experimental isotherm generated from the footprint

titration and best-fit binding curve to both models are
shown in Figure 2C. The total and apparent binding
affinities for Pal and the six remaining response elements
are summarized in Table 1. It is clear that the Langmuir
model poorly describes the data. The reason is that
apparent affinity does not take into account GR dimer-
ization at the palindrome (14). Consequently, although the
Kapp for each sequence suggests that the range of GR
binding affinities spans �60-fold, the Ktot values demon-
strate the true range is nearly 700-fold.
To assess the relationship between in vitroDNA binding

energetics and transcriptional activity in the cell, we next
measured the ligand-dependent increase in transcriptional
activity (‘fold-activation’) for each response element by
transient transfection (see Table 1). Using the traditional
approach for assessing the role of binding affinity in
receptor function (11,15), we plotted the seven GR
affinities versus the level of fold-activity induced by each
sequence. As seen visually in Figure 3A and as indicated
by linear correlation analysis, it appears that there is only
a weak relationship (R2=0.45). A similar lack of correl-
ation has been reported previously for AR, the ER
isoforms and GR (11,15,16). A second observation is
that sequences with statistically identical affinities
toward the receptor (e.g. SGK and Cons) nonetheless
generate statistically different functional responses. This
phenomenon was first observed for ER-a (17), being
consistent with the then emerging hypothesis that indi-
vidual response elements act as unique allosteric
effectors (18).
These results appear to show that DNA binding affinity

makes only a small contribution to transcriptional
activity. However, the experiments in Figure 3A do not
necessarily reflect an accurate comparison: the transfec-
tion assay measures activity at only a single GR expres-
sion dose, whereas the DNA binding measurements reflect
a wide range of GR concentrations. Therefore, to more

Figure 3. Kapp versus fold-activation for seven HREs. (A) Plot of fold-
activity values±SEM for the seven HRE sequences shown in Table 1;
dashed line represents linear regression. An identical R2 result is
obtained if the data are plotted as a function of total binding affinity
(Ktot). (B) Plot of simulated fold-activity for the seven HREs as a
function of nanogram GR expression vector. Data points and dashed
lines represent cross-sectional analysis used to generate plot in

Figure 3. Continued
following panel. (C) Plot of simulated fold-activities as a function of
Kapp for five GR expression vector doses (3, 32, 100, 316, 1000 and
1500 ng). (D) Plot of simulated error-perturbed fold-activities±SEM
(n=3) for the seven HRE sequences at 100 ng GR expression vector
dose; dashed line represents linear regression. Error added was identical
to that in panel (A); see (10).
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rigorously examine this relationship, we generated
simulated dose–response curves for the seven response
elements analyzed earlier. We used a simple model in
which the energetics of receptor binding to each
response element generate a maximal 5-fold increase in
transcriptional activity (10). As shown in Figure 3B,
these curves are identical in shape to a binding curve but
are in units of mass receptor expression vector and fold-
transcriptional activity.
Transformation of the curves into a traditional affinity-

function plot simply requires choosing a particular dose of
receptor expression vector, identifying the fold-activity
associated with that dose and plotting it against the recep-
tor–DNA binding affinity associated with each response
element. For the simulated dose–response curves, six
doses are represented as dashed vertical lines, all
forming cross-sections through the curves. As seen in
Figure 3C, the resultant plots for the six doses are, not
surprisingly, highly dependent on where the particular
cross-section is taken. More unexpectedly, the relation-
ship between affinity and function is never linear as is
implicitly assumed in the traditional correlation analysis,
but is instead highly non-linear. In fact, expression
vector doses most sensitive to changes in affinity, and
thus most useful for analysis (e.g. 100 ng), generate the
most extreme non-linearity. Moreover, at such doses, the
exponential-like decay in activity provides an appealing
explanation for how response elements with similar

affinities can generate different functional activities.
Non-linearity is not a result of the model used to
generate the data but is a general consequence of trans-
forming any hyperbolic or sigmoidal-shaped dose–
response curve.

We next asked how experimental error influences these
results. Using the identical type of error found in the ex-
perimental data shown in Figure 3A, we error-perturbed
the simulated data (10). The results for the 100 ng dose are
plotted in Figure 3D. The error-perturbed simulated data
are strikingly similar to the experimental data, again
showing only a weak correlation between affinity and
function (R2=0.32). Moreover, response elements with
similar receptor-binding affinities again generate statistic-
ally different functional activities. Thus, the simulations
demonstrate that linear statistical tests are inappropriate
for assessing affinity-function relationships. More intri-
guingly, they suggest that experimental results as shown
in Figure 3A do not necessarily arise from complex
mechanisms.

One commonly used approach for assessing correlation
in the case of non-linear relationships is to simply linearize
the data via log-transformation (19,20). If this is applied
to the simulated data in Figure 3D, the correlation
between DNA binding affinity and transcriptional
activity is now accurately seen as being strong and statis-
tically significant (R2=0.86 and P� 0.01; Figure 4A). A
similar result is found for the experimental data

Figure 4. Linear regression of log-transformed fold-activities and Kapp

values at 100 ng GR expression vector. (A) Log–log transformation of
the experimental data presented in Figure 2A. (B) Same as Panel (A)
using the simulated error-perturbed data in Figure 2D. For both
panels, the same R2 value is obtained if the data are analyzed in
units of Ktot rather than Kapp.

Figure 5. Relative fold-activities for seven HREs as a function of
simulated mutagenesis and coactivator knockdown. Simulated activ-
ity differences relative to wild-type (gray) for 100 (top) and 1000
(bottom) ng GR-expression vector doses, when Ktot is reduced
10-fold (red) or fold-activity (FA) is reduced 2-fold (yellow)
(*P< 0.05; **P< 0.005).
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(R2=0.73 and P=0.01; Figure 4B). Thus, contrary to
initial impressions, GR-DNA binding affinity and tran-
scriptional activity are highly correlated. Noting that the
DBD of all steroid hormone receptors is highly conserved
and that the receptors bind identical or nearly identical
response elements, we anticipate that similar results will
be found with the remaining receptors.
Unfortunately, although log-transform and other

types of linearization approaches (10,19) correctly
reveal the correlation in this specific instance, they are
still of limited utility. This is due to their well-known
distorting effect on quantitative relationships (14). For
example, as shown in Table 2, log-transformation of
simulated error-perturbed data—generated using a
model in which DNA binding affinity fully governs
transcriptional activity—indicates that at most doses
there is still no statistical significance between affinity
and function. The reason for this is simply that most
high or low GR expression doses are insensitive to
changes in affinity and function compared with inter-
mediate doses. This is so because cross-sections taken
at or near the plateaus of fold-activity offer little cor-
relative insight. Thus, the ability of log-transformation
to discern a statistically significant correlation is con-
strained within a very small range; we find only a
threefold range in which linearization is a legitimate
analytical method (10). Yet, to determine which doses

Figure 6. Global fitting of dose–response curves indicates that DNA
binding energetics largely account for sequence-specific transcriptional
activation. (A) Plots of dose–response curves for seven HREs as a
function of GR expression vector dose. Filled circles indicate fold-
activation±SEM (n=3). Lines represent global fit of all dose–
response curves using a statistical thermodynamic dimer-binding
model, Ktot for each respective HRE and global scaling factors.

Figure 7. Predicted and experimentally determined dose–response
curves for four additional HREs. Dose–response curves±SEM
(n=3) for GR-induced activity for the four HREs (filled circles).
Dashed lines represent predicted dose–response curves using respective
Ktot determined previously (10) and d, e and f scaling factors resolved
in Figure 6A. DNA sequence and experimentally determined GR
binding affinity for the four HREs were previously presented (10).

Figure 6. Continued
(B) Same as Panel (A) using simulated error-perturbed fold-activation
values. Error was identical to that in panel (A). The data shown
here were also used to determine the extent of correlation presented
in Table 2.
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are amenable to such an approach, it is first necessary
to generate complete dose–response curves for all DNA
sequences of interest, and then empirically identify that
small range sensitive to the affinity-function relationship.

Because this extent of study is rarely performed, trad-
itional analyses as carried out in Figure 3A or
linearization analyses using the ‘‘correct’’ log-transform-
ation approach in Figure 4 are quite likely to generate
incorrect conclusions.

Non-linearity and implications for other experimental
approaches

The non-linear relationship between DNA binding affinity
and transcriptional output has a number of interesting
consequences for other assays used to probe receptor
behavior. As an example, for the seven HREs in
Table 1, we simulated dose-response data in which GR
binding affinity (Ktot) was uniformly reduced by 10-fold
for all sequences. This might occur via mutational analysis
of either the receptor or the DNA. We also simulated data
in which the maximal fold-activity associated with all
HREs was uniformly reduced 2-fold, as might result
from a coactivator-knockdown experiment. For two GR
expression doses (100 and 1000 ng), the resultant fold-
activities for each response element are shown normalized
to wild-type (Figure 5).

Even though the changes in either affinity or activity
were applied identically to all response elements, the
data at 100 ng appear to indicate that only a subset is
affected. A different subset is affected at 1000 ng, but
only by the change in binding affinity—the change in
fold-activity by coactivator knockdown is now accur-
ately seen as similar for all sequences. Thus, different

Figure 8. Sequence-specific activation is maintained in multiple
promoter-types, cell lines and in chromatin environment. (A) pA3-Pal
and pA3-TAT4 dose–response curves in COS7 cells (black) overlaid
with dose–response curves±SEM (n=3) from the respective
sequences in pGL3 vector (red). (B) pA3-Pal and pA3-TAT4 dose–
response curves in COS7 cells (black) overlaid with dose–response
curves±SEM (n=3) for respective sequences in U2OS cells (red).
(C) TA-induced activity±SEM (n� 2) of pGL3-TAT4 (green),
pGL3-Pal (blue) and pGL3-TAT4-Y [red; (10)] determined in transient
and stably transfected COS7 cells (1 mg GR expression vector). Dashed
line represents linear regression.

Table 1. HRE sequences, apparent and total GR binding affinities and ligand-induced fold-activation at 100 ng dose of GR expression vector

HRE Sequence Kapp (nM)a Ktot (fM
2)a Fold-activationb

Pal AGAACAAAATGTTCT 32±7 0.800±0.134 2.4±0.19
CGT AGAACATTTTGTACG 34±5 0.877±0.123 2.3±0.23
SGK AGAACATTTTGTCCG 110±31 7.09±1.75 1.7±0.12
Cons AGAACAAAATGTACC 125±29 8.55±1.42 2.6±0.08
FKBP5 AGAACAGGGTGTTCT 356±73 64.9±7.80 1.6±0.12
GILZ AGAACATTGGGTTCC 490±125 105±16.4 1.2±0.14
TAT4 AGAACATCCCTGTACA 2,000±809 558±10.4 1.2±0.07

aApparent (Kapp) and total (Ktot) GR-HRE binding affinities± standard deviation (SD).
bFold-activation±standard error of the mean (SEM).

Table 2. Log-transformed correlation analysis of Kapp and fold-

activation for seven HRE sequencesa

Experimental Simulated

DNA (ng) R2 P R2 P

3 0.01 0.80 0.14 0.40
10 0.34 0.17 0.12 0.44
32 0.63 0.03 0.44 0.10
100 0.73 0.01 0.86 �0.01
316 0.66 0.03 0.90 �0.01
1000 0.31 0.19 0.37 0.14
1259 0.44 0.11 0.56 0.05
1500 0.40 0.10 0.61 0.04

aR2—coefficient of determination; P—probability that R2 results from
two uncorrelated variables.
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doses of GR expression vector generate variable results.
This occurs because a low dose of GR expression vector
preferentially reveals functional changes only at high-
affinity binding sites and vice versa. In conclusion, if
receptor-mediated transcriptional activity is under ener-
getic control (a hypothesis we rigorously test in the next
section), then seemingly independent functional assays
may generate equally problematic results. This is
because the assays share the common attribute of
examining transcriptional activity at a single expression
dose.

Equilibrium models readily describe complex cellular
function

A more powerful alternative, that bypasses the limita-
tions of single-dose approaches, is to directly fit
multiple sets of functional data over a wide range of
receptor concentrations using molecular-based inter-
action models. We illustrate this approach using the
example of GR and its interactions with multiple
HREs. We first experimentally determined complete
dose–response curves for the seven response elements
shown in Table 1. We then globally fit the curves to a
simple equilibrium binding model: the experimentally
determined GR binding affinity (Ktot,i) for each
response element i was a fixed parameter, but the
maximal (d) and minimal (e) fold-activities were
allowed to float to values common for all response
elements:

ðfold� activationÞi ¼ ðd� eÞ
f � Ktot,ix

2

1+f � Ktot,ix2
+e ð3Þ

Equation 3 is similar to that used to fit the DNA
binding data, but the overall expression is modified by
scaling factors d, e and f. These parameters allow the
iosotherms determined from the in vitro footprint titra-
tion experiments to be numerically fit to their respective
in situ fold-activation curves. Thus, the isotherms are
treated as transition curves, where d rescales the
y-axis amplitude taking into account the actions of all
other transcription factors, e shifts the y-axis baseline,
and f converts the x-axis from GR concentration in
molar units to GR expression vector in nanogram
units. Because d, e and f are global parameters
common to all data sets, all binding curves are
rescaled identically.

Shown in Figure 6A are the experimental dose–response
curves associated with each of the seven response elements
(filled circles) and the best-fit curves for the respective se-
quences as determined from the global analysis (solid
lines). For comparative purposes, we also used the same
fitting model, DNA binding energetics, extent of error and
resolved maximal and minimal fold-activation values to
generate simulated dose–response curves. We then fit
these curves using the approach applied to the experimen-
tal data. We emphasize that these results, presented in
Figure 6B, represent the expected outcome if GR-DNA
binding energetics are the exclusive contributor to
sequence-specific transcriptional activity. The simulations,

thus, serve to critically evaluate the forces underlying the
transcriptional data.
By visual inspection, the DNA binding model de-

scribes well almost all of the cellular data. This is
despite the fact that all HREs are assumed to generate
identical maximal and minimal fold-activities, and that
the true range of DNA binding affinities spans nearly
700-fold. Moreover, we note that the data and fit are
similar to the simulations of Figure 6B. However, to
determine whether these findings were unique only to
these sequences, we examined four additional se-
quences—an HRE placed in reverse orientation
(TAT3,rev), two naturally occurring HREs (MMTV
and TAT3) and a synthetic mutated HRE (TAT3,mut).
Using the best-fit maximal and minimal fold-activities in
Figure 6A, the same binding model and the experimen-
tally measured DNA binding affinities for the four
response elements, we generated predicted dose–
response curves (dashed lines). As shown in Figure 7,
the predictions capture the overall trends of the data.
Thus, a simple equilibrium model that assumes that
DNA binding energetics dictate sequence-specific tran-
scriptional output is sufficient to describe the functional
behavior of nearly a dozen response elements.
To determine whether these results were a fortuitous

consequence of our experimental conditions, we used
the highest and lowest affinity response elements from
Figure 6 (Pal and TAT4) to measure GR transcriptional
activity in a different promoter context, cell line and chro-
matin environment. Shown in Figure 8A are the dose–
response curves for Pal and TAT4 carried out in COS7
cells using a pA3 promoter (black; derived from a
minimal thymidine kinase promoter sequence). Overlaid
are analogous measurements generated using a pGL3
promoter (red; derived from a minimal SV40 promoter
sequence). Only subtle differences are seen, suggesting
that promoter context has little influence on sequence-
specific transcriptional activity. Shown in Figure 8B are
again the pA3 dose–response curves for Pal and TAT4 in
COS7 cells (black); now overlaid are the analogous meas-
urements in U2OS cells (red). Although slight differences
are observed for the Pal sequence, the trend of Pal being a
stronger activator than TAT4 is maintained. Finally, in
Figure 8C we tested the influence of chromatin by stably
transfecting three HRE constructs into COS7 cells.
Transcriptional activity of the pooled cell population
was then compared with that measured by transient trans-
fection; we see excellent correlation (R2=0.99).

Why are equilibrium measurements unexpectedly effective
at describing complex behavior?

Collectively, the results presented in Figures 6–8 demon-
strate that affinity-based gene control is a general feature
of GR function. This would seem to be unexpected
noting the significant complexity associated with
receptor-mediated transcriptional activity. How can a
simple equilibrium-binding model describe complex
cellular behavior? As will be described elsewhere using
a more quantitative and theoretical approach, the
ability of energetics to describe GR activity indicates
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that such activity must be under thermodynamic control.
That is, of the many interactions that link transcription
factor-promoter assembly with gene output, the rate of
receptor binding to the DNA must be fast relative to the
loading rates of other factors. Phillips and coworkers
elegantly describe this as a ‘separation of timescales’
(21). If such a prediction holds for GR and other
steroid receptors, this implies that receptor–promoter oc-
cupancy is dictated by the in situ equilibrium concentra-
tions of receptor and promoter. This will be so even if
the active receptor concentration is fluctuating owing to
translation, post-translational modification or degrad-
ation events. That is, based on the timescale argument,
receptor–promoter equilibration rates must be faster
than the rates at which receptor concentrations are
changing—once more, a quantitatively testable
prediction.

Energetics and receptor-specific gene regulation

Noting the strong role of energetics in GR function and
that the remaining steroid receptors comprise a phylo-
genetically related family, we have speculated that
differences in promoter-binding energetics among
family members could play a role in receptor-specific
function (22,23). In particular, might such differences
account for the paradoxical ability of receptors to
bind largely identical response elements yet regulate
different subsets of genes (24–26)? To examine this pos-
sibility, we are systemically dissecting the promoter-
binding energetics of all the human steroid receptors,
at a ‘standard state’ condition under which the recep-
tors are amenable to rigorous and comparative analysis
(22,27–30).
By the traditional functional model (1), receptors

dimerize in the absence of DNA (kdim) and bind to
response elements as pre-formed dimers. Assembly at a
multisite promoter may also be coupled to inter-site
cooperativity (kc). For full-length human ER-a and the
two PR isoforms, these values were determined using a
simple two-site promoter and under our standard state
conditions (pH 8.0, 100mM NaCl and 4�C); the results
are plotted in Figure 9. Also shown are the cooperativity
terms resolved for full-length AR, an AR point mutant
associated with advanced prostate cancer (T877A) and
GR. Interestingly, these receptors did not show any
evidence for dimerization, allowing us to only plot lower
limits for assembly affinity.
Despite being a homologous family of transcription

factors, the results make clear that under identical con-
ditions, receptor dimerization and cooperative energetics
vary enormously. Moreover, dimerization energetics are
generally inversely proportional to cooperativity. For
example, ER-a displays a sub-nanomolar dimerization
affinity but generates non-existent cooperativity. By
contrast, the AR proteins and GR have dimerization
limits that are at least four to five orders of magnitude
weaker than ER-a, and cooperativity values two orders
of magnitude greater. Of further interest, the inverse
relationship between dimerization and cooperativity

trends along evolutionary lines. Thus PR-B, AR,
T887A and GR—all closely related subgroup 3C recep-
tors (see Figure 1B)—partition their dimerization and
cooperative energetics similarly. In sharp contrast, ER-
a, a subgroup 3A receptor, maintains a distinctly differ-
ent distribution. (It is also clear that PR-A behavior is
not fully consistent with this argument, as it exhibits
weak cooperativity. We note that PR-A is still capable
of generating 1000-fold cooperative stabilization on a
different promoter architecture (28,31). We find similar
promoter-specific results for the remaining subgroup 3C
receptors. By contrast, ER-a cooperativity is not detect-
able on seven promoter architectures we have tested to
date).

These results suggest that differences in promoter-
binding energetics are an evolutionarily conserved
feature of the receptor family, and thus critical to
function. They also suggest a basis for receptor-specific
promoter function via differential promoter occupancy.
To illustrate, we simulated the probability of receptor
assembly at several different promoter architectures
under conditions in which multiple receptor populations
are competing for identical sites. For example, at an
isolated half-site (Figure 10A), receptors with weak or
non-existent dimerization energetics such as AR or GR

Figure 9. Microstate energetics of steroid receptor assembly at a simple
two-site promoter. Circles represent receptor dimerization affinity (kdim)
and squares represent inter-site cooperativity (kc). As dimerization was
not observed for wild-type AR, T877A and GR, downward arrows
have been added to indicate that plotted values represent lower
limits. Error bars represent 67% confidence intervals. Because the di-
merization and cooperativity terms each represent a microscopic rather
than a macroscopic interaction (e.g. Ktot), they are represented by a
lower case k.
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easily outcompete receptors with stronger dimerization
energetics; the reverse is true for an isolated palindrome
(Figure 10B). For multisite promoters, preferential
binding can only be achieved by allowing differences in
both dimerization energetics and cooperativity, entirely
consistent with the receptor-specific differences we
observe experimentally. For example, a promoter contain-
ing multiple palindromic binding sites allows for prefer-
ential occupancy of a single receptor (blue) via moderate
contributions from both parameters (Figure 10C).
However, a promoter containing a half-site and a palin-
drome results in simultaneous occupancy, and presumably
some level of joint gene regulation (Figure 10D). Finally, a
promoter containing multiple half-sites allows preferential
occupancy of a third receptor (red; Figure 10E).

CONCLUSIONS

The simulations in Figure 10 indicate that combining
different interaction energetics with different promoter
architectures generates preferential occupancy by each re-
ceptor—even when multiple receptors are competing for
identical binding sites. With our findings that homologous
receptors partition their energetics in parallel with their
phylogenetic divergence, and that DNA binding energetics
are the primary contributor to sequence-specific transcrip-
tional activity, nature may have selected for energetic dif-
ferences as the basis for receptor-specific transcriptional
regulation. This implies that steroid receptors are energet-
ically poised to carry out function and predicts a ‘binding
affinity landscape’ for each receptor (32). Genome-wide
studies of receptor cistromes and transcriptomes are con-
sistent with this interpretation, indicating that monomeric
receptors such as AR preferentially bind and activate at
half-sites, whereas strongly dimeric receptors such as ER-
a are active at palindromes (8). Furthermore, natural pro-
moters seem to invariably contain multiple receptor
binding sites, implying a role for cooperative protein–
protein interactions. Future challenges center on the
thermodynamic and kinetic coupling between receptor–
DNA assembly, coactivator recruitment and amplitude
of transcriptional activation. In this regard, more
sophisticated statistical thermodynamic models will be
necessary. However, this does not imply that every inter-
action associated with transcriptional output needs to be
accounted for—in the case of steroid receptor-specific
gene regulation, receptor–DNA energetics appear to be
paramount.

Figure 10. Predicted probabilities of the fully ligated promoter state
under competitive binding conditions. (A) Simulation of competitive
binding to an isolated half-site by three receptors differing in dimer-
ization and cooperative energetics. Red, kdim=10 mM and kc=200;

Figure 10. Continued
Blue, kdim=1 mM and kc=50; Green, kdim=16nM and kc=1.
Affinity of monomer binding to half-site was assumed to be an identical
1mM for all receptors. Strength of dimerization and cooperativity terms
is indicated schematically by font size of each parameter. (B) Same as
(A) but now binding to an isolated palindrome. Affinity of pre-formed
dimer binding was assumed to be an identical 10 nM for all receptors.
(C) Same as above, but binding to a promoter containing two palin-
dromic sites. (D) Same as above, but binding to a promoter containing
one half-site and one palindrome. (E) Same as above, but binding to a
promoter containing two half-sites.
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