
rsif.royalsocietypublishing.org
Research
Cite this article: Bartussek J, Lehmann F-O.

2018 Sensory processing by motoneurons:

a numerical model for low-level flight control

in flies. J. R. Soc. Interface 15: 20180408.

http://dx.doi.org/10.1098/rsif.2018.0408
Received: 4 June 2018

Accepted: 30 July 2018
Subject Category:
Life Sciences – Mathematics interface

Subject Areas:
computational biology, systems biology

Keywords:
motor control, muscle power output, sensory

integration, numerical modelling, insect flight
Author for correspondence:
Fritz-Olaf Lehmann

e-mail: fritz.lehmann@uni-rostock.de
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4191029.

& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Sensory processing by motoneurons:
a numerical model for low-level flight
control in flies

Jan Bartussek and Fritz-Olaf Lehmann

Institute of Biological Sciences, Department of Animal Physiology, University of Rostock, 18059 Rostock,
Germany

F-OL, 0000-0002-9511-3651

Rhythmic locomotor behaviour in animals requires exact timing of muscle

activation within the locomotor cycle. In rapidly oscillating motor systems,

conventional control strategies may be affected by neural delays, making

these strategies inappropriate for precise timing control. In flies, wing

control thus requires sensory processing within the peripheral nervous

system, circumventing the central brain. The underlying mechanism, with

which flies integrate graded depolarization of visual interneurons and spik-

ing proprioceptive feedback for precise muscle activation, is under debate.

Based on physiological parameters, we developed a numerical model of

spike initiation in flight muscles of a blowfly. The simulated Hodgkin–

Huxley neuron reproduces multiple experimental findings and explains on

the cellular level how vision might control wing kinematics. Sensory proces-

sing by single motoneurons appears to be sufficient for control of muscle

power during flight in flies and potentially other flying insects, reducing

computational load on the central brain during body posture reflexes and

manoeuvring flight.
1. Introduction
Rhythmic locomotor behaviour in animals results from periodic production of

muscle mechanical power. Muscle power typically depends on neural activation

frequency, but also strongly on the muscle’s spike phase, i.e. the timing of elec-

trical muscle activation within the locomotor cycle [1–3]. The latter mechanism

provides the nervous system with an additional opportunity to influence motor

control and locomotor efficacy. In most animals, the spike phase is controlled

by neural feedback acting through the physiology and biomechanics of the

locomotor apparatus. In the low-frequency locomotor systems of vertebrates,

timing is typically achieved by cyclic output of neural central-pattern generators

[4] that determine locomotor period and movements of body appendages. Con-

ventional neural strategies for phase control, however, may fail in locomotor

systems with high oscillatory frequencies of up to approximately 800 Hz [5].

Several problems for phase control in locomotor systems are associated with

synaptic delays and the time needed for spike propagation from sensors to the

central brain and locomotor muscles [6,7]. Thus, locomotion often requires

mechanisms of sensory processing at the level of the peripheral nervous

system [4]. This study investigates sensory processing and motor control in an

insect that flaps its wings at approximately 150 Hz stroke frequency.

Precision requirements for muscle activation timing are pronounced during

wing flapping in insects. Flies, for example, steer and manoeuvre within few

5–10 ms wing strokes [8–11]. In these animals, activation precision results

from cyclic proprioceptive feedback generated by halteres and wings

(figure 1a,b). Mechanoreceptors, i.e. campaniform sensilla, on these structures

deliver timing cues, producing temporal phase-locked action potentials in
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Figure 1. Sensory inputs to a model motoneuron. (a) Sensory inputs to the
motoneuron (MN.b1, blue) of a basalare 1 flight control muscle (M.b1) in
flies. MN.b1 receives ipsi- and contralateral input from up to 50 descending
interneurons (IN) (red) and afferences of mechanoreceptive campaniform sen-
silla located on halteres (green) and wings (orange) [12 – 15]. (b) MN.b1 fires
one spike in every wing stroke cycle at the end of the upstroke (blue). The
stroke cycle begins at the ventral stroke reversal (0/100% cycle). (c) Concep-
tional pathways of MN.b1 sensory inputs. Triangles and half circles indicate
electrical and chemical synapses, respectively, and circles the neurons’
soma. (d ) Hodgkin – Huxley type model of MN.b1. Visual signalling consists
of graded potentials (UIN). Haltere and wing signalling (UCS) is simulated by
periodic trains of action potentials with changing variance (s, standard devi-
ation), accumulating in two volleys of spikes per stroke cycle (up to 110
sensilla each, contralateral haltere is not considered). MN.b1 membrane par-
ameters are shown on the right. t, time between mean phase of sensilla
activation of ipsilateral wing and haltere; gINs, total synaptic conductance
between all visual IN and MN.b1; gW, conductance for one wing sensilla;
gH, conductance for one haltere sensilla; CMN, membrane capacitance; gK,
gNa and gL, conductances for potassium, sodium and leak currents, respect-
ively; EK, ENa and EL, reversal potentials of potassium, sodium and other ions,
respectively; UMN, membrane potential.
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every flapping cycle [8,16]. This feedback tightly couples

muscle activation phase to the motor cycle, with microsecond

precision in muscle spike initiation. During flight manoeuvres

and body instabilities, inertial forces deflect the beating

halteres from their normal stroke plane. As a result, cuticular

stress causes an increase in active sensilla and alters the timing

of flight muscle spike initiation [16–18]. Halteres thus act as a

gyroscopic system that automatically stabilizes the fly body in

flight with high accuracy and small delays [19–22].

Similar to halteres, mechanosensors on the wing surface

produce wing stroke-synchronous feedback for motoneurons

[8,23–25]. Their distribution and activation properties
enable them to encode wing loading [26] and cyclic wing

deformation [27]. Flight requires input from both sensory

systems, and—although both pathways provide excitatory

neural feedback—they act antipodal on wing stroke ampli-

tude control in flies [28]. Mechanosensory neurons from

halteres and wings partially circumvent the central brain

and directly project onto motoneurons of wing steering

muscles via enlarged chemical and electrical synapses

(figure 1c) [23,29,30]. However, because chemical trans-

mission rapidly fatigues at natural locomotor frequencies,

proprioceptive signalling in flies is primarily transmitted

via electrical synapses [29]. This signalling typically generates

no more than a single steering muscle action potential per

wing stroke at flapping frequencies of approximately 100–

125 Hz in the blowfly Calliphora and approximately 200 Hz

the fruit fly Drosophila [8,31–33].

During manoeuvring flight, the visual system of flies con-

trols steering muscle power output by either gating muscle

spiking or by shifting spike initiation phase via visual

motion-sensitive descending interneurons (IN) [34–43].

These two strategies reflect two significant requirements for

flight control: elevated changes of wing kinematics during

saccadic flight turns and escape behaviours, and subtle

changes during posture stabilization and heading precision

control, respectively [10,33,44–49]. The graded changes in

membrane potential of visual IN during vision-guided

flight are tiny though, amounting to approximately 10 mV

in Calliphora [38] and approximately 4 mV in Drosophila [12].

The first axillary (M.I1) and second basalare (M.b2) steer-

ing muscles in flies belong to the group of phasic active,

visually gated flight muscles. Their activity can be switched

on or off by the visual system [33,34]. On average, M.I1 and

M.b2 motoneurons generate muscles spikes with approxi-

mately one-third wing stroke frequency [32]. Activation of

M.I1 decreases, while activation of M.b2 increases wing

stroke amplitudes during vision-guided flight turns. In

addition, the gated spikes are phase-locked with respect to

the stroke cycle to maximize the muscle’s biomechanical effi-

cacy [1,2,31,32]. The first basalare steering muscle (M.b1), by

contrast, belongs to the group of tonic active muscles [34].

M.b1 is not gated and generates a single muscle spike in

almost every wing stroke cycle in Calliphora and Drosophila
[8,50–52]. Experiments have shown that M.b1 activity is

crucial for maintaining elevated wing stroke amplitudes

[52]. Visual stimulation of the animal’s compound eyes

with moving visual patterns shifts M.b1 spiking phase by

up to approximately 11% of the wing stroke cycle [32,52].

M.b1 is innervated by a single motoneuron, MN.b1. Up to

now, no mechanistic model exists that explains how the tiny

fluctuations in membrane potential of visual IN control spike

timing of MN.b1 in the presence of spiking input from

mechanoreceptors. Moreover, because sensory inputs estab-

lish electrical synapses on motoneurons [12,13,25,29,30],

spike phase constancy may not result from a balance between

excitatory and inhibitory postsynaptic activation via chemical

transmission. It has thus been suggested that visual signalling

in flies is synchronized with wing flapping at the level of

higher brain centres [9] and that visual input primarily acti-

vates haltere steering muscles instead of wing steering

muscles [53]. The latter studies, however, did not explicitly

explain how the signals are able to control the spike phase

in wing steering muscles at the cellular level. Alternatively,

sensory processing could occur directly within the motor
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system, which would require sufficient computational power

of MN.b1 [54].

Our goal was to develop a numeric simulation that

mimics vision-guided flight control of the blowfly Calliphora
based on dendritic integration processes on the level of a

single motoneuron. We used a Hodgkin–Huxley neuron

model to simulate the dynamic output of MN.b1 that receives

100 Hz wing stroke-synchronous trains of action potentials

from mechanoreceptors and graded membrane potentials

from descending visual IN. The simulation shows that

subtle shifts in interneuron membrane potential significantly

modulate the spiking phase, similar to those values exper-

imentally observed in M.b1 during optomotor stimulation.

Moreover, variation of simulation parameters reproduces

visual gating and typical activation patterns observed in

other steering muscles and neck motoneurons of flies.

Based on these results, we discuss strategies for multimodal

muscle control in the flight apparatus of flies.
0180408
2. Model formulation
2.1. Hodgkin – Huxley motoneuron model
The core of the simulation is a Hodgkin–Huxley type neuron

model [55] of the M.b1 motoneuron (MN.b1) in Calliphora that

changes its membrane potential dUMN/dt with time t,
depending on transmembrane currents, and is written as,

CMN
dUMN

dt
¼ Iext � INa � IK � IL, ð2:1Þ

with CMN the membrane capacitance per unit area, Iext the

sum of all electrical currents via electrical synapses between

motoneuron and sensory axons, INa the sodium current, IK

the potassium current and IL the neuron’s passive leak

current (figure 1d ). The leak current is IL ¼ gL(UMN 2 EL)

with gL the constant leak conductance and EL the reversal

potential of the leak current. Sodium and potassium

currents are defined as INa ¼ ĝNam3hðUMN � ENaÞ and

IK ¼ ĝKn4hðUMN � EKÞ, with ĝNa and ĝK the maximum ion

channel conductances, and ENa and EK the reversal poten-

tials, respectively. The parameters m, n and h are dynamic

variables that describe the voltage-dependent activation of

sodium and potassium channels, and the sodium channel

deactivation after spike initiation, respectively.

The external current Iext was computed from synaptic

conductance and the difference in membrane potentials

between MN.b1 and its sensory inputs, i.e. the potentials of

visual IN and campaniform sensilla action potentials from

the ipsilateral wing and haltere. The simulated wing stroke

period was 10 ms, which is similar to stimulation frequencies

used in previous experimental studies on steering muscles

[25,29]. The haltere nerve contains approximately 400 [16]

afferent axons of which approximately 110 sensilla project

onto MN.b1 [29,56]. By contrast, the wing nerve contains

about approximately 900 fibres from innervated bristles and

sensilla [8]. In this case, the number of axons that project

onto MN.b1 is unknown. Owing to similar evolutionary

development of wing and haltere campaniforms [24], we

simulated 110 sensilla of wing and haltere nerves each

(total 220 sensilla).

We excluded modelling A-type ion currents that are linked

to delayed spike initiation and low firing frequencies in Droso-
phila motoneurons [57]. Their contribution to motoneuron
depolarization behaviour is cell-specific [58] and no data are

published for MN.b1. Moreover, simulations of slowly firing

(approx. 40 Hz) indirect flight muscle motoneurons suggest

that two conventional Hodgkin–Huxley type currents (Naþ,

Kþ) are sufficient to reproduce all neural activation patterns

[57]. A-type currents might thus impair spike behaviour at

flight initiation but are not required for establishing spike

patterns that are present during continuous flight.

We modelled a single neural compartment with axonal

properties because both wing and haltere afferents establish

axo-axonal synapses [56] on MN.b1. Visual descending neur-

ons, such as DNDC3-6, likely contact the MN.b1 neuropil via

large dorsal dendrites [13]. The latter transmission is mod-

elled by synaptic conductance for visual signalling (gINs)

that determines graded current inputs to the MN.b1 axon.

The term gINs incorporates both the conductance of the inter-

neuron synapses and the conductance of the dendrite.

Adding more compartments to the model would only split

these two processes into two separate steps without having

significance for the results of our study.
2.2. Simulation of haltere and wing signalling
In each stroke cycle, sensilla feedback typically generates a

time series of several phase-locked action potentials (spikes)

inside the haltere nerve, termed spike volley [8,16]. Exper-

iments suggest that volleys result from cells with different

response latencies to mechanical stimuli onto the haltere’s

sensory fields or from response jitter (figure 1d ) [20]. In blow-

flies, 35–55 sensilla are activated during each stroke cycle in

undisturbed tethered flight. During moderate 3608 s21 yaw

turning, the number of active sensilla increases by at least

30% [16]. This suggests an elevated number of active sensilla

of more than 45–72 during saccadic turning at yaw velocities

of approximately 16008 s21 [59]. Volley duration lasts up to

25% of the stroke cycle in blowflies [16] and 17% in crane

flies [19]. The latter study suggests that in crane flies, each

campanifom sensillum fires at its own unique phase, covering

phases from approximately 7% to approximately 75% stroke

cycle [20]. The above estimates must be viewed with caution

though, either because of uncertainties in the data traces [16]

or because the halteres were externally moved by an electric

motor with small flapping amplitude [19,20]. We thus simu-

lated and tested multiple numbers of spiking sensilla and

also a broad range of volley durations at the simulated

stroke frequency of 100 Hz.

As the response latency of MN.b1 to wing nerve stimu-

lation (approx. 1.7 ms) is somewhat larger than to haltere

nerve stimulation (approx. 0.9 ms) [25,29], sensilla volleys

from the wings should reach the modelled neuron with a tem-

poral delay (t) with respect to the haltere signal. Parameter

fitting suggests that the maximum phase response in our

model cell occurs at t ¼ 0.625 ms, which is close to approxi-

mately 0.8 ms measured by electrical nerve stimulation

[25,29]. For simplicity, we did not model sensilla spikes

using the Hodgkin–Huxley equations but digitized their

waveform from intracellular sensilla recordings in Tipula
[19]. We rescaled the waveform in time to complement the

measured duration of extracellular potentials in the haltere

nerve of Calliphora, assumed a conventional membrane resting

potential of 265 mV, and used a spike amplitude of 50 mV

according to previous measurements [20] (figure 2).
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Figure 2. Parameter estimation. (a) Mechanical stimulation of a single haltere
sensillum in Calliphora results in an approximately 0.5 mV postsynaptic poten-
tial (black). Data are replotted from [29]. The response consists of an electrical
(blue) and a chemical component (green). Parameter values gH, gL and EL were
estimated from a numerical fit (red) to the electrical component only. (b)
Motoneuron currents in response to a spike of a single sensillum. ICS, electrical
current through the electrical sensilla-MN.b1 synapse; IL, INa and IK, are leak,
sodium and potassium currents through MN.b1 membrane, respectively; UCS,
sensillum membrane potential. (c) Simulated membrane potential of MN.b1
(UMN) in response to a narrow volley of 50 sensilla spikes from the haltere
(s¼ 0.2 ms, cf. figure 1). MN.b1 spike amplitude increases with increasing
maximum sodium conductance, ĝNa. At 165 mS cm22, MN.b1 spike amplitude
is approximately equal to the experimentally measured response in Calliphora
[29]. MN.b1 spike threshold is 240 mV.
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2.3. Synapse properties
Sensilla spike volleys from halteres and wings produce electri-

cal currents through chemical synapses and gap junctions of

steering muscle motoneurons. At natural wing stroke frequen-

cies, the chemical component fades owing to synaptic fatigue,

whereas the electrical component quickly stabilizes within

several stroke cycles after stimulus start [25]. A data fit to the

chemical transmission component [25] suggests that chemical

transmission decreases below 10% of its initial value within

approximately 130 wing strokes, which equals to only

approximately 1.3 s flight time (exponential fit, y ¼ ab*x, a ¼
0.706, b ¼ 20.018, R2 ¼ 0.86). As flies continuously steer for

many minutes, a 1.3 s transient is of little functional relevance.

Thus, while chemical synapses might play a role during flight

initiation, chemical transmission seems to be depleted during

steady flight. We therefore exclusively implemented electrical

synapses for wing and haltere sensilla in the model.

Currents through electrical synapses depend on the

difference between the membrane potentials of sensory

axons and MN.b1, and synaptic conductance. A previous

study showed that in Calliphora, conductance (g) is constant

over the entire physiological range of spike frequencies [25].

This finding simplifies modelling because in this case, instan-

taneous currents only depend on the temporal volley
structure and the sensory neuron’s membrane potential. We

determined conductance for halteres (gH) and wings (gW)

by a multi-dimensional fitting procedure, in which we

determined multiple model parameters according to electro-

physiological recordings of fly motoneurons (see the next

section, figure 2a,b). Assuming the same signal structure in

all sensilla and same conductance for all synapses, haltere

(IH) and wing (IW) nerve-induced total currents through an

electrical synapse can be written as,

IH ¼
X#CS

i¼1

gHðUCSi �UMNÞ

and IW ¼
X#CS

i¼1

gWðUCSi �UMNÞ:

9>>>>>=
>>>>>;

ð2:2Þ

By contrast, visual signalling is transmitted through synapses

of up to 50 pairs of descending IN [13]. MN.b1 perceives non-

spiking, gradually changing input from at least one of these

IN [13]. As dye-coupling studies found electrical synapses

but no direct evidence for the existence of chemical synapses

[12,13], visual input was exclusively modelled via gap

junctions and thus similar to proprioceptive input. Even

assuming that chemical transmission exists, the model results

would not change because of slow input dynamics and recti-

fication of chemical transmission (see the next section). We

considered the combined effect of k active visual IN, driving

a total current IIN into the MN.b1,

IIN ¼ gINs(UIN �UMN), ð2:3Þ

with gINs ¼ kgIN. In all experiments, gINs was 1.0 mS cm22

(see also electronic supplemental material).

All electrical synapses were modelled as rectifying junc-

tions. Rectification is often seen between different classes of

neurons such as visual IN and motoneurons, resulting in an

unidirectional flow of information [60]. In Drosophila, rectify-

ing synapses were found between the lateral giant fibre and

the motor giant neuron, and between several other neurons

[61,62]. Direct evidence for rectification also exists for

MN.b1 [29]. The latter study showed that there is no response

in the haltere nerve when MN.b1 generates spikes, whereas

spiking of haltere sensilla results in excitatory postsynaptic

potentials (EPSPs) of MN.b1. Thus, the total current through

all electrical synapses is,

Iext ¼ ~Iextuð~IextÞ, ð2:4Þ

in which u is the Heaviside step function,

uð~IextÞ ¼
0, ~Iext , 0

1, ~Iext � 0

( )
, ð2:5Þ

with,

~Iext ¼ IH þ IW þ IIN: ð2:6Þ

2.4. Parameter estimation
Postsynaptic electrical response of MN.b1 to synaptic input

depends on two factors. First, the synaptic conductance of

the synapse that determines the transmission factor, and,

second the leak current dynamics (gL, EL) that dominates the

subthreshold response towards small currents. We simul-

taneously determined the parameters gL, EL and gH using

our Hodgkin–Huxley model, so that the model output
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matches the EPSP recorded in MN.b1 of Calliphora in response

to a spike in a single sensillum [29] (figure 2a,b). The fitting pro-

cedure was a multi-dimensional, unconstrained, nonlinear

minimization approach on the EPSP’s electrical component.

Owing to the initial coexistence of electrical and chemical

synaptic transmission, the measured EPSP in MN.b1 consists

of an approximately 500 mV fast peak and a second, slowly

decaying calcium-peak from the chemical synapse (figure 2a).

To neglect chemical transmission, we approximated the

response of the chemical synapse by a peak-fitting algorithm

(peakfit.m, written by Thomas C. O’Haver, exponential pulse

waveform) and subtracted the computed fit values (chemical

component, green, figure 2a) from the measured EPSP (black,

figure 2a) before application of the Hodgkin–Huxley model

fit. The difference is shown in blue and the fit to this difference

using the Hodgkin–Huxley model in red (figure 2a). To avoid

risks associated with overfitting, we tested a set of 100

randomly distributed initial parameter conditions for gL, EL

and gH (see electronic supplemental material for detailed

results, figure S1). At minimum mean error between model

and measured data, the fitting procedure yields gH ¼

0.16 mS cm22, gL ¼ 5.84 mS cm22, and EL ¼ 252.26 mV. As

the electrical response of MN.b1 following wing nerve stimu-

lation is approximately half the haltere nerve stimulation [25],

we defined gW ¼ 0.08 mS cm22.

In contrast with EPSP, MN.b1 spike amplitude mainly

depends on the instantaneous ratio between leak and sodium

currents. At low sodium–leak current ratio, the postsynaptic

potentials fail to reach the sodium trigger threshold or the eli-

cited spikes tend to undershoot [63–65]. As instantaneous

sodium current depends on maximum sodium conductance

ĝNa, we determined ĝNa from a comparison between simulated

and experimentally recorded spikes in MN.b1. In Calliphora
and Drosophila, MN.b1 spikes reach only small approximately

30–45 mV amplitudes with respect to resting potential

[29,30]. Figure 2c shows how the simulated spike amplitude

increases with increasing ĝNa. We found that the model

output broadly matches the measured mean spike potential

of approximately 37.5 mV at ĝNa ¼ 165 mS cm22. The remain-

ing model parameters m, n and h were approximated by

original Hodgkin–Huxley values. The ratio gL/ĝNa of leak to

sodium conductance is 0.035 and similar to the value used in

a previous publication on neuron dynamics in Drosophila
(0.036) [25]. The absolute and relative refractory period of the

model neuron are approximately 1.5 ms and approximately

15.5 ms, respectively, and similar to a Hodgkin –Huxley

model with standard parameters [66].

The simulation was implemented in Matlab (The Math-

Works, USA) partly using a previously published code

based on explicit Euler formalism [67]. The adapted code is

available on request. To improve accuracy, we modified the

code using an explicit second-order Runge–Kutta integration

formalism (Heun’s method) with an integration time step

Dt ¼ 0.01 ms. We validated the model for numerical stability

by varying Dt between 0.02 and 0.005 ms.
3. Results
3.1. Three distinct motoneuron behaviours
During flight, MN.b1 and other steering muscle motoneurons

perceive periodic input from wing and haltere campaniform

sensilla in every wing stroke [8]. Up to now, there are no data
available on the number of spiking sensilla in freely man-

oeuvring flies. We thus simulated different input strength

from a minimum of one haltere and one wing sensillum to

a maximum of 110 sensilla each. We found three distinct

behaviours of the model cell that are consistent with previous

experimental and numerical studies on neurons subject

to periodic input [68]. These behaviours are quiescence,

frequency-locking and irregular firing (figure 3). In this section,

we explain how these behaviours depend on the number of

active sensilla. The results from a systematic parameter

mapping procedure are presented in the following section.

Figure 3b shows that no motoneuron spikes are generated

if the number of spiking sensilla is less than 35% of total 220

sensilla (quiescence behaviour). The quiescence behaviour

persists when visual input varies between 240 and 230 mV.

Above a lower stimulus threshold of 35% spiking sensilla,
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the input entrains the model cell to fire. At an input between

35 and 55% spiking sensilla, the model regularly fires a

single spike in every second wing stroke (1 : 2 locking behav-

iour, figure 3a,b). At an input between 57 and 63%, the

motoneuron generates two spikes every three wing strokes

(2 : 3 locking behaviour), and input of more than 67% sensilla

entrains spiking in every wing stroke (1 : 1 locking behaviour)

and thus at wing stroke frequency. A value of 67% compares to

148 sensilla, i.e. 74 sensilla from haltere and wing each. At 1 : 2

and 1 : 1 locking behaviours, all motoneuron spikes are gener-

ated at one stroke cycle phase, depending on input strength.

At 2 : 3 locking behaviour, by contrast, spike phase alternates

(figure 3c). In this case, every second spike is phase-delayed

owing to an insufficient recovery time of the model

ion channels.

In figure 4c, we summarize sensilla-induced locking mode

and phase shifting behaviours. This figure shows how an

increasing number of spiking sensilla shifts spiking modes

and within each spiking mode also spiking phase. During

1 : 2 locking, phase decreases (advances) with an increasing

number of spiking sensilla until the system switches to 2 : 3

locking. Within 2 : 3 locking, there is little phase effect. Switch-

ing to 1 : 1 locking, phase is maximum delayed but decreases

(advances) if the number of spiking sensilla further increases.

At the transients between the three locking intervals,

spike generation occurs in an irregular manner, producing

fluctuating spike frequency (figure 3e, lower trace) and

phase shift (grey, figure 3b,c). Spike amplitude varies and

spike phases are distributed over an extended interval of

approximately 12% stroke cycle. This non-periodic (chaotic)

MN.b1 firing in response to periodic input results from the

intrinsic nonlinearity of the Hodgkin–Huxley equations

and is independent of any membrane noise [69–71].

Neurons typically face electrical membrane noise resulting

from various sources that may alter excitability and thus the

outcome of our numerical simulation [67]. Experimental

data suggest that MN.b1 membrane potential fluctuates
with magnitudes up to 0.25 mV [29,30]. To evaluate phase

stability during mode-locking under more natural conditions,

we added random membrane potentials (Gaussian noise) to

the model cell (figure 3d ). Note that voltage noise differs

from current and conductance noise and directly acts on the

membrane potential. The added fluctuating potentials are

normally distributed around zero with standard deviations

(sNoise) of 0.1 and 0.25 mV. The latter values represent the

lower and upper boundaries in noise that have been previously

measured in flies [29,30]. We found that voltage noise has only a

limited effect on phase stability during 1 : 1 locking. Standard

deviation of spiking phase was approximately 0.7% stroke

cycle at sNoise ¼ 0.1 mV and approximately 1.5% stroke cycle

at sNoise ¼ 0.25 mV. This robustness against membrane noise

supports the assumption that, besides spike frequency, the

spike phase is a convenient measure to control steering

muscle power in flies [1]. However, noise smears out the

sharp transients between spiking modes. Figure 3e shows

that at subthreshold input of 33% spiking sensilla (upper

trace), the membrane fluctuations are sufficient in magni-

tude to elicit MN.b1 spikes, leading to stochastic spiking

with random interspike intervals.

3.2. Visual signalling determines motoneuron
spike phase

During visual manoeuvring flight, MN.b1 perceives chan-

ging electrical currents resulting from graded changes in

membrane potential of visual IN. To test the impact on

flight control, we added stepwise and oscillatory changes

in interneuron potential to our model cell and scored

MN.b1 spike phase.

Figure 4a shows that at 1 : 1 locking, stepwise depolariz-

ation of UIN (ON response) from 240 to 230 mV leads to an

approximately 9 mV increase in spike amplitude and an

advance in spike phase of approximately 10% stroke cycle

within three stroke cycles after the transition. The steady-
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state response at 1 : 1 locking shows that with increasing inter-

neuron membrane potential, MN.b1 spike phase decreases

(advances) monotonically from approximately 65% to

approximately 57% stroke cycle (figure 4b). Repolarization

(OFF response) from 230 to 240 mV shows longer transients,

scattered around eight stroke cycles (figure 4a). Similar to a

low-pass filter, ON- and OFF-response times alter phase

shift amplitude and timing between visual input and moto-

neuron phase during oscillatory input. The magnitude of

both effects increases with increasing input frequency. At

10 mV peak-to-peak sinusoidal visual stimulation (230 to

240 mV), stimulus frequencies of up to approximately 2 Hz

attenuate phase modulation only little, i.e. peak phase modu-

lation amounts to approximately 95% of the steady-state

response. At elevated frequencies, MN.b1 phase modulation

progressively collapses and maximum phase shifts are only

approximately 75% of the steady-state response at 3 Hz, 63%

at 4 Hz, 48% at 8 Hz and 40% at 16 Hz stimulus frequency

(data not shown). Noteworthy, a similar stimulus frequency-

dependent alteration has also been observed in the wing kin-

ematics of tethered flying Drosophila, responding to

oscillating visual stimuli displayed in a flight simulator [72].

We further investigated how visual motor control

depends on the temporal structure of the mechanosensory

input. This analysis included two-dimensional parameter

mapping of volley width and number of spiking sensilla.

Figure 4c shows the parameter combinations that produce

the dominant model behaviours: quiescence, 1 : 2, 2 : 3 and

1 : 1 locking at constant visual input (UIN¼ 240 mV).

Figure 4d shows that a 10 mV depolarization of visual IN

(UIN ¼ 230 mV) relatively shifts MN.b1 phase by up to

approximately 8% stroke cycle. This value, however, requires

specific combinations between number of spiking sensilla

and volley widths. Our model predicts that phase advances

during 1 : 1 locking are limited to a small band of input par-

ameters near the transition to 2 : 3 locking (light brown,

figure 4d ). Within this transition, the firing behaviour of

MN.b1 can vary between 1 : 1 and 2 : 3 locking due to

changing visual signalling, altering both spike phase and fre-

quency (figure 4d,e). Experimental studies on tethered flies

report similar results on wing stroke frequency fluctuations

in flight [31,73]. Our simulation suggests that this variance

in firing might result from an insufficient number of spiking

sensilla required for reliably firing spikes in 1 : 1 mode at

tethered flight condition.
3.3. Visual gating
With parameter settings that approximate the physiology of an

M.b1 motoneuron, our model may not reproduce visual

gating of motoneuron spiking. Visual gating is typical for

steering muscle motoneurons of axillary M.I1, M.III1 and

basalare M.b2 [32] including neck muscle motoneurons [74].

Once gated in flight, spikes are phase-locked with respect to

the stoke cycle [74]. We found that visual gating only occurs

in the model, if we increase neuronal excitability of the simu-

lated membrane by increasing maximum conductance of

sodium channels ĝNa and/or decreasing leaky conductance

gL. Notably, these changes are not covered by experimental

data but highlight that relatively small modifications in

model parameters are sufficient to produce gating and other

spiking behaviours. The latter is important because of the

uncertainties in experimental data and our little knowledge
on properties of other flight motoneurons than MN.b1. Spike

gating is similar to a shift in spiking mode at physiological

conditions (MN.b1 parameter values), as shown for the

response to a 10 mV change in visual input in figure 5a. In con-

trast with figure 5a, however, visual gating occurs between

quiescence and locking behaviours. The following two

examples are chosen to highlight this issue.

Figure 5b shows that spike gating behaviour occurs when

gL is reduced from 5.84 to 3.60 mS cm22, while keeping all

other Hudgkin–Huxley parameters. At these settings, spik-

ing of few (13–26) sensilla produces small EPSPs below the

firing threshold. A depolarization in visual interneuron

potential by 10 mV allows spike initiation with 1
4 stroke fre-

quency (1 : 4 locking behaviour). This pattern is close to

what has been observed in M.b2 during flight in Drosophila
[74]. Figure 5c shows a simulation, in which ĝNa is reinforced

from 165 to 240 mS cm22. Under these conditions, the

model neuron spikes at low 76 Hz in response to 10 mV
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4. Discussion
4.1. Model robustness and significance of inputs
We rigorously tested the robustness of our findings using var-

ious combinations between t, s, gINs and UIN (see electronic

supplementary material, figure S2). We found that the

required number of spiking sensilla for 1 : 1 mode-locking

increases with increasing s, t and gINs, and decreases with

increasing (depolarizing) UIN. We also found that at a wide

physiological range, multiple combinations of model par-

ameters are able to produce MN.b1 1 : 1 phase-locked firing

behaviour. This phenomenon is known from other modelling

studies and reflects findings that neural circuits of individuals

may robustly yield the same output, even if there is a consider-

able variance in neuronal properties [75]. Variance is also

present in genetically identical flies, such as in the number

and properties of synapses, ion channels and receptors [76].

Vision-induced phase shifting, by contrast, appears to be

limited to rather specific combinations of sensilla spike

number and the spikes’ temporal distribution (figure 4d ).

Thus, considering the variability of biological systems, the

question arises how MN.b1 maintains its finely tuned proper-

ties over the entire lifetime of the fly because numerous

studies show that the physiology of a fly changes as the

animal grows older [77–79]. One possible explanation is

homeostatic control of MN.b1. In particular, the activity-

dependent regulation of ion channel densities that determine

signalling properties. Homeostatic control may stabilize

neural function over time by constraining neural plasticity

[80]. For example, it has been shown that homeostatic control

of signal transmission at the Drosophila neuromuscular junc-

tion (NMJ) operates rapidly on a timescale of seconds [81]

and with millivolt precision [82]. Homeostatic control might

also explain how flies that were allowed to rest for 1 h after

partial ablation of mechanosensory inputs are able to

perform visual manoeuvring under tethered conditions [28].

In contrast with a standard Hodgkin–Huxley neuron, the

membrane of our model neuron is less electrically excitable.

This is largely due to an approximately 20 times higher leak

conductance (gL ¼ 5.84 mS cm22 versus gL ¼ 0.3 mS cm22,

MN.b1 versus standard neuron), while maximum sodium

conductance is approximately similar in both types of neurons

(ĝNa¼ 165 mS cm22 versus ĝNa ¼ 120 mS cm22). Neverthe-

less, major properties of our MN.b1 model cell such as

sodium conductance and the ratio between leak and

sodium conductance (gL/ĝNa¼ 0.0354) are almost identical

to experimental values obtained from motoneurons of

indirect flight muscles in Drosophila, i.e. ĝNa¼ 156 mS cm22

and gL/ĝNa¼ 0.036 [57]. The reduced electrical excitability of

MN.b1 model membrane hinders our model cell to spike in

response to vision without proprioceptive input. This

means that MN.b1 may not generate spikes in a resting fly,

even though the visual system provides strong excitatory

input from a moving environment (cf. §3.3). Notably, this

suppression of motoneuron activity was also found in electro-

physiological measurements in blowflies [53], in which it

was shown that visual stimulation of resting flies does not

generate any spikes in wing steering muscles.
4.2. Multimodal flight control
Major results of our simulation are consistent with multiple

behavioural and electrophysiological findings in flies. In par-

ticular, the simulation suggests a mechanistic explanation for

the various forms of spike patterns and phase-locking beha-

viours as measured in flight steering muscles. We limited

our analysis to steering muscles because asynchronous

power muscles in flies morphologically and functionally

differ from steering muscles [8,83].

Our data show how the number and temporal distri-

bution of spiking sensilla and visual input alter the output

of MN.b1 (figures 3–5). Besides vision-guided wing control,

our modelling also provides a possible explanation for the

function of the fly’s ‘gyroscopic autostabilizer’ (figure 6c)

[18,84]. The autostabilizer describes a feedback control-loop

in flies, with which the haltere output controls wing motion

by gyroscopic sensing [18,84]. This feedback-loop is thought

to stabilize the fly’s body without visual input [18,84].

Body rotation, for example, changes Coriolis force on halteres

and wings. While halteres are thought to be deflected out-of-

plane, wings may undergo torsional deformation during

body rotation [18,84]. The resulting cuticular stress on the

structures may recruit additional sensilla and likely increases

spike volley width. According to our simulation results,

rotation-induced changes in sensory input may lead to a

change in MN.b1 spike mode, assuming a small number of

active sensilla, or a Coriolis force-dependent advance in

MN.b1 spike phase at an elevated number of spiking sensilla

(1 : 1 locking). Figure 4d also suggests that during 1 : 1 lock-

ing, an increase in the number of spiking sensilla decreases

the impact of the visual system on phase control. In other

words: if the halteres get more active, they more and more

disable vision-induced phase control. The spike phase, how-

ever, still advances with increasing numbers of spiking

sensille, as shown in figure 4c. This means for example, that

during quick yaw turns, haltere output modulates muscle

tension, while vision-induced phase changes are broadly sup-

pressed. The latter prediction might explain the experimental

finding that mechanical oscillation of the fly’s body leads to

suppression of vision-induced steering behaviour [54].

As already mentioned in the introduction, flight steering

muscles in flies fall into two groups: tonic and phasic muscles

[34]. Tonic muscles are typically continuously active in flight

such as M.b1, while phasic muscles sporadically generate

action potentials [8]. Phasic muscles may be gated by the

visual system [32]. The spikes in both types of muscles are

phase-coupled to the stroke cycle [8]. Tonic muscles subtly

change wing motion as needed for smooth manoeuvring,

body stabilization and fine-tuning of body saccades [34,52].

Gated muscles, by contrast, control more elevated changes

in wing kinematics (figure 5a–c) [49]. Assuming that the

properties of motoneurons vary between the various steering

muscles and that visually gated motoneurons exhibit elev-

ated membrane excitability (cf. §3.3), our model reproduces

both—phase control and gating. Most notably, maximum

visually induced phase shift of the MN.b1 model neuron

(approx. 9% stroke cycle, figure 4b) is consistent with

experimentally derived values on M.b1 in Calliphora and

Drosophila. In tethered animals, these values range from 10

to 15% stroke cycle [8,31,32]. A 10% shift in activation

phase thereby translates into a 25% change in muscle

mechanical output of M.b1 (figure 6d ) [1,49].
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The question of how steering muscles produce different

behaviours to similar proprioceptive and visual input is puz-

zling. A possible explanation is as follows. Our simulation of

visual control identified a lower threshold value for UIN that

is needed to elicit spike gating in MN.b1. In the selected

example (figure 5b), this value amounts to approximately

234 mV, i.e. approximately 6 mV above resting potential.
However, a depolarization of approximately 6 mV is also

sufficient to shift MN.b1 phase by approximately three-

fourths of its maximum value. We thus hypothesize that if

visual IN remain subthreshold owing to weak visual input,

the flying animal will smoothly adjust its wing motion only

by phase shift in tonic muscles, such as M.b1. At elevated

visual stimulation, interneuron depolarization may exceed

the threshold for muscle spiking. As a consequence, the fly

could recruit visually gated muscles for elevated changes in

wing kinematics, such as M.b2 [2]. Under free flight con-

ditions, there might be continuous switching and overlap

between these two flight modes, depending on the strength

of feedback from the visual environment, e.g. during self-

motion. Descending neurons might also perceive input

from other sensors such as the antennae and higher-order

commands from the central brain. This additional input

might explain that visually gated steering muscles do not

always spike in the presence of visual stimuli [12,34]. In

sum, a comparatively simple change in electrical excitability

of the motoneuron membrane might be responsible for the

different response behaviours of steering muscles, so that

muscles with different properties can be controlled by the

same underlying neural circuitry.
5. Concluding remarks
For decades, flight control in flies served as a model system

for understanding basic mechanisms of neural computation

during locomotion. The flight motor system that structures

the underlying motor pattern has usually been considered

as a ‘black box’ and treated with control-theoretical and

descriptive models [21,49,54,85–89]. Although high-level

models identify functional features, they can hardly explain

how sensory information is processed on a cellular level.

Without seeking higher brain function, our model reproduces

several experimental findings and generates hypotheses for

their underlying neural function. In flies, the computational

power of a single motoneuron appears to be adequate for sen-

sory integration, allowing precise phase-dependent changes

in wing muscle power. Our simulation further suggests that

there is no need to synchronize visual signalling with the

wing stroke before sensory integration, as previously pro-

posed [9]. As the model can be smoothly adapted to

generate the firing pattern observed in other motoneurons,

the integration of wing stroke synchronous proprioceptive

action potentials and graded visual signalling on the level

of motoneurons might be a common principle for motor

control in flies, and maybe other flying insects.
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