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Background: Recent advances in artificial intelligence and digital image processing have inspired the use 
of deep neural networks for segmentation tasks in multimodal medical imaging. Unlike natural images, 
multimodal medical images contain much richer information regarding different modal properties and 
therefore present more challenges for semantic segmentation. However, there is no report on systematic 
research that integrates multi-scaled and structured analysis of single-modal and multimodal medical images.
Methods: We propose a deep neural network, named as Modality Preserving U-Net (MPU-Net), for 
modality-preserving analysis and segmentation of medical targets from multimodal medical images. The 
proposed MPU-Net consists of a modality preservation encoder (MPE) module that preserves the feature 
independency among the modalities and a modality fusion decoder (MFD) module that performs a multiscale 
feature fusion analysis for each modality in order to provide a rich feature representation for the final task. 
The effectiveness of such a single-modal preservation and multimodal fusion feature extraction approach 
is verified by multimodal segmentation experiments and an ablation study using brain tumor and prostate 
datasets from Medical Segmentation Decathlon (MSD).
Results: The segmentation experiments demonstrated the superiority of MPU-Net over other methods 
in the segmentation tasks for multimodal medical images. In the brain tumor segmentation tasks, the Dice 
scores (DSCs) for the whole tumor (WT), the tumor core (TC) and the enhancing tumor (ET) regions were 
89.42%, 86.92%, and 84.59%, respectively. In the meanwhile, the 95% Hausdorff distance (HD95) results 
were 3.530, 4.899 and 2.555, respectively. In the prostate segmentation tasks, the DSCs for the peripheral 
zone (PZ) and the transitional zone (TZ) of the prostate were 71.20% and 90.38%, respectively. In the 
meanwhile, the 95% HD95 results were 6.367 and 4.766, respectively. The ablation study showed that the 
combination of single-modal preservation and multimodal fusion methods improved the performance of 
multimodal medical image feature analysis.
Conclusions: In the segmentation tasks using brain tumor and prostate datasets, the MPU-Net method 
has achieved the improved performance in comparison with the conventional methods, indicating its 
potential application for other segmentation tasks in multimodal medical images.
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Introduction

Image segmentation is an important step for reconstructing 
the anatomical structures of relevant tissues and organs 
as preoperative images are analyzed for precise surgical 
navigation or accurate diagnosis of diseases (1-3). 
Automated lesion segmentation can provide physicians 
with critical information about tumor volume, location 
and shape, highlighting the core tumor region and the 
entire tumor area. In the process of biomedical image 
analysis, image segmentation help to focus on pathology (4), 
track disease progression (5), and characterize anatomical 
structures and defects (6). Moreover, it facilitates timely 
diagnosis and effective treatment of neurological disorders 
such as Alzheimer’s disease (7) and Parkinson’s disease (8). 
In these applications, image segmentation helps to generate 
quantitative measurements (e.g., mask of the lesion) for 
subsequent tasks of diagnostic and treatment planning. 
Thus, automated and reliable segmentation techniques play 
a pivot role in clinical management of many diseases.

In the field of image analysis, many segmentation 
methods have been developed and implemented, such as the 
active contour model (9), the atlas-based registration (10), 
the fuzzy clustering (11), the superpixel method (12) and 
the graph-cut method (13). Convolutional neural networks 
(CNNs) (14) and other deep learning methods have also 
been widely used in automated medical image analysis  
(15-18). Ronneberger et al. presented a network called 
U-Net, which consisted of a contracting path to capture 
context and a symmetric expanding path that enabled precise 
localization (19). U-Net has been a great success in the 
field of biomedical image segmentation, and many U-Net-
based architectures have been developed since then. Bakas 
et al. reviewed the work on brain tumor segmentation over 
the years in detail (20). Kamnitsas et al. explored Ensembles 
of Multiple Models and Architectures (EMMA) for brain 
tumor segmentation and won first place in the BraTS (Brain 
Tumor Segmentation Challenge) 2017 (21). Myronenko 
described a semantic segmentation network based on 
encoder-decoder architecture, and added a variational auto-
encoder branch to reconstruct the input image itself in order 
to regularize the shared decoder and impose additional 
constraints on its layers (22). Myronenko’s approach 

won first place in the BraTS 2018. Qin et al. proposed 
U2Net, which was also a successful architecture based 
on the U-Net structure for salient object detection (23).  
The most distinctive feature of U2Net was a two-level 
nested U-structure which was able to capture more 
contextual information from different scales. Isensee et al. 
developed nnU-Net, a deep-learning based segmentation 
method that automatically configures itself, including 
preprocessing, network architecture, training and post-
processing for any new task (24). In Medical Segmentation 
Decathlon (MSD) challenge, nnU-Net achieved state-of-
the-art performance on many tasks including against task-
optimized networks (25). Hatamizadeh et al. introduced 
a novel architecture, dubbed as UNEt TRansformers 
(UNETR), that utilized a transformer as the encoder to 
learn sequence representations of the input volume and 
effectively capture the global multi-scale information, while 
also following the successful “U-shaped” network design 
for the encoder and decoder (26). Tang et al. proposed a 
new 3D transformer-based model, dubbed Swin UNEt 
TRansformers (Swin UNETR), with a hierarchical 
encoder for self-supervised pre-training, and demonstrated 
successful pre-training of the proposed model on 5,050 
publicly available computed tomography (CT) images from 
various body organs (27). Liu et al. introduced embedding 
learned from Contrastive Language-Image Pre-training 
(CLIP) to segmentation models, dubbed the CLIP-Driven 
Universal Model, which could better segment 25 organs and 
6 types of tumors by exploiting the semantic relationship 
between abdominal structures (28). The various U-Net-
based image segmentation techniques are shown in Table 1.

Despite these advances, automated segmentation of 
multimodal medical images presents unique challenges. 
An example of a multimodal medical images is shown in 
Figure 1. Since the relationship between different modalities 
is highly nonlinear, appropriate modal fusion is crucial 
for successful image segmentation (29). However, for the 
multimodal image segmentation tasks that rely on specific 
modalities, extracting valid information from multiple 
modalities is difficult if these modalities are not exploited 
concurrently (30). In this regard, most of the multimodal 
image analysis techniques adopted the early fusion strategy 
where multiple modalities are fused at the first stage 
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Table 1 Various U-Net-based image segmentation techniques

Methods First author Institution Characteristic Task Year

U-Net (19) Ronneberger University of Freiburg, 
Germany

Consists of a contracting path to capture context and 
a symmetric expanding path that enables precise 
localization

Biomedical 
image 
segmentation

2015

EMMA (21) Kamnitsas Imperial College London, 
UK

Aggregation of predictions from a wide range of 
methods

Brain tumor 
segmentation

2017

Encoder-Decoder-
VAE (22)

Myronenko NVIDIA, USA A variational auto-encoder branch is added to 
reconstruct the input image

Brain tumor 
segmentation

2019

U2Net (23) Qin University of Alberta, 
Canada

Two-level nested U-structure to capture more 
contextual information from different scales

Salient object 
detection

2020

nnU-Net (24) Isensee German Cancer Research 
Center, Germany

Automatically configures segmentation method, 
including preprocessing, network architecture, 
training and post-processing for any new task

Biomedical 
image 
segmentation

2021

UNETR (26) Hatamizadeh NVIDIA, USA Utilizes a transformer as the encoder to learn 
sequence representations of the input volume and 
effectively capture the global multi-scale information

Medical image 
segmentation

2022

SwinUNETR (27) Tang NVIDIA, USA A new 3D transformer-based model with a 
hierarchical encoder for self-supervised pre-training

Medical image 
segmentation

2022

Universal Model 
(28)

Liu City University of Hong 
Kong, Hong Kong

Introduce embedding learned from CLIP to 
segmentation models

Medical image 
segmentation

2023

EMMA, Ensembles of Multiple Models and Architectures; VAE, Variational Autoencoder; UNETR, UNEt TRansformers; CLIP, Contrastive 
Language-Image Pre-training. 

of feature analysis (31). In addition, late fusion and the 
strategies that combines early and late fusion have also 
been explored (32,33). In summary, the current research 
effort has focused on how to fuse the primary single-
modal information into multimodal information. Of all the 
literature we reviewed, there is no related work that extracts 
single modality features, analyzes the single modalities, 
and fuses the single-modal information at different scales 
with multimodal information. The lack of structured cross-
modal information fusion at different scales leads to the 
loss of rich modal information in the network and limits its 
effectiveness and application in multimodal medical image 
analysis. Therefore, it becomes crucial to find more efficient 
methods that concurrently integrate the analysis of different 
imaging modalities (34).

In the development of artificial intelligence image analysis, 
some unique approaches have achieved great success and 
attracted much attention from researchers. The best-known 
method for biomedical image segmentation is U-Net (19), as 
they have significant predictive performance and are widely 
used due to their flexible architecture. In the encoder of the 
U-Net architecture, the network learns deep features, and 
in the decoder, the network performs segmentation based 

on the learned features. There are skip connections between 
each layer of the encoder and decoder for better information 
transfer, making the segmentation more successful. Due 
to the good performance of U-Net, many studies on the 
segmentation of multimodal medical images were improved 
on the basis of U-Net (23,24,26,35,36). In addition to U-Net, 
Group convolution (37) has received much attention as a 
basic module for feature extraction. Group convolution 
differs from the commonly used image convolution in that a 
channel of the output features is affected by only a portion of 
the input channels instead of all the input channels, as shown 
in Figure 2. Therefore, group convolution has great potential 
in multimodal medical image analysis by extracting features 
while maintaining independence between modalities.

To address the above problem, we designed a structured 
single-modal preservation and multimodal fusion medical 
image segmentation network called MPU-Net based on 
vanilla U-Net and group convolution. The network consists 
of a modality preservation encoder (MPE) module and a 
modality fusion decoder (MFD) module. MPE enables 
multiscale feature extraction of multimodal images, and 
MFD generates a segmentation mask based on the features 
extracted by MPE. In the encoder, we use both group 
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Figure 1 Representative multimodal medical MR images of brain tumor and the prostate. (A) Brain tumor in the T1 modality. (B) Brain 
tumor in the T1ce modality. (C) Brain tumor in the T2 modality. (D) Brain tumor in the FLAIR modality. (E) Prostate in the ADC modality. 
(F) Prostate in T2 modality. MR, magnetic resonance; T1, T1-weighted; T1ce, T1-weighted contrast-enhanced; T2, T2-weighted; FLAIR, 
fluid attenuated inversion recovery; ADC, apparent diffusion coefficient. 

Figure 2 Demonstration of common convolution and group convolution. (A) Common convolution. (B) Group convolution with group of 2. 
(C) Group convolution with group of 4. 

convolution and common convolution to achieve multiscale 
feature extraction with single-modality preservation 
and multimodal fusion, providing a basis for medical 
image segmentation tasks that may depend on specific 

modalities. In the decoder, we output a segmentation 
mask that combines the information of single-modality 
preservation and multimodal fusion, which can further 
improve the performance of medical image segmentation 
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tasks. Compared with other image segmentation networks 
(e.g., U-Net), we do not completely mix the different image 
modalities but retain the separate low-level and high-level 
semantic features of each modality, thus providing clearer 
features for modality-specific tasks as much as possible.

In this paper,  we introduced MPU-Net and its 
components MPE and MFD and tested MPU-Net with 
a four-modality brain tumor image dataset and a two-
modality prostate image dataset from MSD (25). We 
also compared MPU-Net with popular medical image 
segmentation methods to demonstrate the advantages of 
MPU-Net for multimodal medical image segmentation. 
Finally, we performed an ablation study to verify the 
effectiveness of modality fusion combined with modality 
preservation methods.

The main contributions of this paper are thus summarized 
as follows:
 We proposed a novel MPU-Net that was better 

adapted to multimodal medical image segmentation 
tasks by two innovative modules: the MPE module 
and the MFD module. In MPE, by using both group 
convolution and common convolution, we can 
obtain multimodal fused features while maintaining 
single-modal features. In MFD, the segmentation 
performance was improved by deeply fusing the 
multimodal features and single-modal features passed 
by MPE.

 We applied MPU-Net to two multimodal medical 
image segmentation databases, brain tumor and 
prostate. The comparison with other methods showed 
that our method achieved the best performance on the 
brain tumor dataset and second place on the prostate 
dataset. In addition, further ablation experiments 
demonstrated the advanced nature of our proposed 
MPE and MFD modules.

It is important to note that the impact of our study 
was not limited to multimodal brain tumor and prostate 
segmentation tasks. MPU-Net, as described in this paper, 
could be used as a base network and thus further extended 
to other multimodal medical image segmentation tasks. The 
source codes of our models are available at https://github.
com/BinsonW/MPU-Net.

Methods

Network architecture

The proposed MPU-Net consists of two parts: an encoder 

and a decoder. We first introduced MPU-Net and then 
introduced the MPE, the basic component of the encoder, 
and the MFD, the basic component of the decoder.

MPU-Net
MPU-Net takes multimodal 3D images as input and 
outputs the corresponding segmentation mask, as shown 
in Figure 3. The modality preservation feature map and 
modality fusion feature map were first generated by 
performing common convolution and group convolution 
on 3D images, and then these two feature maps were input 
into the first MPE module. In the encoder part, MPU-Net 
extracted image features using 4 MPE modules to generate 
feature maps with different numbers of channels and spatial 
resolutions. In the decoder part, MPU-Net used 4 MFD 
modules to upsample the modality preservation feature map 
and modality fusion feature map, and output segmentation 
masks with different resolutions for deep supervision in the 
training phase or as output results.

The MPU-Net contained two paths for feature analysis. 
The first path used group convolution for single-modal 
feature extraction, and preserved the independence between 
different image modalities, providing a basis for tasks that 
may depend on specific modalities. The second path used 
common convolution for multimodal feature extraction, and 
fused modality-preserved and modality-fused information, 
thus ensuring that we could extract information from the 
fused modality information that was not available from a 
single modality.

To make full use of the different semantic information 
of single-modal and multimodal, multiple feature fusions 
were added to different scales and modalities within and 
between the two paths of feature analysis. Following 
U-Net’s approach (19), we added a skip-connection 
between the encoder and decoder, as shown by the blue 
and orange dashed lines in Figure 3, which serves to retain 
more high-resolution detailed information embedded in 
the high-level feature maps, thus improving the image 
segmentation accuracy. The gray dashed lines in Figure 3  
indicate the concatenation and convolution of the modality 
preservation feature maps and modality fusion feature 
maps output in MFD, and the final segmentation mask 
was generated.

MPE
The MPE module, as shown in Figure 4A, was used in each 
layer of the encoder part. The MPE extracted features from 
the single-modal preservation and multimodal fusion data 

https://github.com/BinsonW/MPU-Net
https://github.com/BinsonW/MPU-Net
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Figure 3 Diagram of the MPU-Net, which is composed of the encoder and decoder. The encoder and decoder contain 4 layers of the MPE 
and the MFD, respectively. The blue and orange dashed lines indicate the skip-connections for retaining more high-resolution detailed 
information, and the gray dashed lines indicate the skip-connections inter-modality. MPU-Net, Modality Preserving U-Net; MPE, modality 
preservation encoder; MFD, modality fusion decoder. 

Figure 4 MPE and residual block. (A) The structure of MPE. C: channel; H: height; W: width; D: depth. (B) The structure of the residual 
block. Conv: convolution; BatchNorm: batch normalization. MPE, modality preservation encoder. 

and output the single-modal preservation and multimodal 
fusion data as input to the next MPE module or the first 
MFD module. The MPE contained both single-modal 
preservation and multimodal fusion feature extraction paths, 
and the multimodal fusion features of each layer were fused 
with single-modal preservation features by concatenation 

(black line in Figure 4A). By superimposing the features of 
a single modality onto the multimodal features together, 
we believe that we can preserve the unique information of 
each modality in the single-modal channel (which unique 
information may have been lost in the multimodal fusion 
channel), provide useful information for feature extraction 
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Figure 5 The structure of the MFD. C: channel; H: height; W: width; D: depth. MFD, modality fusion decoder. 

in the multimodal fusion channel, and thus obtain better 
feature representation.

For both single-modal and multimodal feature analysis, 
the basic component of MPE was the residual block, 
as shown in Figure 4B. The residual block contained 
two successive convolutions, Batch Normalization and 
LeakyReLU, and the original feature map was added with 
the manipulated feature map as the final output of the 
residual block. For the single-modal part, the convolution 
in the residual block used group convolution to ensure that 
the features were not mixed among the modalities. For 
the multimodal part, the convolution in the residual block 
adopted common convolution so that the features could be 
fully mixed. Because the input medical images were in three 
dimensions, the convolution was all in three dimensions. 
The size of the convolution kernel was 3×3×3. For the 
single-modal feature map, MPE contained two contiguous 
residual blocks (38). For the multimodal feature map, MPE 
first concatenated the single-modal feature map and the 
multimodal feature map in the channel dimension and then 
passed through two consecutive residual blocks for feature 
extraction. The input single-modal and multimodal feature 
maps were both C×H×W×D in size (C: channel; H: height; 
W: width; D: depth), and after MPE, the feature maps 
became 2C×H/2×W/2×D/2.

MFD
MPU-Net’s decoder consisted of four MFD layers. The 
MFD had a total of four input feature maps: the modality 
preservation feature map and the modality fusion feature 
map output by the previous MFD or the last MPE, the 
modality preservation feature map and modality fusion 
feature map output by the skip-connected MPE or the first 
group convolution and common convolution, as shown in 
Figure 5. The three output feature maps of the MFD were a 
modality preservation feature map, a modality fusion feature 
map, and a segmentation mask. The modality preservation 
feature map and modality fusion feature map were used 
as the input of the next MFD layer, and the segmentation 
feature map was used for deep supervision training and as 
the output result. Within the MFD, the input modality 
preservation feature map and modality fusion feature map 
were first deconvolved to halve the number of channels but 
double the spatial dimension, and then concatenated with 
the corresponding feature map from the skip-connection 
of the previous MPE, respectively. Next, the concatenated 
feature map was immediately run through the residual 
block twice. The structure of the residual block was the 
same as that of the residual block in the MPE module, but 
the difference is that the size of the output map remains 
the same and the channel is reduced by half, as shown in 
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Figure 5. The modality preservation feature map and the 
modality fusion feature map obtained at this point could be 
used as input for the next MFD layer. The two feature maps 
were concatenated together and output as the segmentation 
mask of this MFD after two convolutions. During the 
MFD calculation, it preserved the independence between 
individual modalities for the modality preservation feature 
map. For the output segmentation mask, MFD combined 
the contents of the modality preservation feature map and 
modality fusion feature map.

Dataset
The multimodal brain tumor segmentation dataset of MSD 
is a publicly available dataset for brain glioma segmentation 
from BraTS challenge (25,39). The dataset aimed at 
evaluating state-of-the-art methods for the segmentation 
of brain tumors and contained 484 magnetic resonance 
(MR) cases with segmented labels. The MR images 
were manually annotated by both clinicians and board-
certified radiologists. For each case, T1-weighted (T1), 
T1-weighted contrast-enhanced (T1ce), T2-weighted 
(T2) and fluid attenuated inversion recovery (FLAIR) 
images were provided. The spatial dimensions of each case 
were 4×155×240×240. In the encoder, the stride of the 
first convolution of each MPE module was 2 in all three 
dimensions, while the stride of all other convolutions was 
1. In the decoder, the stride of deconvolution in each MFP 
was 2, and the stride of convolution was 1. The goal of 
brain tumor segmentation was to segment three different 
regions, namely, the whole tumor (WT), tumor core (TC) 
and enhancing tumor (ET). An example diagram of brain 
tumor image is shown in Figure 1A.

Datasets for prostate segmentation of MSD were 
provided by Radboud University Medical Center (25). The 
dataset contained 48 MR cases with segmentation labels, 
each including both the T2 and the apparent diffusion 
coefficient (ADC) modalities. The spatial dimensions of 
each case were 2×20×320×320. The segmentation targets of 
the prostate dataset included the peripheral zone (PZ) and 
transitional zone (TZ). An example diagram of prostate is 
shown in Figure 1B. Following the UNETR’s method (26),  
the brain tumor and prostate datasets were divided into 
training, validation and test sets. A random 10% of the data 
was used as the test set and the rest of the data was used to 
train the model using five-fold cross-validation. We have 
more test samples and fewer training samples than UNETR 
(UNETR’s test set represents 5% of all data). The study was 
conducted in accordance with the Declaration of Helsinki (as 

revised in 2013).

Training

We did not use any existing backbone in MPU-Net, so we 
trained MPU-Net from scratch. All the convolution layers 
of MPU-Net were initialized by Glorot (40). In the image 
preprocessing stage, we performed data augmentation of 
rotation, scale, and Gaussian noise on brain tumor and 
prostate data. Specifically, for brain tumor data, three labels 
were merged into three regions to better segment the tumor 
(22,41). The whole tumor consists of WT, TC, and ET, 
the tumor core consists of TC and ET, and the enhancing 
tumor consists of ET.

During model training, we used SGD Optimizer (42) 
(learning rate of 0.001, weight_decay =3e-05, momentum 
=0.99), batch size of 2, and epoch of 200.

Deep supervision was also utilized to solve the problem 
of information loss during forward propagation and to 
improve detail accuracy. Auxiliary loss is a technique used 
in deep learning training to improve the performance of the 
model. It is an additional loss function that is used alongside 
the main loss function to help guide the training process. 
Additional auxiliary losses were added in the decoder to 
all but the two lowest resolutions (24,43). The weights 
of the auxiliary losses were decreased by a factor of 2 and 
normalized for all layers:

1 2 30.57 0.29 0.14L L L L= + +
 

[1]

The loss function (L) consists of three parts. The first part 
(L1) is the difference between the segmentation mask output 
from the fourth MFDs of MPU-Net and ground truth, the 
second part (L2) is the difference between the segmentation 
mask output from the third MFDs of MPU-Net and ground 
truth with the same resolution, and the third part (L3) is the 
difference between the segmentation mask output from the 
second MFDs of MPU-Net and ground truth with the same 
resolution. Each auxiliary loss was composed of a Cross 
Entropy (CE) Loss (44) and a Dice Loss (45):

i i iL CE Dice= +
 

[2]

The calculation of CE and Dice included the results 
predicted by the model (p) and the ground truth (gt). 
Assuming a predicted image with M voxels, the CE was

( ) ( ) ( )
1 1

log 1 log 1
M M

k k k k
k k

CE gt p gt p
= =

= − × − × −  ∑ ∑  [3]

and the Dice was
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∑

∑
 [4]

The proposed method was implemented in PyTorch 1.10 
and was trained with an AMD EPYC-7302 1.5G × 64 CPU 
and a NVIDIA RTX A6000 GPU.

Evaluation criteria

To test the performance of our proposed method, we 
employed two quantitative metrics: Dice score (DSC) and 
95% Hausdorff distance (HD95) (46). DSC measures the 
amount of overlap between the ground truth segmentation 
and the automated segmentation. Although the HD typically 
evaluates the difference between two different representations 
of 3D objects, the HD95 is used in practice rather than HD, 
as it is harsh and sensitive to noise. DSC was defined in Eq. [4], 
and HD could be calculated as follows:

( ) ( )max max min , ,max min ,
y GT x Px P y GT

HD d x y d x y
∈ ∈∈ ∈

 =   
 

[5]

HD95 and HD were calculated in the same way. 
However, HD95 was based on the calculation of the 95th 
percentile of the distances between boundary points in x 
and y, which means HD95 could eliminate the impact of a 
very small subset of the outliers (47).

Ablation study

To validate the effectiveness of MPU-Net, we conducted an 

ablation study on the brain tumor and prostate datasets. In 
the ablation study, we investigated the effects of different 
configurations of single-modal preservation and multimodal 
fusion strategies. For fairness of comparison, when using 
single-modal or multimodal alone, the number of feature 
channels in each layer was doubled to ensure the same 
number of features as when single-model and multimodal 
were combined. If only the single-modal preservation 
method was used, the multimodal fusion channel in MPE 
and MFD was disabled, and vice versa.

Results

Brain tumor segmentation

The MPU-Net was first evaluated by the brain tumor 
dataset (39). The segmentation results of the validation 
and test datasets are shown in Tables 2,3, respectively. We 
calculated the DSC and HD95, where a larger DSC or 
smaller HD95 implies a greater similarity between the 
predicted image and the ground truth. In the validation 
dataset, the DSCs of MPU-Net for WT, TC and ET were 
90.92%, 86.65%, and 85.52%, respectively. The HD95 
values of MPU-Net for WT, TC and ET were 3.449, 4.708 
and 3.579, respectively. In the test dataset, the DSCs of 
MPU-Net for WT, TC and ET were 89.42%, 86.92%, and 
84.59%, respectively. The HD95 values of MPU-Net for 
WT, TC and ET were 3.530, 4.899 and 2.555, respectively. 
We also compared our method with the state-of-the-art 
method, and the experimental results are shown in Table 4. 
For our method, the average DSC for the three regions was 

Table 2 Brain tumor segmentation results of the validation dataset

Method
Dice HD95

WT TC ET Mean WT TC ET Mean

MPU-Net 0.9092 0.8665 0.8552 0.8770 3.449 4.708 3.579 3.912

Higher Dice scores indicate better results, while lower HD95 scores indicate better results. WT, whole tumor; TC, tumor core; ET, 
enhancing tumor; HD95, 95% Hausdorff distance; MPU-Net, Modality Preserving U-Net. 

Table 3 Brain tumor segmentation results of the test dataset

Method
Dice HD95

WT TC ET Mean WT TC ET Mean

MPU-Net 0.8942 0.8692 0.8459 0.8698 3.530 4.899 2.555 3.661

Higher Dice scores indicate better results, while lower HD95 scores indicate better results. WT, whole tumor; TC, tumor core; ET, 
enhancing tumor; HD95, 95% Hausdorff distance; MPU-Net, Modality Preserving U-Net. 
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Table 4 Comparison results of the proposed approach and the other advanced methods on the brain tumor segmentation dataset

Methods
Dice HD95

WT TC ET Mean WT TC ET Mean

UNETR (26) 0.789 0.761 0.585 0.711 8.266 8.845 9.354 8.822

Novel CNN architecture (48) 0.88 0.79 0.73 0.85 – – – –

Encoder-Decoder-VAE (22) 0.8839 0.8154 0.7664 0.8219 5.9044 4.8091 3.7731 4.8262

Context aware deep learning (49) 0.895 0.835 0.821 0.850 4.897 6.712 3.319 4.976

Two-stage cascaded U-Net (50) 0.8880 0.8370 0.8327 0.8526 4.618 4.131 2.651 3.801

nnU-Net (41) 0.9118 0.8571 0.7985 0.8558 3.73 5.64 26.41 11.93

Ours 0.8942 0.8692 0.8459 0.8698 3.530 4.899 2.555 3.661

Higher Dice scores indicate better results, while lower HD95 scores indicate better results. UNETR, UNEt TRansformers; CNN, 
convolutional neural network; WT, whole tumor; TC, tumor core; ET, enhancing tumor; HD95, 95% Hausdorff distance; VAE, Variational 
Autoencoder. 

86.98%, which was improved by 1.4% over the previous 
advanced methods. Compared to other advanced works, 
MPU-Net showed a greater advantage in both metrics and 
a significant improvement in segmentation results.

For the qualitative analysis, we showed the segmentation 
results of MPU-Net for different sites of brain tumors. 
Figure 6 shows a visual comparison of brain tumor 
segmentation in transverse, coronal and sagittal views for 
different cases. It was clear from Figure 6 that MPU-Net 
could generate highly accurate segmentation masks for 
different sites, volumes and morphologies of brain tumors.

Prostate segmentation

The MPU-Net was also tested using the prostate  
dataset (25). The segmentation results of the validation and 
test datasets are shown in Tables 5,6, respectively. In the 
validation dataset, the average DSCs of MPU-Net for PZ 
and TZ were 72.60% and 90.11%, and the HD95 for PZ and 
TZ were 5.807 and 4.925, respectively. In the test dataset, the 
average DSCs of MPU-Net for PZ and TZ were 71.20% and 
90.38%, and the HD95 for PZ and TZ were 6.367 and 4.766, 
respectively. We also compared our method with the state-
of-the-art method, and the experimental results are shown in 
Table 7. Compared with other advanced methods, MPU-Net 
had the best result in the TZ segmentation and ranked fourth 
in the average. The segmentation results of MPU-Net for 
the prostate are shown in Figure 7.

Ablation study

The results of the ablation study are shown in Tables 8,9.  

When using only the single-modal preservation method, 
there was no fusion between the individual image 
modalities, i.e., the independence of the individual 
modalities was strictly preserved. The results of brain tumor 
segmentation are shown in the first row of Table 8, where 
the DSCs of WT, TC and ET were 0.8865, 0.8214, and 
0.8111, respectively, and the mean DSC was 0.8396. The 
results of prostate segmentation are shown in the first row 
of Table 9, where the DSCs of PZ and TZ were 0.7098 and 
0.8727, respectively, and the mean DSC was 0.7913. In the 
case where only multimodal fusion was used, the individual 
modalities were all fused, and no independent modality 
was retained. The results of brain tumor segmentation are 
shown in the second row of Table 8, where the DSCs of WT, 
TC and ET were 0.8830, 0.8321, and 0.8196, respectively, 
and the mean DSC was 0.8449. The results of prostate 
segmentation are shown in the second row of Table 9,  
where the DSCs of PZ and TZ were 0.7113 and 0.8735, 
respectively, and the mean DSC was 0.7924. If both single-
modal preservation and multimodal fusion were used but 
there was no connection between single-modal preservation 
and multimodal fusion in the MPE, the results of brain 
tumor segmentation are shown in the third row of Table 8, 
where the DSCs of WT, TC and ET were 0.9028, 0.8588, 
and 0.8517, respectively, and the mean DSC was 0.8711. 
The results of prostate segmentation are shown in the third 
row of Table 9, where the DSCs of PZ and TZ were 0.7211 
and 0.8892, respectively, and the mean DSC was 0.8051. If 
both single-modal preservation and multimodal fusion were 
used and the connection between single-modal preservation 
and multimodal fusion was preserved, i.e., the original 
MPU-Net design, the results of brain tumor segmentation 
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Image Ground truth MPU-Net MPU-Net (WT) MPU-Net (TC) MPU-Net (ET)

Figure 6 Segmentation results of brain tumor. The first column is the brain tumor image, and the second column is the ground truth of the 
tumor. The third column is the segmentation result of the MPU-Net. The fourth, fifth and sixth columns are the whole tumor, tumor core, 
and enhancing tumor from the MPU-Net segmentation, respectively. The four rows of the image are four different cases, and each row 
shows only one of the four modalities—FLAIR, T1, T1ce and T2 in the first to fourth rows, respectively. All four modalities are used in the 
actual segmentation process. MPU-Net, Modality Preserving U-Net; WT, whole tumor; TC, tumor core; ET, enhancing tumor; FLAIR, 
fluid attenuated inversion recovery; T1, T1-weighted; T1ce, T1-weighted contrast-enhanced; T2, T2-weighted. 

Table 6 Prostate segmentation results of the test dataset

Method
Dice HD95

PZ TZ Mean PZ TZ Mean

MPU-Net 0.7120 0.9038 0.8079 6.367 4.766 5.567

Higher Dice scores indicate better results, while lower HD95 scores indicate better results. PZ, peripheral zone; TZ, transitional zone; 
HD95, 95% Hausdorff distance; MPU-Net, Modality Preserving U-Net.

Table 5 Prostate segmentation results of the validation dataset 

Method
Dice HD95

PZ TZ Mean PZ TZ Mean

MPU-Net 0.7260 0.9011 0.8136 5.807 4.925 5.366

Higher Dice scores indicate better results, while lower HD95 scores indicate better results. PZ, peripheral zone; TZ, transitional zone; 
HD95, 95% Hausdorff distance; MPU-Net, Modality Preserving U-Net. 
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Table 7 Comparison results of the proposed approach and the other advanced methods on the prostate dataset

Methods
Dice HD95

PZ TZ Mean PZ TZ Mean

CNN with a novel feature pyramid attention (51) 0.74 0.86 0.80 – – –

Multiple CNN (52) – 0.847 – – – –

nnU-Net (24) 0.77 0.90 0.835 – – –

SwinUNETR (27) 0.82 0.89 0.855 – – –

Universal Modal (28) 0.83 0.90 0.865 – – –

Ours 0.7120 0.9038 0.8079 6.367 4.766 5.567

Higher Dice scores indicate better results, while lower HD95 scores indicate better results. CNN, convolutional neural network; UNETR, 
UNEt TRansformers; PZ, peripheral zone; TZ, transitional zone; HD95, 95% Hausdorff distance. 

Image Ground truth MPU-Net MPU-Net (PZ) MPU-Net (TZ)

Figure 7 Segmentation results of the prostate. The first column is the prostate image, and the second column is the ground truth of the 
prostate. The third column is the segmentation result of the MPU-Net. The fourth and fifth columns are the PZ and TZ from the MPU-
Net segmentation, respectively. The four rows of the image are four different cases. The first two rows show the MRI modality, and the 
second two rows show the ADC modality. Both modalities are used in the actual segmentation process. MPU-Net, Modality Preserving 
U-Net; PZ, peripheral zone; TZ, transitional zone; MRI, magnetic resonance imaging; ADC, apparent diffusion coefficient. 
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are shown in the fourth row of Table 8, where the DSCs 
of WT, TC and ET were 0.9092, 0.8665, and 0.8552, 
respectively, and the mean DSC was 0.8770. The results 
of prostate segmentation are shown in the fourth row of  
Table 9, where the DSCs of PZ and TZ were 0.7260 and 
0.9011, respectively, and the mean DSC was 0.8136. 
Therefore, the combination of single-modal preservation 
and multimodal fusion methods significantly improved the 
effectiveness of multimodal medical image feature analysis.

The analysis of variance (ANOVA) showed that there 
were significant differences between the four groups 
(P<0.001 in both brain tumor and prostate segmentation). 
The results of t-test showed that the segmentation results of 
MPU-Net were different from single-modal preservation, 
multimodal fusion and single-modal preservation & 
multimodal fusion (P<0.001, P<0.001 and P=0.051 in 
brain tumor segmentation; P<0.001, P=0.001 and P=0.034 
in prostate segmentation). In the t-test, the architecture 
of single-modal preservation & multimodal fusion and 
MPU-Net do not show very strong differences, because 

both use the multiscale single-modal preservation and 
multimodal fusion image analysis strategy proposed in this 
paper, but differ only in the absence of the connection from 
single-modal features to multimodal features in the MPE 
of the single-modal preservation & multimodal fusion 
architecture.

Discussion

We have introduced MPU-Net, which can combine single-
modal and multimodal image information at different 
scales to achieve the segmentation of multimodal medical 
images. We assume that preserving the independence of a 
single modality in the segmentation process and combining 
a single modality with multiple modalities facilitates the 
optimization of complex medical image segmentation 
tasks. The proposed method has been tested on the brain 
tumor and prostate segmentation dataset and achieved 
good results. In brain tumor segmentation tasks, the ET 
region is often difficult to segment, and the appearance of 
this region is strongly dependent on the T1ce modality. 
Compared to other advanced methods, MPU-Net has the 
best result in segmentation for ET. In summary, MPU-
Net achieves good results in multimodal medical image 
segmentation challenges, with enhancements for multiple 
objectives of medical image segmentation. However, MPU-
Net still needs further validation on more datasets, and the 
miniaturization and rapidity of multimodal medical image 
segmentation networks should be further investigation. 
Downstream applications of MPU-Net segmentation, such 
as using the segmentation results for disease diagnosis or 
intraoperative navigation, also deserve further exploration.

We proposed a novel multimodal medical image semantic 
segmentation network, MPU-Net, which can segment 
medical targets from multimodal medical image data. The 
network consisted of two main modules, the MPE module 
and the MFD module, and the feature analysis strategy 
of single-modal preservation and multimodal fusion was 
implemented. In the multimodal brain tumor segmentation 
task, the mean DSC and the mean HD95 of MPU-Net were 
86.98% and 3.661, respectively. In the multimodal prostate 
segmentation task, the mean DSC and the mean HD95 of 
MPU-Net were 80.79% and 5.567, respectively. In brain 
tumor segmentation, the proposed MPU-Net achieved the 
best results in TC and ET segmentation compared with 
other advanced methods, and ranked first in mean Dice 
and mean HD95 for all three region segmentations. In 
prostate segmentation, the proposed MPU-Net achieved 

Table 8 Segmentation results of the ablation study (brain tumor 
dataset)

Methods
Dice

WT TC ET Mean

Single-modal preservation 0.8865 0.8214 0.8111 0.8396

Multimodal fusion 0.8830 0.8321 0.8196 0.8449

Single-modal preservation & 
multimodal fusion

0.9028 0.8588 0.8517 0.8711

MPU-Net 0.9092 0.8665 0.8552 0.8770

WT, whole tumor; TC, tumor core; ET, enhancing tumor; MPU-
Net, Modality Preserving U-Net.

Table 9 Segmentation results of the ablation study (prostate 
dataset)

Methods
Dice

PZ TZ Mean

Single-modal preservation 0.7098 0.8727 0.7913

Multimodal fusion 0.7113 0.8735 0.7924

Single-modal preservation & 
multimodal fusion

0.7211 0.8892 0.8051

MPU-Net 0.7260 0.9011 0.8136

PZ, peripheral zone; TZ, transitional zone; MPU-Net, Modality 
Preserving U-Net.
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the best results in TZ segmentation compared with other 
advanced methods, and ranked fourth in mean Dice for two 
region segmentation. MPU-Net can effectively improve the 
performance of multimodal medical image segmentation. 
In the ablation study, the combination of single-modal 
preservation and multimodal fusion achieved the best results, 
demonstrating the effectiveness of the proposed MPU-Net.

Conclusions

In this paper, we used two multimodal medical image 
datasets, brain tumor and prostate segmentation in 
MSD, and also different versions of brain tumor datasets 
exist in our experimental results comparison. Since the 
online test of the MSD challenge requires segmentation 
of all datasets (including 8 single modal datasets and  
2 multimodal datasets), and the proposed method in this 
paper focuses on multimodal medical image segmentation, 
it cannot participate in the online test of MSD challenge. 
We followed UNETR’s method (26) and used the local 
test dataset. On the other hand, two different segmentation 
regions exist for brain tumor segmentation results, one for 
WT, TC and ET and the other for edema, ET and necrosis 
regions (41). In this paper, WT, TC and ET regions are 
used as segmentation results, so segmentation results of 
brain tumor can only be compared with the work that 
uses the same segmentation regions. In future work, as the 
online validation and evaluation metrics of multimodal 
medical image datasets continue to be improved and 
unified, the proposed method should be further investigated 
and compared with more comprehensive and sophisticated 
multimodal medical image datasets.
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