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Abstract
Ten strains representing four lineages of the Pseudomonas fluorescens group (P. chlorora-
phis, P. corrugata, P. koreensis, and P. fluorescens subgroups) were evaluated for toxicity

to the tobacco hornwormManduca sexta and the common fruit fly Drosophila melanogaster.
The three strains within the P. chlororaphis subgroup exhibited both oral and injectable tox-

icity to the lepidopteranM. sexta. All three strains have the gene cluster encoding the FitD

insect toxin and a ΔfitDmutant of P. protegens strain Pf-5 exhibited diminished oral toxicity

compared to the wildtype strain. Only one of the three strains, P. protegens Pf-5, exhibited
substantial levels of oral toxicity against the dipteran D.melanogaster. Three strains in the

P. fluorescens subgroup, which lack fitD, consistently showed significant levels of injectable

toxicity againstM. sexta. In contrast, the oral toxicity of these strains against D.melanoga-
ster was variable between experiments, with only one strain, Pseudomonas sp. BG33R,

causing significant levels of mortality in repeated experiments. Toxin complex (Tc) gene

clusters, which encode insecticidal properties in Photorhabdus luminescens, were identified

in the genomes of seven of the ten strains evaluated in this study. Within those seven

genomes, six types of Tc gene clusters were identified, distinguished by gene content, orga-

nization and genomic location, but no correlation was observed between the presence of Tc

genes and insect toxicity of the evaluated strains. Our results demonstrate that members of

the P. fluorescens group have the capacity to kill insects by both FitD-dependent and inde-

pendent mechanisms.
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Introduction
Pseudomonas is a diverse genus of γ-Proteobacteria known for its ubiquity in the natural
world, capacity to utilize a striking variety of organic compounds as energy sources, and
production of a remarkable array of exoenzymes, toxins, and secondary metabolites. The
genus currently comprises at least 144 species [1] exhibiting varied lifestyles in a wide range
of environments, including soil, water, plant surfaces and animals. Within the genus, the
Pseudomonas fluorescens group is particularly heterogeneous, encompassing bacteria that
have been classified into many subgroups and more than 60 named species, including P.
protegens, P. chlororaphis, P. brassicacearum, and P. fluorescens itself [2]. Many plant-asso-
ciated bacteria in these species have the capacity to suppress diseases caused by a spectrum
of bacterial, fungal, and oomycete pathogens [3]. These beneficial bacteria are important
components of the soil and plant microbiome contributing to plant health [4,5] and some
strains have been used commercially for biological control of plant disease [6,7]. Certain
strains within the P. fluorescens group exhibit insecticidal activity [8,9,10,11,12,13,14],
opening the potential to use these bacteria for management of diseases and insect pests of
plants.

Two types of insect toxin genes have been identified in strains of the P. fluorescens group
and both types are similar to genes first described in entomopathogenic bacteria in the genera
Xenorhabdus and Photorhabdus. A gene encoding FitD (fluorescens insecticidal toxin) is pres-
ent in the genomes of P. protegens [11] and the related species P. chlororaphis [15,16]. FitD is
similar to the Mcf (“Makes caterpillars floppy”) toxin of Photorhabdus luminescens, which
exhibits injectable toxicity towards insects via apoptosis [17,18,19]. When injected into larvae
of the tobacco hornwormManduca sexta or the wax moth Galleria mellonella, fitD-containing
strains of P. protegens are lethal [11]. Furthermore, FitD is a major determinant of the oral tox-
icity of P. protegens CHA0 and P. chlororaphis PCL1391 to three agriculturally-important lepi-
dopteran insect pests, the African cotton leafworm Spodoptera littoralis, the tobacco budworm
Heliothis virescens, and the diamondback moth Plutella xylostella [13]. In addition to fitD,
some strains in the P. fluorescens group [16,20] have genes similar to those encoding Toxin
complex (Tc) proteins, which are best characterized in the entomopathogen Photorhabdus
luminescens strain W14 [21]. Tc toxins have three components (A, B, and C), each of which
have conserved domains (Fig 1) [20]. All three components are necessary for full toxicity [22]
with the A component serving as the primary toxin and the B and C components thought to be
potentiators enhancing toxicity of the protein complex [21,23]. Tc genes are present in the
genomes of many bacteria, including species without known associations with insects. Within
the genus Pseudomonas, Tc gene clusters have been described in P. syringae pv. syringae B728a
and P. fluorescens Pf0-1 [20] and a tccC gene has been associated with insect toxicity of Pseudo-
monas taiwanensis [14].

The aims of this study were to evaluate ten strains of the P. fluorescens group for insect
toxicity and to characterize the putative Tc genes (tcaA, tcaB, tcaC, tcdA, tcdB, tccC) in the
genomes of these ten strains. The strains tested were isolated from soil, root or leaf surfaces
and known for their biological control of plant diseases [16,24,25]. They represent four sub-
groups (P. chlororaphis, P. corrugata, P. koreensis, and P. fluorescens) of the P. fluorescens
group (Fig 2). This study demonstrated that the P. fluorescens group includes strains
that are toxic to insects representing two orders (Diptera and Lepidoptera) and that the
known insect toxin FitD is responsible for some, but not all, of the insect toxicity of these
bacteria.
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Results

Phylogenetic analysis of ten strains of Pseudomonas spp. evaluated for
insect toxicity
The ten strains evaluated in this study, which were the subjects of an earlier comparative geno-
mic analysis [16], were placed in four subgroups of P. fluorescens based on multilocus sequence
analysis (MLSA; Fig 2). Previously, the ten strains evaluated in this study were assigned to
three sub-clades of the P. fluorescens group based on an MLSA of strains of Pseudomonas spp.
with fully-sequenced genomes [16]. By including the type species within the P. fluorescens
group in the MLSA shown in Fig 2, the ten strains were placed in four established subgroups of
the P. fluorescens group. The three strains previously assigned to sub-clade 3 (P. chlororaphis
30–84, P. chlororaphis O6, and P. protegens Pf-5), are in the P. chlororaphis subgroup. Two
strains previously assigned to sub-clade 2, P. brassicacearum Q8r1-96 and Pseudomonas sp.
Q2-87, are in the P. corrugata subgroup. Pseudomonas sp. Pf0-1, which was assigned previously

Fig 1. Tc gene clusters in Photorhabdus luminescensW14. (A) The four Tc gene clusters (tca, tcb, tcc and tcd)
present in the genome of P. luminescensW14. Genes are colored according to the Tc component encoded: red
(Component A), blue (Component B) and yellow (Component C). Component A can be encoded by two genes or
by a single, large gene. (B) Conserved domains present in each Tc component (A, B and C). The A component
(TcaA/TcdA) has a conserved VRP1 domain near the N-terminus. The B component (TcaC/TcdB) has the SpvB
domain near the N-terminus and the MidN and MidC domains near the center. The C component (TccC) has an
RhsA domain with an Rhs repeat-associated core domain.

doi:10.1371/journal.pone.0161120.g001
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Fig 2. Seven of the ten strains of Pseudomonas spp. evaluated in this study have Tc clusters. The ten strains
evaluated in this study fall into four subgroups within the P. fluorescens group, as shown in a phylogenetic tree based on
concatenated alignments of gyrB, rpoB, rpoD and 16S rRNA of the type strains within the P. fluorescens group. The ten
strains examined in this study are shown in red font and subgroups containing these strains are labelled to the right (pink,
chlororaphis subgroup; blue, corrugata subgroup; purple, koreensis subgroup; green, fluorescens subgroup). The tree is
artificially rooted on the type strain of P. aeruginosa. Subgroups lacking any of the ten strains are collapsed and labeled.
Bootstrap support less than 50% is not shown. Branch lengths indicate the number of nucleotide substitutions per site.
Strains evaluated in this study that contain a Tc cluster are shown in bold, red font and are also listed to the right of the
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to sub-clade 2 [16], is in the P. koreensis subgroup. The four strains previously assigned to sub-
clade 3 (SBW25, A506, SS101, and BG33R) are in the P. fluorescens subgroup (Fig 2). The
results of our current MLSA, which was based on concatenated sequences of the housekeeping
genes gyrB, rpoD, rpoB, and 16S rRNA (Fig 2), are congruent with those published recently by
other researchers [1,2]. The ten strains of this study were included in the study of Garrido-Sanz
et al. [2] and were assigned to the same subgroups in both analyses. Here, the previously
defined sub-clades [16] were related to subgroups defined by type species within the P. fluores-
cens group.

Characterization of Tc genes
A bioinformatic survey of the ten strains used in this study identified Tc genes in seven of the
ten genomes. A total of 38 Tc genes were identified from a BLASTN search using characterized
Tc genes of P. luminescensW14 as queries. Predicted amino acid sequences for each gene have
conserved domains characteristic of the A, B, or C components of Tc proteins present in ento-
mopathogenic bacteria (S1–S3 Tables). Amino acid sequences of candidate tcaA genes from
five genomes and the much larger tcdA of strain 30–84 have a conserved domain called VRP1
(S1 Table). The VRP1 domain corresponds to SpvA, the product of a plasmid-borne gene asso-
ciated with virulence of Salmonella spp. [26]. The VRP1 domain is also present in known
TccA, TcaA, TcbA TcdA proteins of entomopathogenic bacteria such as P. luminescens strain
W14 [27]. Amino acid sequences of candidate tcaC/tcdB genes from seven genomes also have
three conserved domains called SpvB, MidN and MidC (S2 Table). These domains are found
in TcaC/TcdB sequences of insect-associated bacteria [27]. The TccC sequences identified in
the Pseudomonas strains of this study contain the RhsA and Rhs repeat-associated core
domains (S3 Table), which are commonly found in secreted bacterial toxins [28]. The presence
of these conserved domains in candidate genes provides further evidence for their identity as
tcaA/tcdA, tcaC/tcdB and tccC genes.

The organization of Tc genes varies among the seven genomes, falling into six types (I-VI)
(Fig 2) distinguished by gene content and organization. Type I, which contains genes encoding
putative A and B components, is present in the genome of P. chlororaphis 30–84. These Tc
genes are approximately twice as large as any other Tc gene found in the P. fluorescens group
but are similar in size to tcdA and tcdB of P. luminescens (S1 and S2 Tables) [27]. The Type I Tc
gene cluster of strain 30–84 does not include a gene encoding a C component, which is consid-
ered a ‘potentiator’ and necessary for full toxicity of the Tc complex of P. luminescens and P.
taiwanensis [14,21,27]. The Type II Tc cluster, which is present in strains Q8r1-96 and Q2-87,
is composed of four contiguous genes (tcaA1, tcaB1, tcaC1 and tccC1) located at the same site
in both genomes (Fig 2). Type III, which is present in strain Q8r1-96 only, is composed of
genes for all three Tc components located at three sites distributed over 169 kb of the genome.
Although these genes are not contiguous in the genome of Q8r1-96, they could be functional if
gene expression is coordinated. The Type IV Tc gene cluster, which is present in strain Pf0-1,
lacks an A component but has a single B component and five genes encoding putative C

tree. Tc cluster Types I-VI are distinguished from one another by gene organization and genome location. Genes are
colored according to the Tc component encoded: red (component A), blue (component B) and yellow (component C).
Type I: 30–84 (Pchl3084_2947 and Pchl3084_2950); Type II: Q2-87 (PflQ2_0667–0670) and Q8r1-96 (PflQ8_0736–
0739); Type III: Q8r1-96 (PflQ8_4696, PflQ8_4570–4571 and PflQ8_4580–4581); Type IV: Pf0-1 (Pfl01_0947–0948 and
Pfl01_4453–4456); Type V: A506 (PflA506_3065–3068), SS101 (PflSS101_2971–2974) and BG33R (PseBG33_3189–
3192); Type VI: BG33R (PseBG33_3799–3804). Numbers following gene names distinguish genes within a single
genome that encode the same Tc component. Black circles denote genes located on genomic islands. Among genomes,
homologous genes, defined by genomic location and phylogenetic relationships, are connected with shading of the same
color.

doi:10.1371/journal.pone.0161120.g002
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components in two clusters distal to one another in the genome. By analogy to the Tc cluster in
P. luminescens where the A component encodes the primary toxin [21,23], the Type IV cluster
may not be functional. Type V, which is present in strains A506, SS101 and BG33R, is com-
posed of four contiguous genes (tcaA1, tcaB1, tcaC1 and tccC1) located at the same site in all
three genomes (Fig 2). Type VI is a single cluster in BG33R containing contiguous genes:
tcaA2, tcaB2, tcaC2 and three copies of tccC. Two strains, Q8r1-96 and BG33R, have two Tc
gene clusters of different types.

Phylogenetic analyses were performed using the amino acid sequences of each Tc compo-
nent present in the seven genomes of the P. fluorescens group. Trees were created using charac-
terized Tc peptide sequences from P. luminescensW14 and BLASTP hits for each P. fluorescens
group sequence with greater than 75% query coverage and 50% identity. Phylogenetic relation-
ships support the placement of Tc clusters into the six types described above, with components
of the same Tc type from different strains grouping within the same clades (S1–S3 Figs). Genes
from different Tc types that fall together within well-supported clades of the phylogenetic trees
are shown with shading in Fig 2. The most striking similarities are within the Type V and Type
VI clusters, as sequences from these clusters group together in each of the three trees represent-
ing the three components of Tc clusters. The peptide sequences of the B and C components of
type III and Type IV clusters are also closely related phylogenetically (S2 and S3 Figs) and
genes encoding these components are located in identical regions of Q8r1-96 and Pf0-1
genomes. It seems likely that genes encoding the B and C components of these Tc types were
inherited from a common ancestor prior to divergence of the clusters, with duplication of
genes for the C components in Pf0-1 and either acquisition of the A component genes in strain
Q8r1-96 or loss of the A component genes in strain Pf0-1.

Five of the six types of Tc gene clusters (Types II through VI) are in conserved regions of
the genome shared by all ten strains of the P. fluorescens group evaluated in this study. In con-
trast, the Type I cluster of P. chlororaphis 30–84 is in a genomic island, unique to P. chlorora-
phis 30–84, that has characteristics of a phage, including the presence of genes encoding a
phage integrase, a transposase and cointegrate resolution proteins. Sequence bias in this region
was found using the Alien Hunter program that searches for regions of genomic plasticity [29].
Furthermore, the G+C content of tcdA1 (55.4%) and tcdB1 (56.3%) differ significantly (P<
0.001) from the genomic average (62.9%) of strain 30–84, as determined from a chi-square
analysis. In our phylogenetic analysis, TcdA1 (Pchl3084_2947) and TcdB1 (Pchl3084_2950) of
P. chlororaphis strain 30–84 are the only peptide sequences to have closely related hits outside
of the Pseudomonas genus. TcdA1 is closely related to the products of uncharacterized genes in
the soil bacteriumMesorhizobium alhagi and TcdB1 (Pchl3084_2950) is closely related to a
gene product inMarinomonas posidonica (S1 and S2 Figs). Based on proximity to genes con-
ferring mobilization functions, gene sequence bias and high identity to gene products of other
bacterial taxa, we conclude that the Type I Tc gene cluster was likely acquired through horizon-
tal gene transfer (HGT).

Strains in the P. fluorescens group differ in injectable toxicity toM. sexta
Of the ten strains of P. fluorescens evaluated in this study, six consistently killedM. sexta when
injected at ca. 5 log (CFU/larva) into fifth instar larvae and three strains (Q2-87, Q8r1-96, and
SBW25) exhibited no significant toxicity (Fig 3, S4 Fig). One strain, Pf0-1, caused a significant
increase in mortality in one experiment (Fig 3), but did not do so in a second experiment (S4
Fig). The greatest levels of hornworm mortality were caused by strains in the P. chlororaphis
subgroup and three of the four strains in the P. fluorescens subgroup (Fig 3, S4 Fig). At 72 h
following injection, the six strains caused similar levels of mortality, but three strains in the
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Fig 3. Injectable toxicity of ten strains of Pseudomonas spp. and colonization of larvae ofM. sexta by
the strains post-injection. (A) Mortality ofM. sexta was assessed 72 h following injection with ca. 5 log
(CFU/larva) of the designated strain. Values are from one of three experiments (S4 Fig), each evaluating ten
replicate larvae per treatment. Asterisks represent significant differences from the water control (P<0.05,
d.f. = 1, χ2 test). Colors below the graph denote the subgroup of the strain tested for insect toxicity: pink,
P. chlororaphis; blue, P. corrugata; purple, P. koreensis; green, P. fluorescens. (B) Rifampicin-resistant
derivatives of strains BG33R, SS101, A506 and SBW25 were injected into ultimate instar larvae ofM. sexta
at ca. 5 log (CFU/larva). Internal population sizes of each strain were estimated from ten replicates of surface-
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P. chlororaphis subgroup killed the insects within 24 h following injection whereas mortality
was slower for insects injected with strains in the P. fluorescens subgroup (S4 Fig). All three
strains (Pf-5, O6 and 30–84) in the P. chlororaphis subgroup have the fitD gene, which encodes
the FitD toxin. Because FitD is known to be lethal toM. sexta and a primary determinant of the
injectable insect toxicity phenotype of Pf-5 [11], it is likely that FitD is largely responsible for
the injectable toxicity of P. chlororaphis strains 30–84 and O6 as well. The four strains in the P.
fluorescens subgroup differed in toxicity, with strains A506, BG33R, and SS101 causing signifi-
cant mortality and strain SBW25 causing no mortality when injected at ca. 5 log (CFU/larva)
(Fig 3A). When inoculated at ten-fold higher inoculum densities (ca. 6 log [CFU/larva]), how-
ever, all of the strains caused significant mortality in at least one of the two experiments in
which they were evaluated (S5 Fig).

The differential lethalities of the four strains in the P. fluorescens subgroup may be due to
their different capacities to colonize the larvae ofM. sexta. To explore this possibility, the growth
of each strain in larvae ofM. sexta was assessed over time. Ultimate instarM. sexta were injected
with ca. 5 log (CFU/larva) and sampled every six hours (Fig 3B). The populations of all strains
increased over time, and three strains (A506, BG33R, and SS101) reached population sizes of or
exceeding 10 log (CFU/larva) at 24 h or 30 h after injection. In contrast to the other strains,
SBW25 established lower population sizes in the larvae, reaching only ca. 8 log (CFU/larva) at 24
h, the last time point sampled. SBW25 did not kill larvae ofM. sexta in this experiment whereas
the other three strains caused significant levels of mortality (Fig 3A), which suggests a correlation
between the toxicity and larval colonization phenotypes of the strains. It is likely that a strain that
colonizes larvae would have a greater ability to cause mortality but conversely, it is also possible
that a dying animal provides a habitat more conducive to colonization than a healthy animal.
The two possibilities were not distinguished in this study.

A role for FitD in oral toxicity of P. protegens Pf-5 toM. sexta
Due to the established role of FitD in injectable toxicity of Pf-5 toM. sexta [11], we developed an
assay to assess the role of FitD in oral toxicity to the insect. Larvae ofM. sexta were placed on
tomato leaves that had been previously inoculated with one of the ten strains of Pseudomonas
spp. As the larvae fed on the tomato leaves, they ingested cells of the inoculated bacterial strains,
which were present at population sizes averaging 7.7 log (CFU/leaflet). Larvae feeding on Pf-
5-inoculated leaves had a significantly higher level of mortality than non-inoculated controls in
the seven experiments of this study (Fig 4 and S6 Fig). We attribute the mortality caused by Pf-5
to the FitD toxin, as mortality of the larvae on leaves colonized by the ΔfitDmutant did not differ
significantly (P<0.05) from those on non-inoculated leaves (Fig 4A and S6 Fig). Like Pf-5, the
two strains of P. chlororaphis (30–84 and O6), which also have fitD [16], caused significant oral
toxicity toM. sexta (Fig 4B and S6 Fig). In contrast, P. fluorescens A506, a member of the P. fluor-
escens subgroup that lacks fitD, did not show oral toxicity toM. sexta (Fig 4A and S6 Fig). Simi-
larly, we tested the other six strains of Pseudomonas spp. that lack fitD, each in a single
experiment, and only BG33R caused significant levels of oral toxicity toM. sexta (S6 Fig).

Strains in the P. fluorescens group differ in oral toxicity toD.melanogaster
The ten strains of Pseudomonas spp. were evaluated for oral toxicity to D.melanogaster using a
previously-developed non-invasive assay [10]. Averaging the results from three replicated

sterilized larvae over time. Bacterial population sizes were log transformed and the means and standard
errors are shown. No rifampicin-resistant Pseudomonas spp. were re-isolated from control larvae injected
with sterile water.

doi:10.1371/journal.pone.0161120.g003
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experiments, 13% of the larvae died in the control treatment, in which larvae of D.melanoga-
ster were fed with water-treated, killed yeast. In contrast, an average of 69% of the larvae fed P.
protegens Pf-5-inoculated yeast died (Fig 5, S4 Table), which corresponds well with the previ-
ously-reported oral toxicity of Pf-5 to D.melanogaster [10]. The two other strains in the P.
chlororaphis subgroup were evaluated in two experiments. Strain 30–84 caused no significant
levels of mortality in either experiment whereas strain O6 caused a small but significant level of
mortality in one experiment (Fig 5, S4 Table). In an earlier study, we reported that strain
SBW25, a member of the P. fluorescens subgroup caused mortality of D.melanogaster [10]. In
the present study, all four strains in the P. fluorescens subgroup caused significant mortality in
at least one of the two to three experiments in which they were evaluated (Fig 5, S4 Table).
Mortality caused by three of these strains (SS101, SBW25, and A506) varied among experi-
ments, whereas BG33R caused significant mortality in both experiments in which it was evalu-
ated. Neither strain in the P. corrugata subgroup (Q2-87 and Q8r1-96) nor Pf0-1 caused
mortality of D.melanogaster in this assay (Fig 5, S4 Table). Populations of all ten strains
increased inside larvae of D.melanogaster over the course of the experiment (Fig 5B), so it
appears that all strains had the capacity to grow within the insect regardless of the magnitude
of their influences on mortality.

When fed yeast inoculated with any of the four strains in the P. fluorescens subgroup, larvae
consistently developed a systemic melanization of the hemolymph during third instar stage
prior to larval death (Fig 6B & 6C compared to 6A), as described earlier for strain SBW25 [10].
The activation of the prophenoloxidase cascade leading to the production of melanin is an
important component of Drosophila innate immunity that is normally tightly regulated to pre-
vent damage to the host due to overproduction of quinones and excessive melanization
[30,31,32]. This regulation appears to be relaxed when the insect ingests bacteria in the P. fluor-
escens subgroup. In addition, other larvae died as pupae because certain phases of normal
pupariation did not occur or were less successful. In some cases, the animals failed to undergo
head involution and their larval mouth hooks extended through the pupal case (Fig 6E com-
pared to 6D). In some animals, head involution occurred but the mouth hooks were not
extruded successfully leading to a failure to seal the anterior pupal case and subsequent death
as pharate adults (Fig 6F). As these animals developed, the head and eyes were smaller than in
pupae that had formed normally and most failed to emerge as adults (Fig 6F). Larvae that did
not develop the systemic melanization appeared to pupate at normal rates, indicating that
ingestion of strains in the P. fluorescens subgroup did not cause developmental delay as found
with sub-lethal doses of Pf-5 (S7 Fig).

Ingestion of P. protegens Pf-5 is known to cause a delay in the development ofD.melanogaster
[10]. Accordingly, larvae that fed on Pf-5 pupated later than the control in this study (S7 Fig). Of
the other nine strains evaluated in this study, none caused notable delays in metamorphosis (S7
Fig), which is consistent with an earlier report that strains Pf0-1 and SBW25 do not cause devel-
opmental delay [10]. Our results suggest that developmental delay ofD.melanogaster is

Fig 4. Oral toxicity of the FitD-containing P. chlororaphis subgroup toM. sexta. Cumulative mortality of
M. sexta was assessed by counting the number of dead larvae at 2 d (■), 4 d (■) and 6 d (■) after larvae were
placed on tomato leaves supporting epiphytic populations of the specified bacterial strain. Bars show the
cumulative mortality of larvae on leaves previously inoculated with (A) P. protegens Pf-5, a ΔfitDmutant of Pf-
5, and P. fluorescens A506, a member of the P. fluorescens subgroup that lacks fitD; and (B) three strains in
the P. chlororaphis subgroup, which possess fitD. Control larvae were placed on leaves that had not been
inoculated with bacteria. Fifteen replicate larvae were evaluated per treatment in each of two experiments
that yielded similar results; data presented are from a single experiment. Asterisks represent significant
differences from the water control (P<0.05, d.f. = 1, χ2 test). The epiphytic population size of each strain on
tomato leaflets, determined at the time that larvae were placed on the leaves, is shown below each graph.

doi:10.1371/journal.pone.0161120.g004
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Fig 5. Oral toxicity of strains of Pseudomonas spp. toD.melanogaster. (A). The mortality of D.
melanogaster was assessed 12 d after larvae were fed with yeast grains inoculated with ca. 7 log (CFU/
plate). For each treatment, the percent mortality was calculated from counts of the number of adults per
larvae in each replicate corrected for average larval to adult mortality in the control using the Schneider-Orelli
formula. The white circle in each box shows the mean value from two or three experiments. The number of
experiments evaluated for each strain is shown in parentheses. Boxes are bound at the top by the third
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associated with ingestion of the most toxic strain, Pf-5, but is not a common outcome of ingesting
bacteria in the P. fluorescens group.

Discussion
The results of this study demonstrated that strains representing two lineages of the large and
diverse P. fluorescens group exhibited toxicity against the lepidopteranM. sexta and the dip-
teran D.melanogaster. Three strains in the P. chlororaphis subgroup showed both injectable
and oral toxicity to larvae of the tobacco hornworm,M. sexta, and one strain, P. protegens Pf-5,
was also toxic to larvae of D.melanogaster when ingested. Three of four strains in the P. fluores-
cens subgroup were toxic when injected intoM. sexta, and one strain consistently caused mor-
tality of D.melanogaster when ingested. These results build upon a growing body of literature
highlighting the insect toxicities of bacteria in the P. fluorescens group [12], including a recent
study by Flury et al. [33] evaluating 26 strains of Pseudomonas spp. for toxicity to three lepi-
dopteran species. Different insects and Pseudomonas strains were evaluated in the present
study and in the study of Flury et al. [33] but the results of both studies show that strains in the

quartile and at the bottom by the first quartile, with the whiskers representing the minimum and maximum
values. An asterisk (*) denotes treatments that differed significantly from the control in all experiments and
the double-cross symbol (╫) denotes treatments that differed significantly from the control in one experiment
(P<0.05, d.f. = 2, χ2 test) (see S4 Table for data from individual experiments). The horizontal line indicates
zero mortality. Colors denote the subgroup of the strain tested for insect toxicity: pink, P. chlororaphis; blue,
P. corrugata; purple, P. koreensis; green, P. fluorescens. (B) The internal population size of each strain was
estimated from surface-sterilized larvae at 24 h, 48 h, and 120 h. The population size of Pf0-1 was assessed
only at 24 and 48 h. Bacterial population sizes were log transformed and the means of three replicate larvae
are shown as triangular symbols. Error bars denoting standard errors are sometimes obscured by the
symbols.

doi:10.1371/journal.pone.0161120.g005

Fig 6. Larval and pupal phenotypes of D.melanogaster fed with strains of Pseudomonas spp. (A) Ventral view of a third instar control
larva showing normal clear hemolymph and internal organs. (B) Side view of a dead SBW25-fed third instar larva showing systemic
melanization of the hemolymph. (C) Dorsal view of a dead BG33R-fed third instar larva with complete melanization of the hemolymph. (D)
Ventral view of a mid-stage control pupa showing normal extrusion of the mouthparts (arrow) and normal size of pupal eyes (brackets). (E)
Dorsal view of a dead SS101-fed pre-pupa with extended mouthparts (arrow) and no head involution. (F) Dorsal view of a dead A506-fed
pharate adult with extruded mouthparts caught within the pupal case (arrow). The head and eyes (brackets) are smaller and more recessed
than in normal pupae.

doi:10.1371/journal.pone.0161120.g006

Insect Toxicity of the Pseudomonas fluorescensGroup

PLOS ONE | DOI:10.1371/journal.pone.0161120 August 31, 2016 12 / 22



P. chlororaphis subgroup and certain strains in the P. fluorescens subgroup exhibited insect tox-
icity whereas strains in the P. corrugata and P. koreensis subgroups did not exhibit consistent
toxicity to insects. It remains to be seen if these taxonomic distinctions in insect toxicity hold
up as more strains in the corrugata and koreensis subgroups are evaluated in the future.

Genes predicted to encode two distinct insect toxins (FitD/Mcf and Tc) known to be active
in Photorhabdus spp. and other bacterial genera [34,35,36,37,38] are present in eight of the ten
genomes of Pseudomonas spp. evaluated in this study. The three strains in the P. chlororaphis
subgroup have the fit cluster, which is highly conserved among the strains in that subgroup
that have been sequenced to date [15,16,33]. Seven of the ten strains have Tc gene clusters,
identified from the presence of conserved domains and sequence similarity to regions encoding
components of Tc toxins in Photorhabdus spp. and other entomopathogenic bacteria. Only P.
chlororaphis 30–84 has both fitD and a Tc gene cluster, and bioinformatic analysis of the Tc
gene cluster in strain 30–84 revealed characteristics of HGT. Here, we categorized the Tc gene
clusters into six types based on their organization, phylogenies, and locations in the genome.
For the most part, strains in a given subgroup shared Tc gene clusters of a single type, suggest-
ing an ancestral inheritance of these clusters. Two of the ten strains evaluated in this study
have two Tc clusters of different types in their genomes. Taken together, our analysis indicates
that Tc gene clusters are inherited through a complex process involving HGT as well as vertical
transmission through defined lineages of Pseudomonas.

A central objective of this study was to relate insect toxicity to the inventory of insect toxin
genes in the genomes of diverse strains within the P. fluorescens group. The ten strains evalu-
ated in this study have fully sequenced genomes that have been evaluated for the presence of
genes for the production of exoenzymes, toxins, and metabolites that participate in the interac-
tions of Pseudomonas spp. with insects, plants, and microorganisms [16]. Our results support a
role for the FitD toxin in both injectable and oral toxicity to larvae of the lepidopteranM.
sexta. All three strains (Pf-5, O6, and 30–84) that have a fit cluster caused injectable and oral
toxicity toM. sexta, and a ΔfitDmutant of Pf-5 exhibited reduced oral toxicity (this study) and
injectable toxicity to this insect [11,13]. These results support the known role of FitD in toxicity
towards lepidopteran insects [11,13] and extend that role to oral toxicity against another insect
pest,M. sexta. Only one of the seven strains lacking a fit cluster exhibited a significant level of
oral toxicity toM. sexta in the single replicated experiment in which it was tested (S6 Fig).
Therefore, fitD was the only factor identified in this study that contributed to oral toxicity of
these ten strains againstM. sexta. In contrast to oral toxicity, three strains lacking the fit cluster
caused significant levels of injectable toxicity toM. sexta. These results provide convincing evi-
dence that fitD, while important, is not the sole determinant of lepidopteran insect toxicity in
the P. fluorescens group, as suggested earlier [11,13]. Identifying genes other than fitD that con-
tribute to insect toxicity in these bacteria is a worthy goal for future study. Towards that end,
this study identified strains within the P. fluorescens group that consistently cause injectable
toxicity toM. sexta that could be explored in the future.

Tc gene clusters are among the many candidate genes that could contribute to injectable
toxicity but we observed no correlation between the presence of Tc gene clusters and insect tox-
icity of the ten strains investigated here. We recognize, however, that different types of Tc gene
clusters could vary in toxicity. For example, strains Q2-87 and Q8r1-96, which exhibited no
insect toxicity in any of the three assays evaluated, have Type II and III Tc gene clusters
whereas strains BG33R, A506 and SS101, which showed significant levels of injectable toxicity
againstM. sexta, have Type V Tc gene clusters. Strain BG33R, which also has a Type VI Tc
gene cluster, consistently caused oral toxicity to D.melanogaster. The possibility that the Type
V or VI Tc gene clusters contribute to insect toxicity is another worthy objective for future
research. A tccC gene in P. taiwanesis is the only component of a Tc gene cluster that has been
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demonstrated to contribute to insect toxicity of Pseudomonas spp. [39]. Additional candidate
insect toxicity genes may be identified from comparative genomic analysis [16] of strains
A506, BG33R and SS101 versus strains that exhibited no toxicity toM. sexta in this study.

A different set of strains exhibited oral toxicity to the dipteran D.melanogaster versus the
lepidopteranM. sexta, suggesting that distinct mechanisms of toxicity are operating in these
insect hosts. Whereas fitD was the primary determinant of oral toxicity againstM. sexta, as dis-
cussed above, this was not the case for toxicity against D.melanogaster. All three strains in the
P. chlororaphis group have the fit cluster [16], but only Pf-5 consistently caused significant
mortality of D.melanogaster in our assays. These results are consistent with those from a recent
study demonstrating that FitD is not required for oral toxicity of P. protegens Pf-5 to D.mela-
nogaster [40]. Instead, analogs of rhizoxin, orfamide A, and chitinase are the primary determi-
nants of oral toxicity of Pf-5 against D.melanogaster. Rhizoxin is a 16-member macrolide that
binds to β-tubulin, thereby interfering with microtubule dynamics during mitosis, and is toxic
to many eukaryotes [41]. Orfamide A is a cyclic lipopeptide with surfactant properties that aids
in bacterial motility across surfaces and solubilization of certain substrates [42], inhibition of
some oomycetes and fungi [42,43,44], and toxicity to the green peach aphid [45]. Chitinases
can degrade the peritrophic membrane, a chitin-based matrix in the insect mid-gut that func-
tions in protection against mechanical and chemical damage and serves as a barrier to infection
by pathogens [46]. Of the ten strains evaluated in this study, only Pf-5 produces orfamide A or
rhizoxin analogs, but several strains that exhibited some level of toxicity to D.melanogaster
have genes for the production of cyclic lipopeptides, chitinase, as well as other secondary
metabolites that have not yet been evaluated for their potential roles in insect toxicity [16].

A striking observation of this study was the induction of melanization in adults that escaped
mortality when fed any of the four strains in the P. fluorescens subgroup. Melanization is a con-
spicuous immune response that results in the production of quinones that are toxic to microor-
ganisms [32]. It is intriguing that the strains in the P. fluorescens subgroup cause a pronounced
melanization response in larvae and adults, but the animals that survive infection by P. prote-
gens Pf-5, the most lethal strain of this study, do not exhibit this response. The mechanisms
responsible for inducing this immune response are unknown but worthy of future study.

The results of this study highlight the specificity of the insect-bacterial interaction, as differ-
ent strains caused mortality on the two insect hosts and when inoculated by feeding versus
injection. Furthermore, evaluation of fitDmutants in this and a companion study [40] show
that even a specific bacterial strain, such as P. protegens Pf-5, employs different lethality mecha-
nisms on different insect hosts. Clearly, there are distinct mechanisms by which different
strains of Pseudomonas spp. kill insects, and this study identified systems that could be
explored to identify novel mechanisms of insect toxicity.

Materials and Methods

Generation of Multi-Locus Sequence Analysis (MLSA) phylogenetic tree
MAFFT v. 7.245 [47] was used to generate alignments for gyrB, rpoD, rpoB, and 16S rRNA from
the type strains of the P. fluorescens group (S5 Table) and from the ten strains of Pseudomonas
sp. listed in Table 1. Accession numbers for all sequences are provided in S5 Table. Alignments
of gappy columns were trimmed using Gblocks [48]. The concatenated nucleotide sequences
from each organism were used as input for a partitioned maximum-likelihood phylogenetic anal-
ysis using RAxML v. 8.1.21 [49], using GTR+GAMMA as the substitution model for each parti-
tion. Trees were generated according to the guidelines provided in the RAxML v. 8 user’s
manual, with 100 individual maximum-likelihood searches performed and 450 bootstrap repli-
cates were completed using the extended majority rule-based bootstrapping criterion [49].
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Bioinformatic analysis of Tc clusters in genomes of Pseudomonas spp.
Using the nucleotide sequences of well-characterized Tc genes from P. luminescensW14 as
queries, a BLASTN search was performed against the ten genomes of P. fluorescens to identify
Tc genes. Conserved domains were identified by searching the Pfam database [60] and the con-
served domain database of the National Center for Biotechnology Information (NCBI) [61].
Multiple sequence alignments of the Tc peptide sequences were executed using the MAFFT
option in MegAlign Pro (DNAStar). Three unrooted phylogenetic trees were created using
BIONJ with each putatively annotated amino acid sequence for each Tc component: A (TcaA,
TcaB, and TcdA), B (TcaC and TcdB) and C (TccC). The G+C contents of tcdA and tcdB were
determined using the MBCF Oligo Calculator (http://mbcf.dfci.harvard.edu/docs/oligocalc.
html) and normalized to gene size. Significant differences in percent G+C from the genomic
average were identified by chi-square analysis using a two-tailed P-value.

Assessing injectable toxicity of Pseudomonas spp. toM. sexta
Injectable toxicities of ten strains of Pseudomonas spp. (Table 1) toM. sexta were assessed as
described previously [11]. Briefly, bacteria were grown in 5 ml of King’s medium B (KMB)

Table 1. Strains of the Pseudomonas fluorescens group evaluated in this study.

Strain Site where strain was
isolated

Description Source

P. chlororaphis subgroup:
P. chlororaphis 30–
84

Wheat rhizosphere,
Washington, USA

Suppresses take-all of wheat. RifR, [50] L.S. Pierson II, Texas A&M, College Station, TX
USA

P. chlororaphisO6 Soil, Utah, USA Suppresses several plant diseases [51] A. Anderson, Utah State University, Logan Utah,
USA

P. protegens Pf-5 Soil, Texas, USA Suppresses seedling emergence diseases
[24,52]. Also called JL4585.

C. Howell, USDA-ARS, College Station, TX,
USA

P. protegens Pf-5
ΔfitD

Mutant of Pf-5 with a deletion in fitD [40]

P. corrugata subgroup:

P. brassicacearum
Q8r1-96

Wheat rhizosphere,
Washington, USA

Suppresses take-all of wheat [53] D. Weller, USDA-ARS, Pullman WA, USA

Q2-87 Wheat rhizosphere,
Washington, USA

Suppresses take-all of wheat [54] D. Weller, USDA-ARS, Pullman WA, USA

P. koreensis subgroup:
Pf0-1 Soil, Massachusetts, USA Soil bacterium [55] M. Silby, University of Massachusetts, Princeton,

MA, USA

P. fluorescens
subgroup:

SBW25 Sugar beet phyllosphere,
Oxfordshire, UK

Phyllosphere bacterium [55] G. Preston, Oxford University, UK

SBW25-RifR Spontaneous mutant of SBW25 selected for
resistance to rifampicin, RifR

J. M. Raaijmakers, Netherlands Institute of
Ecology, Wageningen, The Netherlands

A506 Pear phyllosphere,
California, USA

Suppresses fire blight of pear and apple; frost
injury, fruit russet. RifR [7,56]

S. E. Lindow, University of California, Berkeley,
CA, USA

SS101 Wheat rhizosphere, The
Netherlands

Suppresses diseases caused by Pythium spp.
and Phytophthora spp. RifR [57, 58]

J. M. Raaijmakers, Netherlands Institute of
Ecology, Wageningen, The Netherlands

BG33R Peach rhizosphere, South
Carolina, USA

Suppresses the plant-parasitic nematode
Mesocriconema xenoplax [59]

D. Kluepfel, USDA-ARS, Davis, CA, USA

BG33R-RifR Spontaneous mutant of BG33R selected for
resistance to rifampicin, RifR.

This study

Abbreviation: RifR, resistant to rifampicin (100 μg/ml).

doi:10.1371/journal.pone.0161120.t001
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broth [62] for 24 h at 27°C. Cells were collected by centrifugation, washed, resuspended in ster-
ile water at OD600 = 0.01 (ca. 7 log[CFU/ml]), and diluted to obtain cell densities specified in
the Results. Dilutions of the cell suspensions were spread on KMB to determine titers of the
inoculum injected into larvae ofM. sexta. For each treatment, ten fifth instar larvae were
injected between the second and third abdominal segments with 10 μl of water or bacterial sus-
pension. Larvae were then placed in individual containers, maintained in an incubator at 16:8
h (L:D) and 27°C, and assessed for mortality over time. Each bacterial strain was evaluated in
at least two replicated experiments. A chi-squared analysis was performed for each experiment,
in which the negative control (sterile water) was compared to each treatment individually.

To monitor bacterial colonization ofM. sexta, larvae were inoculated with ca. 5 log (CFU/
larva) rifampicin-resistant mutants of Pseudomonas spp. and incubated as described above.
Larvae with a healthy appearance were sampled immediately after inoculation and at 6, 12, 18,
24, and 30 h after injection. Each larva was surface-disinfested for 30 s in 70% ethanol, rinsed
with sterile water, and then homogenized for 30 s in 10 ml of sterile distilled H2O using a Tek-
mar SDT Tissumizer (Cincinnati, OH, USA). Serial dilutions were prepared from the resulting
homogenate and plated onto KMB containing rifampicin (100 μg/ml) and cycloheximide
(50 μg/ml) to select for the injected strains. Plates were incubated for 24 h at 27°C prior to enu-
meration of bacterial colonies. The experiment was done twice with similar results and a repre-
sentative experiment is presented.

Assessing oral toxicity of Pseudomonas spp. toM. sexta
Oral toxicity of Pseudomonas spp. toM. sexta was assessed on excised leaves of tomato (cv.
Patio). Excised leaves were dipped in an aqueous bacterial suspension prepared from overnight
cultures grown in KMB broth; cells were collected by centrifugation and suspended in sterile
water to an OD600 of 0.5, which corresponds to approximately 9 log (CFU/ml). Leaves were
placed in plastic containers lined with moistened paper towels. Containers were placed in a
lighted growth chamber at 27°C to allow epiphytic bacterial populations to develop on leaf sur-
faces. After the 24 h incubation period, three leaflets were removed from each treatment, placed
in separate tubes containing 10 mM potassium phosphate buffer (pH 7.0), and vortexed. The
number of CFU of bacterial strains was assessed by serial dilution of leaflet washings on KMB.
For each treatment, fifteen larvae, ranging in size from 18 to 30 mg, were placed on leaves in
separate containers (i.e., one larvae per container; 15 containers/treatment). Containers were
placed in a growth chamber maintained at 27°C with 17:7 h (L:D), 40–50% relative humidity).
Larval mortality was assessed at 2, 4, and 6 d after their placement on leaves. One to five of the
fifteen larvae feeding on water-treated leaves died in each of the seven experiments, which was
probably due in part to injuries caused by handling the larvae as they were placed on the leaves.
Due to logistical constraints, only four treatments could be assessed in each experiment. A chi-
squared analysis was performed to compare each bacterial treatment to the water treatment
within each experiment.

Assessing oral toxicity of Pseudomonas spp. to D.melanogaster
Oral toxicity of Pseudomonas spp. to D.melanogaster was assessed using a non-invasive assay
described previously [10]. Briefly, adult flies were transferred to Petri plates containing Apple
Agar (http://cshprotocols.cshlp.org/content/2011/9/pdb.recO65672.short) prepared without
Nipagin and supplemented by placing killed yeast grains (20 mg) on the solidified agar surface.
Plates were incubated for four hours at 25°C to allow egg lay. From these plates, thirty eggs
were transferred aseptically to the surface of non-nutritive agar (2% wt/vol agar in water) with
2 to 3 mg killed yeast grains distributed on the agar surface in a 35mm Petri plate. On Day 1,
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the number of first instar larvae was determined by counting the number of empty egg cases.
On Day 2, 200 μl of a yeast suspension was added to the middle of the plate to serve as a food
source for second instar larvae. The yeast suspension was prepared by dissolving 0.2 g yeast in
1.2 ml of sterile water (control) or a bacterial suspension (7.4 ± 0.6 log[CFU/ml]), prepared as
described above. The plates were then incubated at 22°C and, starting at Day 4, larvae were fed
with 100 μl of a yeast suspension (0.2 mg yeast/1.2 ml sterile water) at 48-h intervals as long as
live larvae were observed in the dish. Numbers of pupae and adults were counted daily. Each
bacterial strain was tested in at least two experiments having three replications per strain (S4
Table). For each experiment, percent mortality for each treatment was calculated from the
number of adults on Day 12 per the number of larvae on Day 1 and averaged over the replicate
plates. Mean percent mortality values for each experiment were corrected for the mortality in
the control yeast-only plates using the Schneider-Orelli formula (% corrected adult mortality =
[(% adult mortality of treated larvae—% adult mortality of control larvae)/(100—% adult mor-
tality of control larvae)] [63]. A chi-squared analysis of the corrected mortality data was used
to detect significant differences of treatments from the control in each experiment.

Population sizes of the bacterial strains internal to larvae or pupae of D.melanogaster were
estimated from surface-sterilized larvae. Three larvae were placed in a drop of a freshly-made
sterilizing solution (2.5 ml bleach and 45 μl 0.01% Triton-X in 10 ml water) for 60 seconds and
then transferred serially through four drops of sterile water and placed individually into a 1.5
ml microcentrifuge tube. Each insect was then homogenized in 50 μl of sterile distilled water,
serially diluted, and the dilutions were spread on KMB. Plates were incubated overnight at
27°C prior to counting colonies that exhibited the green-blue fluorescence characteristic of the
inoculated strains.

Larval and pupal morphologies were documented through images captured by a digital
camera mounted on a dissecting scope with images adjusted only for contrast and brightness
in Photoshop (Adobe Systems Inc., San Jose, CA, USA) as needed.

Supporting Information
S1 Fig. Unrooted distance-based phylogeny of toxin complex (Tc) A components. The A-
component tree contains seven TcaA sequences, seven TcaB sequences, and one TcdA
sequence from the ten strains within the P. fluorescens group examined in this study (shown in
red font) as well as BLASTP hits with greater than 75% query coverage and 50% identity to one
or more of these sequences. The tree also includes all of the characterized A-component pep-
tide sequences (TcaA, TcbA, TcdA) from P. luminescensW14 (shown in blue font). Phyloge-
netic relationships support the placement of the Tc clusters into the six types (Types I to VI),
with components of the same Tc type from different strains grouping within the same clades.
Boxes show the Tc type and are colored to denote the subgroup of strains shown in red font:
pink, chlororophis; blue, corrugata; green, fluorescens, as depicted in Fig 2.
(PDF)

S2 Fig. Unrooted distance-based phylogeny of toxin complex (Tc) B components. The B
component tree contains eight TcaC sequences and one TcdB sequence from the ten strains
within the P. fluorescens group examined in this study (shown in red font) as well as BLASTP
hits with greater than 75% query coverage and 50% identity to one or more of these sequences.
The tree also includes all of the characterized B-component peptide sequences (TcaC and
TcdB) from P. luminescensW14 (shown in blue font). All TcaC sequences grouped together
with homologs from other Pseudomonas sp. in a single large clade, whereas the Type I TcdC
sequence fell outside of this clade and grouped with the only BLASTP hit outside of the Pseudo-
monas genus. Phylogenetic relationships support the placement of the Tc clusters into the six
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types (Types I to VI), with components of the same Tc type from different strains grouping
together. Boxes show the Tc type and are colored to denote the subgroup of strains shown in
red font: pink, chlororophis; blue, corrugata; purple, koreensis; green, fluorescens, as depicted in
Fig 2.
(PDF)

S3 Fig. Unrooted distance-based phylogeny of toxin complex (Tc) C components. The C-
component tree contains 15 TccC sequences from the ten strains within the P. fluorescens
group examined in this study (shown in red font) as well as BLASTP hits with greater than
75% query coverage and 50% identity to one or more of these sequences. The tree also includes
all characterized C-component peptide sequences (TccC) from P. luminescensW14 (shown in
blue font). The six types of Tc clusters (I to VI) fall into distinct clades, but both the Type II
and Type III TccC sequences are dispersed in the tree. Boxes show the Tc type and are colored
to denote the subgroup of strains shown in red font: pink, chlororaphis; blue, corrugata; purple,
koreensis; green, fluorescens, as depicted in Fig 2.
(PDF)

S4 Fig. Lethality of strains in the P. fluorescens group to the tobacco hornworm,M. sexta,
post-injection. Lethality of strains in the P. fluorescens group to fifth instar of the tobacco
hornworm,M. sexta. Mortality was assessed at 24h (■), 48h (■), or 72h (■) following injection
with ca. 5 log(CFU per larva) or water, as a control. Three experiments (A, B and C), each eval-
uating ten replicate larvae per treatment, are presented. The 72 h observations for experiment
A are shown in Fig 3. Asterisks represent a significant difference in mortality between a treat-
ment and the control (P<0.05, d.f. = 1, χ2 test).
(TIF)

S5 Fig. Lethality of strains in the P. fluorescens group to the tobacco hornworm,M. sexta,
post-injection. Lethality of high cell densities of strains in the P. fluorescens group to fifth
instar of the tobacco hornworm,M. sexta. Mortality was assessed at 24h (■), 48h (■), or 72h
(■) following injection with ca. 6 log(CFU per larva) or water, as a control. Two experiments
(A and B), each evaluating ten replicate larvae per treatment, are presented. Asterisks represent
a significant difference in mortality between a treatment and the control (P<0.05, d.f. = 1,
χ2 test).
(TIF)

S6 Fig. Oral toxicity of strains in the P. fluorescens group to the tobacco hornworm,M.
sexta. Cumulative mortality ofM. sexta was assessed by counting the number of dead larvae at
2 d (■), 4 d (■) and 6 d (■) after larvae were placed on tomato leaves supporting epiphytic pop-
ulations of the specified bacterial strain. Strain Pf0-1 gacA+ (also called LK194) is a derivative
of strain Pf0-1 with a chromosomal insertion of gacA [64]. Controls were larvae on leaves that
were not inoculated with bacteria. (A-E) Each panel shows the results from an individual
experiment, with fifteen replicate larvae evaluated per treatment in each experiment. Values
that differ significantly from the control at the designated time are shown with an asterisk
(P<0.05) or a diamond (P<0.10) (d.f. = 1, χ2 test). The epiphytic population size of each strain
on tomato leaflets, determined at the time that larvae were placed on the leaves, is shown below
each graph.
(TIF)

S7 Fig. Developmental time course of D.melanogaster after ingestion of strains in the A)
P. chlororaphis, B) P. koreensis or P. corrugata, or C) P. fluorescens subgroups. Second
instar larvae were fed with a yeast suspension having no bacteria (black) or amended with
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bacterial strains. Initial population sizes of bacterial strains [log (CFU/plate)] are shown to the
right of each panel. The percentage of larvae that pupated, counted as prepupae and/or pupae
were determined over time. The percentage of larvae that emerged as adults is shown at the
288 hpi time point. Values represent the mean and standard errors from three replicates per
treatment, with each replicate evaluating the larvae and adults that developed from 30 eggs. A
ΔgacAmutant of Pf-5 (JL4975) [65] was included as a negative control, as it was shown previ-
ously to lack toxicity to D.melanogaster [10].
(TIF)

S1 Table. All tcaA/tcdA-like gene products have the VRP1 (PF03538) domain.
(DOC)

S2 Table. All tcaC/tcdB-like gene products have SpvB (PF03534) and MidN/MidC
(PF12255) domains.
(DOC)

S3 Table. All tccC-like gene products have RhsA (COG3209) and Rhs-core (TIGR03696)
domains.
(DOC)

S4 Table. Summary of experiments evaluating mortality ofD.melanogaster.
(DOC)

S5 Table. Accession numbers for housekeeping genes of type strains in the Pseudomonas
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