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Abstract: Hybrid porous scaffolds composed of both natural and synthetic biopolymers have demon-
strated significant improvements in the tissue engineering field. This study investigates for the
first time the fabrication route and characterization of poly-L-lactic acid scaffolds blended with
polyhydroxyalkanoate up to 30 wt%. The hybrid scaffolds were prepared by a thermally induced
phase separation method starting from ternary solutions. The microstructure of the hybrid porous
structures was analyzed by scanning electron microscopy and related to the blend composition. The
porosity and the wettability of the scaffolds were evaluated through gravimetric and water contact
angle measurements, respectively. The scaffolds were also characterized in terms of the surface
chemical properties via Fourier transform infrared spectroscopy in attenuated total reflectance. The
mechanical properties were analyzed through tensile tests, while the crystallinity of the PLLA/PHA
scaffolds was investigated by differential scanning calorimetry and X-ray diffraction.

Keywords: tissue engineering; biopolymer blends; porous structures; scaffold; thermally induced
phase separation

1. Introduction

Over the recent years, large technological and scientific interest have dealt with the
possibility of controlling polymer foams products to be employed as scaffolds for tissue
engineering applications [1–3]. Many techniques have been developed to produce porous
tissue engineering scaffolds, such as porogen leaching [4,5], freeze drying [6,7], 3D print-
ing [8–10], electrospinning [11–13], thermally induced phase separation (TIPS) [14–16] and
any possible combinations of these [17]. Among the listed techniques, TIPS is one of the
most efficient due to its ease of implementation and potential capability to produce highly
porous scaffolds with tunable properties [15,17]. Different parameters can be considered to
obtain the required properties, such as the polymeric system (including blends), polymer
concentration, solvent and nonsolvent system, and cooling rate [18]. Adjusting such param-
eters allows for fine control of significant scaffold properties, including morphology, pore
size, degree of interconnected pores, biodegradability and mechanical properties [15]. In
this context, there is a growing interest in hybrid biopolymeric porous scaffolds composed
of both synthetic and natural biopolymers exhibiting high mechanical properties and the
ability to support cell attachment and proliferation [19–23].
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Poly-L-lactic acid (PLLA) can be considered one of the most interesting synthetic
biopolymers for tissue regeneration due to its interesting mechanical properties and good
processability [24–26]. However, like other synthetic polymers, PLLA is hydrophobic, thus
leading to poor cell affinity by hindering cell adhesion [27,28]. To overcome these limits,
PLLA may be filled with organic/inorganic nanoparticles and/or coupled with other syn-
thetic or natural polymers [29–33]. Generally, natural biopolymers show enzyme-controlled
degradability, good biocompatibility, low inflammatory potential, high chemical versatility
and similarities with the extracellular matrix [34,35]. For this reason, a variety of natural
biopolymer-based scaffolds composed of alginate, dextran, hyaluronic acid, kefiran and
chitosan, among others, have been recently used in tissue engineering and regenerative
medicine strategies due to their excellent biocompatibility combined with their potential
biodegradability [11,34,36–39]. Polyhydroxyalkanoates (PHAs) are a family of biodegrad-
able polyesters intracellularly produced by many microorganisms as carbon and energy
storage compounds under unbalanced growth conditions [40,41]. The biocompatibility and
applications of PHA in tissue engineering have been studied by many research groups due
to their high biocompatibility as well as cell growth and proliferation capacity [42–48].

In this work, for the first time, PLLA scaffolds in blend with PHA up to 30 wt%
were prepared by the TIPS method starting from ternary solutions. The scaffolds were
characterized in terms of the surface chemical properties carried out by Fourier transform
infrared spectroscopy in attenuated total reflectance (FTIR-ATR). The microstructure of
the hybrid mats was analyzed by scanning electron microscopy (SEM) and related to the
wettability of the scaffolds evaluated through water contact angle (WCA) measurements.
The mechanical properties were analyzed through tensile tests, while the crystallinity of
the PLLA/PHA scaffolds was investigated by differential scanning calorimetry (DSC) and
X-ray diffraction (XRD).

2. Materials and Methods
2.1. Materials

Highly crystalline poly-L-lactic-acid (PLLA, Resomer® L 209 S, Inerent Viscosity
2.6–3.2 dL/g by Evonik specifications, Evonik, Essen, Germany) was supplied by Boehringer
Ingelheim Pharma KG Ingelheim am Rhein, Germany. A commercial grade of PHA
was provided by Sigma Aldrich, Munich, Germany, as well as 1,4-dioxane (ACS grade,
purity > 99%), used as solvent.

2.2. Foams Preparation

A homogeneous ternary solution of PLLA or PLLA/PHA blends (PLLA/PHA 90/10,
80/20 and 70/30 wt/wt), dioxane, and water was prepared, with constant dioxane to water
weight ratio of 87/13, based on previous literature studies on similar systems [49]. The
total concentration of the polymer phase in the solvent mixture was 4 wt%. The solution,
initially kept at 60 ◦C, was hot poured into an aluminum disc-shaped sample holder with a
diameter of 60 mm and a thickness of 2.5 mm. The temperature was then suddenly lowered
to a well-defined value (30 ◦C or 35 ◦C) for 10 min by pool immersion of the sample holder
into a thermostatic water bath. Then, a quench by pool immersion in an ethyl alcohol bath
at a temperature of −20 ◦C for 10 min was performed to freeze the as obtained structure.
For direct quench samples (DQ), the sample holder was directly immersed in a −20 ◦C bath
for 15 min. Then, the frozen samples were immersed in distilled water at room temperature
and rinsed abundantly for 12 h in order to remove any trace of dioxane. Finally, the samples
were dried under vacuum in an oven at 37 ◦C for 24 h.

2.3. Morphological Analysis

The morphology of the scaffolds was evaluated by scanning electron microscopy
(SEM-FEI QUANTA 200F, FEI, Hillsboro, OR, USA). Nitrogen-fractured scaffolds were
attached by using adhesive carbon tape on an aluminum stub. Before the analysis, the
samples were sputter-coated with gold for 60 s under an argon atmosphere by using a
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Sputtering Scancoat Six (Edwards Laboratories, Milpitas, CA, USA) in order to avoid
electrostatic charge during the test [11].

2.4. Foams Porosity

The porosity of PLLA/PHA scaffolds was calculated as the reciprocal of the ratio
between the apparent density of the scaffold and the non-porous polymeric material density
by using Equation (1).

Porosity (%) =

(
1 −

ρsca f f old

ρbulk

)
× 100 (1)

where ρsca f f old is the apparent density of the foam while the bulk density (ρbulk) of PLLA/PHA
foams was evaluated by using a helium pycnometer (Pycnomatic ATC from Thermo Fisher
Scientific, Waltham, MA, USA). For each sample, at least ten measurements were carried
out, and the average value was then recorded. In all the cases, the standard deviations were
lower than 0.01 g/cm3.

2.5. FT-IR/ATR Analysis

FT-IR/ATR analysis (FT-IR/NIR Spectrum 400 spectrophotometer from Perkin-Elmer
Inc., Wellesley, MA, USA) was performed to investigate the sample chemical surface
properties. For each sample, 4 accumulations scans with a resolution of 4 cm−1 were
collected in the range of 4000–400 cm−1.

2.6. Differential Scanning Calorimetry

A differential scanning calorimeter (Setaram Instrumentation, Caluire, France, model
DSC131) was used to investigate the calorimetric properties of the scaffolds. The analy-
sis was carried out by heating the samples, whose weight was about 5 mg, from room
temperature to 200 ◦C at 10 ◦C/min heating rate under nitrogen flow.

PLLA and PHA crystallinity degree (χ) were calculated according to Equation (2) [11]:

χi (%) =
∆Hm − ∆Hcc

∆H0
i × Xi

× 100 (2)

where ∆Hcc and ∆Hm are the cold crystallization and melting enthalpy of the samples,
respectively. Xi is the weight fraction of PLA or PHA, and ∆H0

i is the melting enthalpy of
100% crystalline PLLA or PHA equal to 93.7 J/g [11] and 145 J/g [50], respectively.

2.7. X-ray Diffraction

X-ray diffraction patterns were collected by using a RIGAKU diffractometer (model:
D-MAX 25600 HK, Rigaku, Tokyo, Japan). All diffraction patterns were obtained in the
2θ range from 5◦ to 60◦ by means of copper Kα radiation (λ = 1.54 Å) with the following
setup conditions: tube voltage and current of 40 kV and 30 mA, respectively, scan speed of
4◦/min with a sampling of 0.004◦.

2.8. Water Contact Angle Measurements

The static contact angles test was performed using an FTA 1000 (First Ten Ångstroms,
Cambridge, UK) instrument using distilled water (DW) as fluid. In particular, a droplet
of DW (~4 µL) was dropped on the scaffold, and the images were taken after 10 s from
the DW deposition. At least 7 spots of each sample were measured, and the average value
was taken.

2.9. Mechanical Properties

A laboratory dynamometer (Instron model 3365, Instron, High Wycombe, UK) equipped
with a 1 kN load cell was used to perform the compressive mechanical measurements on
cylindrical specimens (2.5 mm height and 10 mm diameter).
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The scaffolds were cut off from the entire disc by using a punch with a diameter of
10 mm. The compressive tests were carried out at 1 mm/min up to 2 mm of displacement.
The initial height of the samples was measured before the test. Seven samples were tested
for each material, and the average values of the mechanical parameters were reported with
their standard deviations.

2.10. Statistical Analysis

Statistical analyses of the data were performed through one-way analysis of variance,
and when applicable, data were compared using the Student’s t-test. p-value < 0.05 was
considered statistically significant.

3. Results and Discussion
3.1. Morphology of PLLA/PHA Scaffolds as a Function of PHA Content and Thermal History

Figure 1A represents the morphology of PLLA/PHA as a function of PHA content
and the thermal history of the solutions.

The first line of Figure 1A displays the morphology of pure PLLA scaffolds as a
function of the processing temperature. More in detail, the porous structure obtained by
direct quenching (DQ), without an intermediate cooling step, shows small, interconnected
pores as already observed in previous work [51]. On the other hand, the PLLA samples
obtained when keeping the solution at a temperature within the metastable range (i.e.,
30 and 35 ◦C [51]) show bigger pores but lower connectivity.

As a matter of fact, for PLLA DQ samples, a spinodal decomposition seems to take
place (witnessed by the interpenetration of the two phases). In this case, the solidifica-
tion/precipitation of the polymer matrix occurs before water and dioxane are allowed to
separate in two different phases, thus generating small nuclei. Conversely, for 30 and 35 ◦C,
samples exhibit a typical morphology derived from a nucleation and growth mechanism,
characterized by a bigger average pore size scaffolds and a lower degree of interconnection
with respect to the PLLA DQ samples. This result is totally in agreement with a previous
work [52] in which the cloud point curve for a similar system was obtained. Specifically,
for a polymer concentration of 4 wt% with a dioxane/water ratio of 87/13 wt/wt, a cloud
point at about 41 ◦C was detected [52].

When adding PHA to PLLA, the trend of the pore size of the scaffolds as a function of
the processing temperature is similar to that observed for pure PLLA scaffolds.

However, the pores morphology remarkably changes since the addition of even small
amounts of PHA reflected into bigger pores than in the case of PLLA alone, regardless of the
processing temperature. This is visible in Figure 1A lines 2-3-4 and in Figure 1B, reporting
the mean pore size of the PLLA/PHA foams as a function of the PHA concentration in the
blends. Interestingly, the increment of pore size as a function of the PHA concentration is
more evident in the PLLA/PHA foams prepared at 30 and 35 ◦C.

The observed morphologies led one to suppose that the presence of PHA determines
a lowering of the cloud point curve, leading to a bigger pore size with respect to pure
PLLA scaffolds. From these data, and in agreement with a previous study concerning
PLLA/PLA blended foams [53], it can be assumed that, at a fixed polymer concentration
and dioxane/water ratio, the higher the PHA concentration, the lower the cloud point.
This affirmation could be easily explained by inferring poor miscibility between the two
polymers [54,55] and, consequently, an absence of interaction between them. It is well
known that the cloud point is related to the total polymer concentration in the solution.
Specifically, the lower the polymer concentration, the lower the cloud point [52]. In previous
work, we showed that for an 87/13 dioxane/water ratio, the cloud point decreases from
40 to 32 ◦C when decreasing the polymer concentration from 4 to 2%. In our case, the
concentration of the PLLA phase alone decreased from 4 to 2.8 % when adding PHA, thus
leading to a reduction of the solution cloud point, coupled with the aforementioned increase
in the average pore size. Unfortunately, it was not possible to evaluate the cloud points
experimentally because of the intrinsic opacity of the solutions in the presence of PHA. It
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is, however, licit to hypothesize that, in the range of temperatures taken into consideration,
PHA is abundantly over its cloud point. Otherwise, the morphology of the scaffolds would
have been affected by PHA demixing, as shown in previous work [53].

However, the poor pores interconnection observed in PLLA/PHA 30 and 35 ◦C
samples make these scaffolds unsuitable for tissue engineering purposes. Therefore, the
other characterizations were carried out on PLLA/PHA DQ foams.
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Figure 1. (A) SEM micrographs of PLLA/PHA foams prepared at different demixing temperatures;
(B) mean pore size of the PLLA/PHA foams as a function of the PHA wt% in the blend. Scale bars
are 1 mm.
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3.2. FTIR-ATR Analysis

To evaluate the effective inclusion of the PHA phase in PLLA/PHA scaffolds prepared
via the TIPS approach, FTIR-ATR measurements were carried out on all the PLLA/PHA
foams prepared via direct quenching.

The ATR-FTIR spectrum of PLLA (Figure 2) showed several peaks usually attributed
to this polymer, such as the carbonyl stretch at 1747 cm−1 (C=O, highlighted in Figure 2),
the C–O stretch at 1180 cm−1, 1129 cm−1 and 1083 cm−1 and the OH bend at 1044 cm−1 [11].
The bands visible at 869 cm−1 highlighted in Figure 2 can be assigned to the C-C stretch of
the PLLA crystalline phase [11].
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Figure 2. FTIR-ATR spectra of PLLA/PHA scaffolds as a function of the PHA concentration in
the blend.

The FTIR-ATR spectrum of PHA showed prominent peaks at 1726 cm−1 and
1223–1132 cm−1, denoting carbonyl (C=O, highlighted in Figure 2) and asymmetric C-
O-C stretching vibration, respectively, characteristic for ester bonding found in PHA
molecule [56,57]. Other adsorption bands visible at 980 cm−1 (highlighted in Figure 2)
were assigned to C-CH3 stretching vibration, while the band at 3442 cm−1 denoted the C-H
(asymmetric vibration) of PHA [57].

The PLLA/PHA hybrid scaffold spectra are clearly an overlapping of the single spectra
of PLLA and PHA. More in detail, next to the carbonyl stretch of PLLA at 1747 cm−1, a
band at 1722 cm−1 ascribable to the same functional group of PHA is clearly visible also in
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the PLLA/PHA scaffolds and rises upon increasing the PHA ratio in the blends. Similarly,
the C-C stretch of the PHA phase at 980 cm−1 gradually disappears upon reducing the
PHA ratio, while the peak ascribed to the C-C stretch of PLLA intensifies.

As expected, the characteristic peaks ascribable to the two polymeric phases are well
distinguishable in the FTIR-ATR spectra of the blends, and the peaks absorbance related to
the PHA phase increases upon incrementing the PHA ratio in the blends, thus ensuring
the effective inclusion of PHA phase in the blend via TIPS. Moreover, the absence of band
shifts indicates that this procedure did not activate the chemical reaction between PLLA
and PHA.

3.3. Thermal and XRD Analysis

Figure 3 displays the DSC thermograms obtained for all samples produced via direct
quenching, while Table 1 reports the data derived from DSC analysis.
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Table 1. Melting temperature and melting enthalpy of PLLA-PHA samples.

Sample Tg (◦C) Tcc (◦C) Tm (◦C) ∆Hm (J/g) XPLLA (%) XPHA (%)

PLLA/PHA 100/0 66.43 123.51 181.61 65.42 69.82 -

PLLA/PHA 90/10 66.73 122.95 180.43 48.97 58.07 -

PLLA/PHA 80/20 66.35 - 179.68 44.33 59.14 -

PLLA/PHA 70/30 64.87 - 181.12 39.19 59.76 -

PLLA/PHA 0/100 65.52 - 122.82 20.02 - 13.80

As expected, pure PLLA scaffold exhibits a glass transition around 66.5 ◦C, a cold
crystallization peak around 123 ◦C, and an endothermic peak ascribable to the polymer
melting centered around 182 ◦C. To consider the effect of the processing on the thermal
properties of pure PHA, a pure PHA foam was prepared by using the same conditions
used for pure PLLA foams. The thermogram of foamed PHA showed a small endothermic
peak around 65.5 ◦C, ascribable to a glass transition. At higher temperatures, a broad
endothermic peak in the temperature range of 90–160 ◦C was attributed to the melting of
the crystalline phase of PHA.
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The thermograms of PLLA/PHA foams revealed that the presence of PHA in the blend
does not significantly influence the melting temperature of PLLA (which remains almost
constant for all the investigated samples, Table 1). This suggests that the morphology of
the PLLA crystals has not been altered by PHA in the blend.

From Figure 3, a reduction in the melting peak of PLLA can be noticed when the
amount of PHA increases in the PLLA/PHA blends. On the other hand, the broad melting
peak of PHA is not noticeable in the PLLA/PHA foams, thus suggesting that PLLA signifi-
cantly reduced the crystallinity of the PHA component in the blends, as already reported
in [54,58].

The crystallinity of the PLLA phase in the PLLA/PHA blends, reported in Table 1,
is affected by the presence of PHA in the blends. More in detail, the crystallinity of the
pure PLLA scaffold was nearly 70%. The addition of PHA led to a steplike decrease in
crystallinity down to around 59% regardless of its concentration in the PLLA/PHA blend.
This result was already observed in literature, and it was attributed to the ability of the
PHA molecular chains to hinder the chain mobility of PLLA [59] and vice versa since the
melting peak of PHA is not visible in the PLLA/PHA blends.

Regrettably, it was not possible to evaluate the miscibility of the PLLA/PHA blends
from DSC analysis since their Tgs were very close [54]; however, according to scientific
literature, it can be presumed low miscibility among the two polymer phases due to the
relatively high molecular weight of PLLA used in this work [54,55].

In Figure 4, the X-ray diffraction patterns carried out on PLLA/PHA scaffolds at
increasing concentrations of PHA were reported. In addition, XRD patterns of the pure
PLLA and PHA polymers were added to better compare with scaffold blends. In the PLLA
pattern, the two characteristic main peaks at 2 theta 16.8◦ and 19.5◦ were found [60]. For
pure PHA, according to literature data [61], it can be observed the presence of two main
narrow peaks at 2-theta 13.5◦ and 17.2◦ and two broad peaks for 2-theta 21.6◦ and 25.7◦.
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The main peak of PHA at 13.5◦ appears with increasing polymer concentration in
the blend, and it is more noticeable for 80/20 and 70/30 PLLA/PHA blends. The same
behavior was found for the broad band at 21.6◦ of the PHA, especially for the 70/30 blend.
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Nevertheless, no significant modification to PLLA in blends was observed, considering that
its main diffraction peaks at 16.8◦ were not influenced by the presence of PHA. Doubtless,
all blend samples showed a low crystallinity of their PHA component characterized by low
intensity and high width of diffraction peaks. These results suggest that PHA is able to
crystallize also in blend with PLLA even if it was not detected via DSC analysis, probably
because of the low melting enthalpy of the pure PHA.

3.4. Porosity and Wettability

The scaffold porosity is a key parameter for tissue engineering applications. In this
work, the scaffold porosity was calculated as the reciprocal of the ratio between the ap-
parent density of the scaffold and the non-porous polymeric material density by using
expression (2). The porosity values of the scaffolds, in the range of 86.5–92%, were found to
be almost not affected by the PLLA/PHA blend composition (Figure 5A).
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Figure 5. (A) Porosity and (B) water contact measurements of PLLA/PHA scaffolds as a function of
the PHA content in the PLLA/PHA blend.

The surface wettability was analyzed to evaluate the hydrophilic/hydrophobic char-
acter of the scaffolds through water contact angle (WCA) measurements (Figure 5B). The
wettability performance of porous scaffolds is strongly dependent on the chemical proper-
ties of the polymer matrix but also on the surface topographical properties of the foam. To
remove the effect of the surface roughness and evaluate the effect of the blend chemical
properties only, the WCA tests were also performed on sintered scaffolds that will be
called “dense blends”. Results revealed that dense PLLA showed a water contact angle of
78.9◦ that remains almost constant at the lowest PHA concentration, i.e., 10 wt%, and then
gradually decreases down to 71.9◦ for PLLA/PHA 70/30 dense blend. This result can be
likely ascribed to the higher wettability of PHA if compared to PLLA [62].

The WCA values of PLLA/PHA foams showed a trend parallel to that of the dense
blends but shifted at higher values of about 10◦. To clarify these results, it may be considered
that the wettability of polymeric blends is strongly dependent on the chemical properties
of the materials [63] and also on the surface topographical properties. In fact, according
to Wenzel’s theory of surface wetting [64], as the surface roughness increases, the water
contact angle increases proportionally to the ratio of the real rough surface area to the
projected perfectly smooth surface. Therefore, it is not surprising that the porous structure
exhibits higher WCA values higher than that of dense blends and that the shift amongst the
curves remains of the same order of magnitude regardless of the PLLA/PHA weight ratio.

3.5. Mechanical Properties of PLLA/PHA Scaffolds

Figure 6A displays the representative stress–strain curves of PLLA/PHA scaffolds
cooled via direct quench. The insert in Figure 6A highlight that all the samples presented
an initial region (up to 5% of strain) characterized by a linear-elastic region probably related
to the bending of the pore walls. Then, a transition region can be observed and associated
with the establishment of a permanent plastic deformation [65]. The last region, after 60% of
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strain, depicts a steep growth of the stress owing to the densification of the foams induced
by the pore walls collapse that fill the void of the porous structures.

Polymers 2022, 14, x FOR PEER REVIEW 22 of 29 
 

 

Therefore, it is not surprising that the porous structure exhibits higher WCA values higher than that of dense blends 
and that the shift amongst the curves remains of the same order of magnitude regardless of the PLLA/PHA weight 
ratio. 

3.5. Mechanical Properties of PLLA/PHA Scaffolds 

Figure 6A displays the representative stress–strain curves of PLLA/PHA scaffolds cooled via direct quench. The 
insert in Figure 6A highlight that all the samples presented an initial region (up to 5% of strain) characterized by a 
linear-elastic region probably related to the bending of the pore walls. Then, a transition region can be observed and 
associated with the establishment of a permanent plastic deformation [65]. The last region, after 60% of strain, 
depicts a steep growth of the stress owing to the densification of the foams induced by the pore walls collapse that 
fill the void of the porous structures. 

 

Figure 6. (A) Representative stress–strain curves of PLLA/PHA DQ foams; (B) Elastic modulus as a function of the 
PHA content in the PLLA/PHA DQ foams. Values of elastic modulus are given as means ± SD of n = 5 samples. 

The elastic moduli of the samples are summarized in Figure 6B as a function of the PHA concentration. PLLA 
scaffolds displayed an E value of nearly 1.5 MPa. The addition of 10 wt% of PHA to PLLA induced a steep 
decrease in the elastic modulus that can be mainly explained by the porosity increment observed for the PLLA/PHA 
90/10 DQ samples and by the reduction of the PLLA crystallinity. In fact, the porosity values for PLLA DQ and 
PLLA/PHA 10% DQ were 88.6% and 92.1%, respectively, while the crystallinity decreased from around 70% 
down to 58%, while relatively low differences in the pore size distribution were observed via SEM. Upon 
increasing the PHA concentration in the PLLA/PHA DQ foams, a steep increment of the E value was recorded. In 
particular, at the highest PHA concentration, i.e., PLLA/PHA 70/30DQ samples, the elastic modulus was found to 
be equal to 4.3 MPa, almost three times higher than that of PLLA foams. These results can be likely rationalized by 
invoking a reinforcing action due to PHA since porosity, pore size distribution and PLLA crystallinity changes 
induced by the presence of PHA are very low if compared to the elastic modulus variations. The strengthening 
action of PHA can be ascribed to the presence of small fine dispersion of PHA crystals, detected via XRD analysis, 
performing as a reinforcing agent for the PLLA matrix [54]. 

4. Conclusions 

In this work, the physical and surface chemical properties of hybrid scaffolds prepared via TIPS and composed of a 
blend of PLLA with PHA were evaluated. The morphological investigations revealed an increase in the scaffolds’ 

0

1

2

3

4

5

6

0 10 20 30 40

El
as

tic
M

od
ul

us
[M

Pa
]

PHA [wt%]

PLLA/PHA DQ

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

St
re

ss
 [M

Pa
]

Strain [%]

PLLA

PLLA/PHA 90/10

PLLA/PHA 80/20

PLLA/PHA 70/30

0

0.05

0.1

0.15

0.2

0 5 10 15

(A) (B)

Figure 6. (A) Representative stress–strain curves of PLLA/PHA DQ foams; (B) Elastic modulus as a
function of the PHA content in the PLLA/PHA DQ foams. Values of elastic modulus are given as
means ± SD of n = 5 samples.

The elastic moduli of the samples are summarized in Figure 6B as a function of the
PHA concentration. PLLA scaffolds displayed an E value of nearly 1.5 MPa. The addition of
10 wt% of PHA to PLLA induced a steep decrease in the elastic modulus that can be mainly
explained by the porosity increment observed for the PLLA/PHA 90/10 DQ samples and
by the reduction of the PLLA crystallinity. In fact, the porosity values for PLLA DQ and
PLLA/PHA 10% DQ were 88.6% and 92.1%, respectively, while the crystallinity decreased
from around 70% down to 58%, while relatively low differences in the pore size distribution
were observed via SEM. Upon increasing the PHA concentration in the PLLA/PHA DQ
foams, a steep increment of the E value was recorded. In particular, at the highest PHA
concentration, i.e., PLLA/PHA 70/30DQ samples, the elastic modulus was found to be
equal to 4.3 MPa, almost three times higher than that of PLLA foams. These results can be
likely rationalized by invoking a reinforcing action due to PHA since porosity, pore size
distribution and PLLA crystallinity changes induced by the presence of PHA are very low
if compared to the elastic modulus variations. The strengthening action of PHA can be
ascribed to the presence of small fine dispersion of PHA crystals, detected via XRD analysis,
performing as a reinforcing agent for the PLLA matrix [54].

4. Conclusions

In this work, the physical and surface chemical properties of hybrid scaffolds prepared
via TIPS and composed of a blend of PLLA with PHA were evaluated. The morphological
investigations revealed an increase in the scaffolds’ pore size upon increasing the processing
temperature and the PHA concentration. The spectroscopic analysis confirmed the effective
formation of the PLLA/PHA blend. The DSC thermograms of the scaffolds highlighted
that PHA reduces the PLLA crystallinity while still maintaining values near 60%. XRD
analysis confirmed the semicrystalline structure of pure PLLA and PHA scaffolds and
that the crystallinity of PHA is dramatically reduced when blended with PLLA. The
addition of PHA produced scaffolds exhibiting a comparable porosity and a slightly higher
wettability if compared to neat PLLA scaffolds. The elastic moduli of the PLLA/PHA
scaffolds containing the highest PHA concentration, i.e., 30 wt%, were found to triplicate if
compared to the pure PLLA scaffold, thus demonstrating a reinforcing action of PHA on
PLLA. The results obtained in this research may be instructive for designing processes of
fabrication of PLLA-based hybrid porous scaffolds via TIPS. Moreover, this work may be
considered a preliminary study for further experimental biological investigations such as
cell adhesion, proliferation, infiltration and differentiation.
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