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Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment.
These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic
pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS) and oxidative
stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron
transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial
complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit
and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH), respectively, resulting in blockage of the glycolytic pathway
and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those
alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor
and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating
cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-
induced metabolic syndrome.

1. Introduction

Type 2 diabetes is generally an overnutritional disease [1–
3]. It is caused by insulin resistance and insulin secretion
impairment induced gradually and mainly by high blood
glucose in conjunction with other factors such as obesity,
aging, genetic predisposition, and physical inactivity [4–9].
Persistent overnutrition creates a steady level of high blood
glucose that is toxic to macrovascular and microvascular
systems [10–12], an effect known as glucotoxicity [13–17].
While oxidative stress is thought to contribute to the patho-
genesis of glucotoxicity during the development of diabetes
and diabetic complications [18–26], reductive stress due to
excess NADH [27–33] generated by high blood glucose has
attracted less attention. In this review, by following the
mechanisms of NADH production and recycling, I high-
light evidence that reductive stress followed by oxidative
stress comprises the fundamental pathogenic mechanisms of
chronic hyperglycemia in the development of diabetes and
diabetic complications.

2. Euglycemia

A normal level of blood glucose below 100mg/dL is tightly
maintained, regulated, and achieved by rate of glucose uptake
by all tissues and rate of glucose synthesis by the liver [34]
and to a less magnitude by the kidney [35]. Approximately,
75% of the body’s total glucose is consumed by insulin-
insensitive tissues including the brain, red blood cells, the
liver, and the gut, while the rest is consumed by insulin-
sensitive tissues including muscle [36]. Postprandially, a
rapid increase in blood glucose content stimulates insulin
secretion, resulting in a temporary increase in blood insulin
concentration known as hyperinsulinemia. The increases in
blood concentrations of both glucose and insulin coordi-
nately inhibit glucose production by the liver and facilitate
glucose uptake by insulin-insensitive tissues [37]. Therefore,
euglycemia is strictly maintained, which is highly dependent
not only on proper insulin secretion from the 𝛽-cells upon
nutritional stimulation but also on insulin action in the liver
and peripheral tissues [37].
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3. NADH and Reductive Stress

Electrons from aerobic breakdown of glucose are mainly
stored in NADH for oxygen reduction and ATP production.
Therefore, NADH is a reducing compound and an excessive
amount of it can cause reductive stress [30, 32, 38–40].
Overproduction of NADH or lack of NAD+ can induce
the accumulation of NADH, leading to imbalance between
NADH and NAD+ and creating a condition known as
pseudohypoxia [29, 41–44]. This is a condition under which
oxygen cannot be effectively consumed. This would cause
metabolic stress or metabolic syndrome as it often occurs in
diabetes [44–47]. It should be noted that GSH and NADPH
accumulation, tightly linked to NADHmetabolism [48], can
also induce reductive stress [39, 49–54]. As mitochondrial
complex I is the major enzyme responsible for NADH
recycling, impairment of complex I function can thus induce
NADH accumulation and reductive stress [55] that could be
linked to inhibition of insulin release by 𝛽-cells [56, 57].

4. Hyperglycemia, Elevated Levels of NADH,
and Mitochondrial Electron Pressure

The glycolytic pathway breaks down nearly 80%–90% of
the body’s glucose, while the pentose phosphate pathway
consumes the remaining 10%–20% under physiological con-
dition [58, 59]. Under hyperglycemic condition, more glu-
cose will flux through the glycolytic pathway that produces
more pyruvate and acetyl-CoA, leading to more NADH
production. As NADH is an electron carrier, excess amount
of it will cause an electron pressure on the mitochondrial
electron transport chain [40, 60–62]. This is particularly true
for hepatocytes and pancreatic 𝛽-cells in that glucokinase
(hexokinase D) is a supply-driven enzyme [63], and this
enzyme is not inhibited by glucose-6-phosphate (G6P) [64–
66]. Therefore, the more glucose the more G6P produced
that will be broken down through glycolysis and Krebs cycle,
leading tomore NADHproduction. Figure 1 shows themajor
conventional pathways that can generate more NADH when
glucokinase is used to phosphorylate glucose for glucose
breakdown in tissues such as pancreas and liver [67–70].

5. NADH-Imposed Electron Pressure and
Mitochondrial Superoxide Production

The electron pressure induced by overproduced NADH will
place a heavy burden on mitochondrial complex I that is
the major site for NADH recycling (Figure 2). Under this
condition, complex I will respond within its capacity to
oxidize more NADH to NAD+, in an attempt to ameliorate
the pseudohypoxic condition. An inherent nature of NADH
flux through complex I is that more superoxide will also
be made when more NADH is oxidized by complex I as
this complex is also involved in proton pumping [71–73],
leading to a proportional increase in electron leakage that will
partially reduce oxygen to yield superoxide [71, 74–77]. This
scenario could get worse under pseudohypoxic conditions as
less NAD+ is available for transporting electrons to oxygen

[55], leaving more oxygen available for partial reduction
by the leaked electrons from complex I and complex III,
the latter being also involved in proton pumping [78–80].
It should be noted that complex II and dihydrolipoamide
dehydrogenase could also produce superoxide [81–83].

6. Superoxide and Oxidative Stress

Superoxide is the precursor of all reactive oxygen species that
at elevated levels can cause oxidative stress [84, 85]. As has
been established, superoxide can be converted to hydrogen
peroxide by superoxide dismutase; hydrogen peroxide can
then be converted to form hydroxyl radical by metal ions
[84, 86, 87]. In the meantime, superoxide can also react with
nitric oxide to produce peroxynitrite (ONOO−) [88, 89]. All
these reactive species can cause oxidation of proteins, lipids,
and DNA [90]. Consequently, an oxidative stress condition
has fully developed due to a high level of NADH, achieving
the transition from reductive stress to oxidative stress [43, 91–
93]. Therefore, reductive stress is not the reverse of oxidative
stress; it actually leads to oxidative stress [94, 95].

7. Inhibition of Glyceraldehyde 3-Phosphate
Dehydrogenase and Alternative Glucose
Metabolic Pathways

As has been discussed above, an oversupply of NADH can
lead to overproduction of mitochondrial superoxide and
other forms of ROS. These ROS can then impair the activity
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [22,
96] that is very sensitive to oxidative modifications [21, 97–
103] due to a redox-sensitive cysteine residue at its active
center [104, 105]. Additionally, high level of NADH would
also inhibit GAPDH activity [106]. Such impairments would
collectively decrease the efficiency of glucose metabolism via
glycolysis and Krebs cycle, inducing accumulation of glycer-
aldehyde 3-phosphate (G3P). Therefore, all the intermediate
products above and including G3P will have to be disposed
by pathways that branch off the glycolytic pathways (Figure 3)
[107, 108].

8. The Branching-Off Pathways and
Oxidative Stress

There have been five pathways [21] that can branch off the
glycolytic pathway under chronic hyperglycemic conditions
(Figure 3). These pathways are minor and insignificant in
glucose metabolism under normoglycemic conditions, but
can become major pathways to flux high level glucose. As
will be discussed below, all the five pathways have been linked
to ROS production, oxidative stress, and the pathogenesis of
diabetes and diabetic complications [21, 109–115].

8.1. The Polyol Pathway. When blood glucose level is high,
cellular metabolic pathways change, which usually leads to
deleterious effects [5]. A major pathway that is activated in
response to hyperglycemia is the polyol pathway [44, 116–
118], in which glucose is reduced by aldose reductase to form
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sorbitol, and the formed sorbitol is then converted to fructose
by sorbitol dehydrogenase.This pathway, as shown inFigure 3
(Inset), converts NADPH to NADH using two step reactions
and leads to redox imbalance between NADH and NAD+.
As the ratio of NAD+/NADH decreases due to an increase
in NADH content, reductive stress can ensue. Because aldose
reductase has a very high Km for glucose [119], it can only
be activated by a high level of glucose. Hence, this enzyme
could also be considered as a supply-driven enzyme [120, 121].
Under hyperglycemic conditions, the polyol pathway has
been estimated to utilize more than 30% of the body’s glucose
[101].Therefore, this pathway can also contribute significantly
to reductive stress [32, 119] and has been thought to play an
important role in the pathogenesis of diabetic complications
[122–125].

Additionally, in the first reaction of the polyol pathway
(Figure 3 inset), NADPH is consumed and, when NADPH
level goes lower, so does reduced form of glutathione (GSH).
This is because glutathione reductase needs NADPH to
regenerate GSH from GSSG (oxidized form of glutathione)
[126]. As GSH level goes lower, cellular antioxidant capacity
can be compromised, resulting in elevated levels of reactive
oxygen species that can attack macromolecules and induce
oxidative damage [126]. Therefore, the polyol pathway is
also a source of oxidative stress [127–129]. It should also be
pointed out that activation of the polyol pathway in return
will further decrease glucose consumption by the glycolytic

pathway as sorbitol dehydrogenase competes with GAPDH
for NAD+ [130, 131]. Moreover, as nitric oxide synthase
also uses NADPH as a cofactor, a lowered level of NADPH
can lead to a decrease in nitric oxide production, thereby
facilitating vasoconstriction and platelet aggregation [132].

8.2. The Hexosamine Pathway. This pathway branches off
from fructose 6-phosphate in the glycolytic pathway. Fruc-
tose 6-phosphate is the substrate of the enzyme glutamine-
fructose 6-P amidotransferase (GFAT), which is the rate-
limiting enzyme for this pathway. GFAT makes glucosamine
6-P from fructose 6-P and the former is further converted to
UDP-N-acetylglucosamine, which is the substrate for specific
O-GlcNAc transferase that catalyzes posttranslational modi-
fications of proteins via O-GlcNAc on serine and threonine
residues [133–135]. Increased glucose flux through this path-
way has been shown to be involved in ROS generation and
oxidative stress [136–138] and has been implicated in diabetic
complications [139–142].

8.3. The Protein Kinase C Activation Pathway. Fructose 1:6-
bisphosphate can break down to form dihydroxyacetone
phosphate and glyceraldehyde 3-phosphate with the for-
mer being readily isomerized to glyceraldehyde 3-phosphate
under the action of triose phosphate isomerase. Accumula-
tion of glyceraldehyde 3-phosphate can increase the synthesis
of diacylglycerol that is an activator of protein kinase C
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(PKC). PKC activation is known to be involved in elevating
the content of TGF-𝛽-1, endothelin-1, NF-𝜅B, and vascular
endothelial growth factor [22, 143, 144] and is also known
to induce ROS production by NADPH oxidase that cat-
alyzes one electron reduction of molecular oxygen to form
superoxide [145–147]. Mechanistically, it has been established
that PKC activates NADPH oxidase by phosphorylating the
p47phox subunit, triggering the translocation of this subunit
from cytosol to membrane whereby it assembles with other
components to form an active NADPH oxidase that is
capable of making superoxide from oxygen [148, 149]. PKC
activation can also induce insulin resistance by inhibiting
Akt-dependent nitric oxide synthase function [150].

8.4. Advanced Glycation End Products (AGEs). In addition to
the polyol pathway, this pathway has also been thought to be
a major mechanism of oxidative stress under hyperglycemic
condition [151, 152]. High level of glucose can induce forma-
tion ofmethylglyoxal from glyceraldehyde 3-phosphate when
GAPDH function is impaired. Methylglyoxal can modify
proteins via glycation of amino groups on proteins [153, 154].
One of the major products is glycated hemoglobin (HbA1c)
that has been used as a biomarker for diabetes [155, 156].
Therefore, this nonenzymatic process can greatly impair
protein function. Moreover, this glycation pathway is known
to liberate ROS [157, 158] and upregulate the expression of cell
surface receptor for AGEs, leading to activation of the NF-𝜅B
signaling pathway and chronic inflammation [159–161].

8.5. The Glyceraldehyde Autoxidation Pathway. This pathway
also branches off from glyceraldehyde 3-phosphate in the
glycolytic pathway. Glyceraldehyde 3-phosphate is formed
from fructose 1:6-bisphospate by the enzyme aldose. Under
certain conditions, glyceraldehyde 3-phosphate can undergo
autoxidation [162], a process that can generate hydrogen
peroxide and 𝛼-ketoaldehydes in diabetes mellitus [21, 163].

9. Oxidative Stress, Diabetes, and
Diabetic Complications

As discussed above, all the sources of ROS and oxida-
tive stress can be traced back to high blood glucose and
NADH overproduction. Therefore, chronic hyperglycemia
would inevitably cause chronic reductive stress that leads to
oxidative stress. As ROS production is a common feature of
the above described pathways [119, 164], chronic oxidative
stress certainly plays a central role in the development of
diabetes and diabetic complications [22, 165, 166]. Indeed,
it has been reported that ROS can induce insulin resistance
[74, 167], impair insulin synthesis [168], and impair beta
cell insulin secretion [97, 169]. Additionally, oxidative stress
biomarkers have been shown to be increased in individuals
who exhibit insulin resistance [170–173] or insulin secre-
tion impairment [174–177], indicating a positive correlation
between oxidative stress and insulin resistance and insulin
secretion impairment. Moreover, numerous studies have also
established that ROS are involved in the etiology of diabetic
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Figure 4: Hyperglycemia induces overproduction of NADH and
mitochondrial ROS that inhibit GAPDH activity. This inhibition
then activates the alternative glucose metabolic pathways, which
further produce ROS involved in glucotoxicity that is responsible
for the development of diabetes and diabetic complications. ETC:
electron transport chain.

complications including retinopathy, neuropathy, cardiomy-
opathy, and nephropathy [123, 178–182]. Given that oxidative
stress originates from NADH-imposed reductive stress [31,
183], attenuating hyperglycemia-triggered reductive stress
may provide potential therapeutic approaches for preventing
the development of diabetes and diabetic complications.

10. Conclusion

Persistent high blood glucose is highly toxic [16, 112]. It
not only induces insulin resistance but also impairs insulin
secretion by pancreatic 𝛽-cells [184]. Over time, hyper-
glycemia will produce detrimental effects on macrovascu-
lar and microvascular systems [185, 186]. Figure 4 summa-
rizes schematically the pathways discussed in this review
and their pathogenic roles in chronic hyperglycemia via
NADH, ROS, and oxidative stress. As hyperglycemia results
in excessive production of acetyl-CoA that feeds into the
Krebs cycle, making excess NADH, mitochondrial electron
transport chain is thus under heavy electron pressure [40,
60, 61]. Therefore, oxidation of the overproduced NADH
by mitochondria will inevitably lead to production of more
superoxide and hence more ROS [187, 188], which can in
turn attack and inactivate GAPDH. This would trigger the
accumulation of glycolytic metabolites upstream of glycer-
aldehyde 3-phosphate and activate the alternative glucose
disposal pathways that all are linked to ROS production and
hence increase themagnitude of oxidative stress [21, 189, 190].
Therefore, reductive stress followed by oxidative stress could
serve as the major mechanism of glucotoxicity under chronic
hyperglycemic conditions. An increase in NADH oxidation
by mitochondria without an accompanying increase in ROS
production may be a potential therapeutic approach for
diabetes and diabetic complications.
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