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Abstract: Galactofuranose is a rare form of the well-known galactose sugar, and its occurrence in
numerous pathogenic micro-organisms makes the enzymes responsible for its biosynthesis interesting
targets. Herein, we review the role of these carbohydrate-related proteins with a special emphasis on
the galactofuranosidases we recently characterized as an efficient recombinant biocatalyst.

Keywords: glycobiology; galactofuranosyl transferase; galactofuranoside hydrolase; pathogen
diagnostics; carbohydrate-based therapeutics

1. Introduction

While the existence of less common l-galactose was only reported in some plants, algae and snail
glycans, d-Galactose is a hexoaldose, C-4 epimer of glucose, widely distributed in nature and it can
be found in both pyranose and furanose configurations [1]. Indeed, in both solid and solution states,
hexoses exist in a cyclic hemiacetal form and occupy either the most sterically and thermodynamically
favored six-membered pyranosyl or five-membered furanosyl forms. Both cyclic forms of galactose,
Galf and Galp, are interconverted through a linear form, which is present only in an instantaneous
extent (Figure 1) [2].
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Figure 1. Representation of the equilibria between cyclic forms of D-galactose in solution. The rapid 
interconversion of cyclic Galf and Galp takes place through an acyclic form, and the favorable 
equilibrium for Galp are indicated by the arrows [3]. 

Figure 1. Representation of the equilibria between cyclic forms of d-galactose in solution. The rapid
interconversion of cyclic Galf and Galp takes place through an acyclic form, and the favorable
equilibrium for Galp are indicated by the arrows [3].

Nevertheless, galactofuranose is by far the most widespread hexofuranose in nature and its
occurrence was recently reviewed [4]. This thermodynamically disfavored hexofuranose is absent in
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mammalian glycoconjugates, but is present in living organisms ranging from archaea and bacteria,
to protozoa, fungi and plants where it forms glyosidic linkages mainly in β-anomeric configuration,
although rare examples in which an α-anomeric configuration occurrence can also be found [5].
In mammals, only the galactopyranose is found as a ubiquitous form. Exceptionally, it can also be
present as free monosaccharide in nature where it is commonly linked to other molecules like glucose,
constituting simple disaccharide structures (lactose or milk sugar), or as a constituent of glycans in
complex glycoproteins (ABO blood group antigens) and glycolipids [1,6].

The interest for furanoses dates back to the beginning of the 20th century, and the beginning of
the carbohydrate chemistry occurred when the first synthetic methods for the selective synthesis of
glycofuranosides were established [7]. Galactofuranose was first identified in 1937 as a component
of a fungal extracellular polysaccharide, galactocarolose, produced by Penicillium charlesii [8,9].
Only years later, the synthesis of the first β-d-galactofuranosides was reported [10]. Over the decades,
galactofuranose has been found in many naturally occurring molecules originating from a variety
of organisms, not necessarily pathogenic. Lately, the interest for this unusual carbohydrate has not
decreased due to findings of its xenobiotic and immunogenic properties [4]. In addition, its occurrence
in pathogenic organisms make the enzymes related to its biosynthesis of outmost interest for the
glycoscientists at large, as these proteins, if cloned, overexpressed and well-characterized, can be
further used as innovative biocatalysts, therapeutic targets or for diagnosis. All these aspects will be
discussed herein.

2. Occurrence in Nature

In the following sections, the occurrences of β-d-Galf units will be presented. Here, the intention
is not to be exhaustive and to provide a complete overview of all natural Galf -containing structures,
but rather to focus on major structures, particularly found in prokaryotes and in two different
classes of eukaryotes, fungi and protozoa and to illustrate them with the representative and most
studied examples. Thereby, the focus will mainly be on pathogenic organisms such as bacteria
Mycobacterium tuberculosis, fungus Aspergillus fumigatus and protozoa Leishmania major.

2.1. In Bacteria

In both Gram-positive and Gram-negative bacteria, Galf is either part of a homopolymer
formed with a Galf disaccharide as the repeating unit, or part of a heteropolymer, linked to another
monosaccharide, frequently galactopyranose, forming regular glycans that are sometimes branched [5].
These glycans, composed of Galf units, are usually part of complex glycoconjugates structures
that are constituents of bacterial cell walls. Some of these bacteria are highly pathogenic, and the
presence of Galf -containing conjugates appears to be an essential parameter related to their virulence.
These conjugate include lipopolysaccharide (LPS) O-antigens of Escherichia coli K-12 and enteroinvasive
E. coli O164 as well as the galactan-I repeating unit of O-antigen from Klebsiella pneumoniae [4,6].

The notable example of highly complex structure constituted largely of rare carbohydrates and lipids
is the mycobacterial cell envelope where Galf has a crucial constructive role [11]. After several decades
of successful chemotherapeutic treatments and vaccination preventions, Mycobacterium tuberculosis has
emerged as being multidrug resistant, and tuberculosis became one of the major causes of mortality
worldwide [4,12]. The cell envelope of Mycobacterium tuberculosis is a very thick, hydrophobic structure
possessing very limited permeability. It consists of three main structural components: typical prokaryotic
plasma membrane, cell wall and outer membrane, also referred as mycomembrane [13]. The entire
complex of cell wall is noncovalently attached to plasma membrane with the bottom peptidoglycan layer,
which, via a disaccharide linker, connects to the central glycan core, highly branched arabinogalactan
polysaccharide. In addition, two-thirds of the arabinans are terminated by a cluster of mycolic acids
that form outer membrane layer and capsular segment containing a variety of loosely attached proteins,
lipids and polysaccharides (Figure 2) [6,13].
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thermocellum and Bacteroides cellulosolvens, which produce a high molecular-mass cellulose binding 
protein complex, the cellulosome. The latter is glycosylated and within tetrasaccharide units, an 
internal α-D-Galf(1→2) is linked to Galp [5]. 

2.2. In Fungi 

The fungal cell wall structural organization and composition is generally layered. It consists of 
the inner, relatively conserved chitin core followed by branched glucan, which is bound to the outer, 
more heterogeneous layer composed of proteins and/or other polysaccharides the composition of 
which depends on the fungal species (Figure 3) [19]. 

In numerous pathogenic fungi species, for examples: Penicillium, Histoplasma, Cryptococcus and 
Aspergillus, Galf has been found as a part of the cell wall glycan [20]. 

Aspergillus fumigatus causes aspergillosis, one of the main fungal infections in humans, especially 
in immunodeficient patients. Interestingly, a single Galf is essential for the immunoreactivity of the 
glycan and therefore they have been studied as in vitro markers for the early diagnosis of the invasive 
aspergillosis [5]. It is remarkable since 5% of the dry weight of A. fumigatus consists of Galf, and as it 
is a quite abundant monosaccharide found and described at least in four different molecules, i.e., 
galactomannan and its secreted form, glycoproteins, and within glycosphingolipids [3]. 
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Figure 2. A schematic representation of the Mycobacterium tuberculosis cell wall structure with depiction
of the three major cell wall features, including peptidoglycan, arabinogalactan and mycolic acids [13,14].

Arabinogalactan is a cell wall core assembly composed of arabinofuranose and galactofuranose
that constitutes two distinct structural motifs: arabinan and galactan. The galactan is a linear polymer
and consists of approximately 30 altering β-d-Galf -(1→5) and β-d-Galf -(1→6) residues that bear
highly branched arabinan chains, the inner backbone of which contains about 35 (1→5)-α-d-Araf
residues [6,12,13].

The mycobacterial cell wall is essential for its viability and is largely responsible for the ability
of the macrophage to survive and escape the hostile environment. It is evident that β-d-Galf is an
anchoring platform for the arabinogalactan complex; therefore, it remains a central focus as a drug
target [12,15].

On the other hand, the motif β-d-Galf -(1→6)-α-d-Galf was identified as part of exopolysaccharides
(EPS) of non-pathogenic strains such is Lactobacillus rhamnosus, isolated from human intestinal flora, [4]
Bifidobacterium catenulatum [16] or Streptococcus thermophilus, produced in skimmed milk [17]. It is also
interesting to note that the sulfated polysaccharide-peptidoglycan complex, produced by soil bacteria
Arthrobacter sp., contains a repeating trisaccharidic motif and shows antitumor activity [4,18].

Although α-d-Galf is rare, it can be found incorporated as a single, internally or terminally
positioned unit in the glycan core motifs [5]. It is the case in the anaerobic eubacteria Clostridium
thermocellum and Bacteroides cellulosolvens, which produce a high molecular-mass cellulose binding
protein complex, the cellulosome. The latter is glycosylated and within tetrasaccharide units, an internal
α-d-Galf (1→2) is linked to Galp [5].

2.2. In Fungi

The fungal cell wall structural organization and composition is generally layered. It consists of the
inner, relatively conserved chitin core followed by branched glucan, which is bound to the outer, more
heterogeneous layer composed of proteins and/or other polysaccharides the composition of which
depends on the fungal species (Figure 3) [19].

In numerous pathogenic fungi species, for examples: Penicillium, Histoplasma, Cryptococcus and
Aspergillus, Galf has been found as a part of the cell wall glycan [20].

Aspergillus fumigatus causes aspergillosis, one of the main fungal infections in humans, especially
in immunodeficient patients. Interestingly, a single Galf is essential for the immunoreactivity of
the glycan and therefore they have been studied as in vitro markers for the early diagnosis of the
invasive aspergillosis [5]. It is remarkable since 5% of the dry weight of A. fumigatus consists of
Galf, and as it is a quite abundant monosaccharide found and described at least in four different
molecules, i.e., galactomannan and its secreted form, glycoproteins, and within glycosphingolipids [3].
Galactomannan is a main exopolysaccharide structural form of the cell wall, composed of (1→2)- and
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(1→6)-α-d-mannopyranoside core chain with around four to ten units of (1→5)-β-d-Galf residues.
This galactomannan is also secreted and can be found as a free, soluble polysaccharide in the
medium. In addition, β-Galf -(1→5)-β-Galf was identified in both O- and N-linked glycans from the
peptidogalactomannan and glycoinositolphosphoceramide [21,22].
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Figure 3. A schematic representation of the Aspergillus fumigatus cell wall structure with a depiction of
the three major cell wall features, including chitin, glucan and galactomannan [14,23].

Other, noteworthy examples ofd-Galf -containing molecules present in other fungal species, include
the less common α-d-Galf found together with β-d-Galf in varianose, extracellular polysaccharide
produced by Penicillium varians [24]. The same repeating units of varianose have been found in the cell
wall of exopolysaccharides of P. vermiculatum and Talaromyces flavus while Apodus deciduus contains the
(1→2)-Galf disaccharide only in α-configuration [5].

2.3. In Protozoa

The presence of Galf in eukaryotic protozoa was reported in the early 1980s in the family of
Trypanosomatidae, which includes for humans and animals parasitic genera Trypanosoma and Leishmania.
The glycoconjugates in these parasites have been characterized in detail and to our knowledge, no other
examples of protozoa except trypanosomatids Crithidia spp. and Endotrypanum schaudinni containing
Galf have been reported [25,26].

Protozoan parasites of the genus Leishmania have two different life cycle stages, the flagellate
promastigote stage in insects and the amastigote stage in mammalian phagocytic cells, during
which many morphological and structural changes of the glycoclayx membrane occur. The related
Galf glycosylated membrane macromolecules are well studied in Leishmania major, a causative
agent of leishmaniosis, and include two types of molecules, lipophosphoglycans (LPGs) and
glycoinositolphospholipids (GIPLs). LPG is a major glycoconjugate that covers entire surface of
promastigote and contains an internal hexasaccharide β-Galf (1→3)-Manp core, which is conserved
among all Leishmania species. The GIPLs are present at the membrane surface at a ten times higher amount
than LPGs, and contain the same repeating unit, only externally positioned. Both glycolipid complexes,
LPG and GIPL, are involved in the virulence and survival of the parasite, and their unconventional
hexasaccharide core has become a target for the search for new drugs [27,28]. Similar LPG and GIPL are
present in Trypanasoma cruzi, the causative agent of the Chagas disease [4].

2.4. In Other Organisms

Beside previously mentioned groups of organisms, other eukaryotic organisms expressing different
Galf -containing surface molecules include certain plants, lichens and marine organisms. Even if rare
in terrestrial plants, Galf was first described in 1981 as a part of the cell wall glycoproteins in the
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unicellular green algae Chlamydomonas reinhardii [29]. Molecularly unique, prymnesin-1 toxin, isolated
from red tide alga Prymnesiou parvum, contains β-d-Galf residue linked to C90 unbranched carbon
chain (Figure 4A) [4,30].
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Figure 4. Chemical structures of Galf -containing glycoconjugates. (A) The structure of toxin prymnesin-1,
produced by Prymnesiou parvum. (B) The structure of agelagalastatin, glycosphingolipid produced by
Agelas sp. [4].

Among marine organisms, especially sponges of the genus Agelas sp. glycosphingolipid
agelagalastatin was described as containing the trisaccharide α-Galf (1→2)-β-Galf -(1→3)-Galp, and
it showed an antitumoral activity (Figure 4B) [31]. Steroidal glycosides and gangliosides containing
Galf were isolated from the starfish Anthenea chinensis and Achanthaster planci respectively [4,5].
The presence of Galf was also reported in the nematode Caenorhabditis elegans, one of the model
organisms in molecular and animal biology studies, but no reports about the presence in the mammals,
including humans, have been reported so far [32].

3. Aspects of Enzymatic Biosynthesis and Metabolism

The uniqueness of Galf as a central component of cell surface glycoconjugates of human pathogens
has led to an increased interest for the elaboration of its biosynthesis. The detailed mechanism of
its biosynthesis and metabolism has been difficult to elucidate due to the instability of Galf itself
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and to the fact that only few of these enzymes have been isolated and studied in the purified form.
From the studies available so far, it is evident that two putative enzymes, UDP-galactopyranose
mutase (UGM) and galactofuranosyltransferase (Galf T) catalyze two synthetic steps and give a rise to a
galactofuran extracellular conjugates, while the exact function of galactofuranosidase (Galf -ase), as the
degrading enzyme, and its overall contribution to the Galf metabolism remains unclear (Figure 5) [3,6].
In addition to the confirmation of the canonical metabolism scheme and of the absence of alternative
pathways, the identification of the three classes of enzymes involved and the coding genes, the efforts
to understand their in vivo interaction and importance for viability or virulence, possibly in one
organism, are still ongoing.
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3.1. UDP-Galactopyranose Mutase (UGM)

Generally, furanoses, as nucleotide activated monomer donors, are transferred to the acceptors,
growing oligomers or polymers, by glycofuranosyltransferases. In vivo, these furanose donors are
generated from the corresponding pyranoses by the activity of pyranose mutases. The sole source of all
Galf residues is uracil diphosphate (UDP)-galactofuranose (UDP-Galf ), which originates directly from
the UDP-galactopyranose (UDP-Galp). In addition, UDP-Galp is biosynthesized in all species from
glucose, originating from a de novo synthesis pathway, or in some organisms it may be formed from free
galactose by galactose salvage pathway. The activated UDP-Galp is interconverted, through reversible
ring-contraction, into UDP-Galf by the cytosolic enzyme UDP-Galp mutase. The equilibrium of the
UGM-catalyzed reaction greatly favors thermodynamically more stable UDP-Galp by the 11:1 ratio
(Figure 6) [1,33].
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It was established first in 1971 in Salmonella typhimirium that UDP-Galp is precursor of UDP-Galf.
More than twenty years later, in 1996, the glf gene encoding for a UGM was first identified and
cloned from E. coli [34]. Soon after the existence of homologue genes and UGMs was confirmed and
characterized in several other prokaryotes, bacteria Klebsiella pneumoniae, Mycobacterium tuberculosis
and Campylobacter jejuni, as well as in protozoan eukaryotes Leishmania major and Trypanosoma cruzi,
fungus Aspergillus fumigatus and nematode Caenorhabditis elegans [1,35].

In 2001, the first crystal structure of UGM from E. coli was reported [35]. Currently, a total of
58 crystal structures of UGM obtained from nine organisms have been deposited in the Protein Data
Bank (PDB). Some of these structures have been crystalized in both, the active (reduced) and the
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inactive (oxidized) states, as well as complexed with different substrates or ligands. The structures
gave insight into its tertiary structure and revealed that the overall architecture of active site consists of
conserved amino acid residues and that generally, UGMs are flavoenzymes working by the unique
mechanism involving flavine adenine dinucleotide (FAD) cofactor in its reduced form [35,36].

Since the UGM is at the center of Galf biosynthesis, the mutagenesis or the deletion of its genes
is enabling to study the impact of UGM absence and, consequently the Galf absence, on the in vivo
organism integrity.

3.2. Galactofuranosyltransferase (GalfT)

After the isomerization catalyzed by UGM, the newly produced UDP-Galf is transported, via
the UDP-Galf transporter only in eukaryotes, from the cytosol into the Golgi apparatus where the
glycosylation by galactofuranosyltransferases takes place. Galf Ts are the final enzymes involved in the
biosynthesis of Galf-containing molecules by a catalyzed reaction that corresponds to the nucleophilic
substitution of an acceptor on the anomeric position of an activated sugar donor (Figure 7) [6].
Probably due to the high costs and difficulties in obtaining the activated donor combined with the
limited access of the relevant enzymes, Galf Ts were less studied than the mutases [5]. However, at the
moment, only a few Galf Ts of prokaryotic, exclusively bacterial, and eukaryotic origin have been
cloned and characterized [1,5,6].
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By far the most studied prokaryotic Galf Ts are Glf T1 and Glf T2, two essential transferases for the
biosynthesis of Mycobacterium tuberculosis galactan. Interestingly, they share a low sequence homology
and are coded by different genes; Glf T1 is encoded by the Rv3782 gene and GlfT2 by the Rv3808c
gene, respectively. Both transferases have been expressed as recombinant enzymes and characterized.
The subsequent studies elucidated role of each transferase and demonstrated that Glf T1 is responsible
for the transfer of the two first Galf on the acceptor substrate, whereas Glf T2 pursues the polymerization
of the resulting acceptor by introducing approximately 30 remaining monosaccharides [37–39].

Since both use UDP-α-d-galactofuranose as the donor and the change from α-stereochemistry in
UDP-Galf to the β-stereochemistry of the newly synthesized glycan, indicate that catalysis follows an
inverting mechanism. They are also characterized as being bifunctional because they are synthetizing
both β-Galf -(1→5)-Galf and β-Galf -(1→6)-Galf linkages between Galf residues. Glf T2 has been more
extensively studied than Glf T1; therefore, it is the only Galf T with reported crystal structure and the
confirmed presence of only one catalytic site [38,39].

Few other well-characterized prokaryotic Galf Ts include WbbI from Escherichia coli K-12 that
is able to transfer β-(1→6)-Galf to α-glucose [40] and WbbO from Klebsiella pneumoniae, another
bifunctional transferase that couples β-Galf -(1→6)-Galp [41].

Until recently, LPG1 from Leishmania major was the first and only described eukaryotic Galf T.
In an extensive study from 2018, all the four putative transferases (LPG1, LPG1G, LPG1L and LPG1R)
encoded in the L. major genome were cloned, overexpressed and their kinetic parameters determined.
It was demonstrated that they are able to use both UDP-Galf and UDP-Galp as donor substrates [42].

Another two-known eukaryotic Galf Ts are of fungal origin, GfsA from Aspergillus nidulans and
Af gfsA from A. fumigatus. As it was shown, both enzymes are localized in the Golgi apparatus and use
UDP-Galf as a sugar donor [43,44]. Moreover the galactofuranosyltransferase activity was demonstrated
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in P. fellatum through the incorporation of radiolabelled Galf into peptidophosphogalactomannan
prepared from its membrane, but no further investigations were conducted [45].

3.3. Galactofuranosidases

Although the metabolism of β-d-galactofuranosides has been extensively studied, mostly in the
infectious microorganisms such as Mycobacteria, Trypanosoma, Leishmania and Aspergillus, there are only
few reports related to these enzymes, especially galactofuranosidase Galf -ase.

Over the past forty years, Galf -ase has been identified as being responsible for the degradation of
the d-Galf containing glycoconjugates [5,6]. In 1977, a specific extracellular exo-β-d-galactofuranosidase
(exo-β-d-Galf -ase) was the first one isolated and partially purified from Penicillium fellutanum (ex type
of Penicillium charlesii) culture filtrates. The enzyme catalyzed the hydrolysis of β-galactofuranosides
only and was incapable of cleaving α-L-arabinofuranosides, the pentosyl homologs. The enzyme was
stable to freezing and thawing and reached optimum activity between pH 3 and 4 at the temperature
of 47 ◦C [46].

Later, extracellular exo-β-d-Galf -ases were described and/or purified from the culture medium of
filamentous fungi such as Helminthosporium sacchari [47,48], Trichoderma harzianum [49], Penicillium and
Aspergillus species [50], among which the one from P. fellutanum have been the most studied [46,51–53],
Aspergillus niger [54] and protozoa Trypanosoma cruzi [55]. All the known β-Galf -ases were exclusively
exo enzymes and mostly have been of fungal origin.

There are only two reported endo-β-d-Galf-ases, isolated from fungus Penicillium oxalicum [56]
and from bacteria Bacillus sp. [57]. The first endo-β-d-Galf-ase, purified in 1992 from supernatants
of P. oxalicum autolysed cultures, hydrolyzed specifically β-d-(1→5)-linked galactofuranose residues.
This was the first endo-β-d-Galf-ase for which optimum pH, stability properties, substrate specificity
and kinetic characteristics were determined [56].

Only a few specific β-d-Galf -ases have been reported and mostly detected in fungal species as an
extracellular enzyme, which is secreted into the medium in low quantities.

In the absence of the identified Galf -ase gene and overexpressed as a recombinant protein,
their production was challenging. In order to induce a higher level of enzyme secretion, the synthetic
growth medium was supplemented with various monosaccharides, disaccharides or polysaccharides [51],
sometimes with those containing galactofuranoside residues [54,57] or the media from natural sources,
like apple juice [50] was used. The production of Galf -ase in A. niger were induced to significant levels
in the presence of Galf containing glycoconjugates (mycelial wall extracts) [54] and in P. fellutanum and
A. fumigatus when the medium was depleted of glucose [46,50,51,58] or when the glucose was replaced
by galactose as the carbon source [59].

Mostly, Galf -ases were purified from P. fellutanum culture filtrates and have become model
enzymes in characterization studies [46,47], but Galf -ase were also commercially available from crude
enzyme preparations [49,60] or from T. cruzi cell lysates [55].

To detect low levels of Galf -ase in culture media, to isolate it and to possibly purify it, an array
of Galf -containing glycoconjugates, acting like potential substrates or inhibitors, was synthetized
and assayed. Several conjugates proved to be good inhibitors, such as alkyl, aryl and heteroaryl
1-thio-β-d-galactofuranosides [59,61]. An affinity chromatography system was also developed
using two inhibitors, 4-aminophenyl thio-β-d-galactofuranoside and d-galactono-1,4-lactone, as the
immobilized and eluting ligands [52].

These early studies presented the pioneering work in the Galf -ase research. In most cases, properties
were determined using partially purified or even crude enzyme preparations and one of the main
problems was the lack of a simple and sensitive quantitative method for the detection of their catalytic
activity as well as a standardized substrate. The activity was usually determined by measuring the
released galactose during the hydrolysis of galactofuranose-containing exopolysaccharide preparations
of natural origin or methyl β-d-Galf by the galactose oxidase method. Already experimentally
established, the use of nitrophenyl glycosides, widely used as substrates for estimating the activity,
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kinetics and specificity of glycosidases, was extended to the para-nitrophenyl β-d-galactofuranose
(pNP-β-d-Galf ) [50,62], which became a standardized and commercially available [54] substrate for
assaying galactofuranosidases.

A colorimetric assay with pNP-β-d-Galf as a substrate was extensively used. However, this
substrate was not recognized by the endo-β-d-Galf -ase from Bacillus sp. [57] and exo-β-d-Galf -ase
from T. cruzi [55] and could be attributed to a particular substrate specificity, relating to aglycone.

The diversity of organisms, experimental conditions and substrates were employed during these
research studies making it very difficult to establish a unanimous and general conclusion. However,
they showed reliable evidence that suggested some common characteristics, which are outlined
(Table 1). The substrate specificity in respect to the glycon moiety from either natural or artificial
substrates was exclusively towards β-d-Galf. The enzymes proved to be stable over a longer period of
time, even as crude preparations, and showed optimal activity in acidic conditions that are usual for
the enzymes of invertebrates, (pH 4–5), and the stability at the temperatures up to 40 ◦C.

Although the first Galf -ase was described back in 1977, and several exo- and endo-Galf -ases were
purified from the culture supernatants and cell lysates of filamentous fungi, bacteria and protozoa,
the genes encoding these enzymes were not identified and expressed earlier, nor their amino acid
sequence determined (Figure 8).
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Recently, in 2015, based on the draft genome sequence analysis of soil, Gram-positive bacteria
Streptomyces sp., strain JHA19, an open reading frame that encoded Galf specific enzyme was identified.
Based on the sequencing results, the genome size was 7.7 Mb and the entire Galf -ase open reading
frame (ORF) fragment contained 2361 base pairs (bp), which encoded 786 amino acids [63].

The Galf -ase gene fragment was cloned, expressed and purified as a recombinant Nus and double
6xHis-tagged fusion protein. The enzyme was described as an exo-type Galf -ase that hydrolyzed
galactomannan, the naturally occurring Galf -containing oligosaccharide, extracted from A. fumigatus
cell wall, as well as the artificial substrate pNP-β-d-Galf. No activity was observed with other pNP
furanosyl and pyranosyl glycoconjugates, including pNP-α-L-Araf. The optimal pH was found to be
5.5, and the enzyme was stable at temperatures up to 40 ◦C with the KM value of 4.4 mM (Table 2).
This was the first report of an identification and cloning of a gene coding for the Galf -specific Galf -ase
enzyme that does not also exhibit arabinofuranosidase (Araf -ase) activity [64].
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Table 1. Comparative properties of β-d-galactofuranosidases.

Enzyme Species Substrate pH T (◦C) M (kDa) KM (mM) † Year Reference

extracellular
exo-β-d-Galf -ase Penicillium charlesii (fungus) pPGM a 4 47 – – 1977 [46]

β-Galf -ase Helminthosporium sacchari (fungus) 1-O-methyl-β-Galf 4.2 & 5.2 38 – – 1983 [47]
β-d-Galf -ase H. sacchari (fungus) HS toxin b 4.6 37 – – 1983 [48]
extracellular
β-d-Galf -ase

Penicillium spp. pNP-β-d-Galf 5 30 – – 1989 [50]
Aspergillus spp. (fungi)

endo-β-Galf -ase Penicillium oxalicum (fungus) β-(1→5)-galactofuran 5 37 77 – 1992 [56]
exo-β-d-Galf -ase Trichoderma harzianum (fungus) EPS c 4–4.5 35–40 35 – 1992 [49]
endo-β-Galf -ase Bacillus sp. (bacteria) __ 6 37 67 – 1995 [57]
exo-β-d-Galf -ase Penicillium fellutanum (fungus) pNP-β-d-Galf 3–6 37 70 0.3 1999 [52]

extracellular β-Galf -ase Aspergillus niger (fungus) pNP-β-d-Galf 3–4 37 90 4 2001 [54]
exo-β-d-Galf -ase P. fellutanum (fungus) 1-O-methyl-β-Galf 4–4.5 40 70 2.6 2001 [53]
exo-β-d-Galf -ase Trypanosoma cruzi (protozoa) LPPG d – – 55 – 2003 [55]

† KM values determined only for pNP-β-d-Galf and its derivatives as a substrate. a pPGM—peptidophosphogalactomannan from Penicillium fellutanum b HS toxin—host-selective toxin
from Helminthosporium sacchari c EPS—extracellular polysaccharides from Penicillium digitatum d LPPG—lipopeptidophosphoglycan from Trypanosoma cruzi.
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Another Galf -ase gene was also found later in the genome of Streptomyces sp., strain JHA26,
coding for 869 amino acids. The Galf -ase specific enzyme was expressed, purified and characterized
with the highest activity at pH 4.5 and temperature stability up to 45 ◦C and with KM of 6.8 mM for
pNP-β-d-Galf as a substrate [65,66].

Table 2. Comparative properties of recombinant β-d-galactofuranosidases.

Galf -Ase Substrate pH T (◦C) KM (mM) Year Reference

Streptomyces sp. (JHA19) pNP-β-d-Galf 5.5 50 4.4 2015 [64]
Streptomyces sp. (JHA26) pNP-β-d-Galf 4.5 45 6.8 2017 [65]

Galf-ase (JHA19) pNP-β-d-Galf 4.5 60 0.25 2019 [67]

The most recent addition of cloned enzymes is the one from 2019, which provided the complete
biochemical and kinetic characterization of subcloned Streptomyces spp. JHA16 recombinant Galf -ase to
date. This N-terminal 6xHis-tagged Galf -ase proved to be an efficient and stable biocatalyst exclusively
towards the synthetic substrate pNP-β-d-Galf possessing a KM value of 0.25 mM and the highest
activity at pH 4.5, temperature stability up to 60 ◦C as well as stability towards multiple freeze and
thaw cycles as a crude preparation (Table 2) [67].

4. Galactofuranose Antigens—Therapeutic and Diagnostic Target

The search for molecules that are specific to pathogenic microorganisms, pathogen-associated
molecular patterns (PAMPs), preferably surface-exposed, conserved in pathogens and absent in host
organisms, to circumvent a potential risk of interference, has seemingly led to one potential target,
the galactofuranose [68,69].

Biomolecules involving galactofuranose have attracted interest because they fulfill these
requirements and their presence in many pathogens suggests to be an advantageous element of
survival and is considered essential for their virulence [4]. Hence, galactofuranose is as a new and
interesting candidate as a target in medical or biotechnological applications.

Possibilities to exploit the absence of this unusual monosaccharide in mammals arise from its biological
significance in these pathogens. The impact of the galactofuranose deficiency on cell morphology and
growth and its role in virulence was the focus of numerous research studies, predominately performed on
eukaryotic pathogens of Aspergillus and Leishmania species. The modifications of the cell surfaces were
most evident in fungi and resulted in aberrant morphological changes and growth reduction, leading to a
hypersensitivity to drugs and osmotic stress. The lack of Galf had a variable impact on the virulence
capacity of Leishmania, Trypanosoma and Aspergillus species. While in Leishmania major, Galf -deficient
mutants presented only the initial delay in infection onset, in L. mexicana infectivity was not attenuated
and in the related parasite T. cruzi, Galf -containing strains were less infectious than those expressing Galp.
On the other hand A. fumigatus displayed attenuated virulence, which might be dose-related [3].

Interestingly, the virulence effects vary with the observed organisms, indicating that the Galf
involvement cannot be generalized and rather should be considered separately, related to specific
pathogen species. Understanding the exact role and contribution of individual Galf -containing
glycoconjugates and Galf itself on the morphology, survival and virulence, as well as its role in the
immune response, remain to be clarified.

Therefore, the medical application of Galf -based therapeutics or mimetics is still challenging and
relies on the elucidation of the Galf biosynthesis pathways.

However, the importance of Galf as a diagnostic target showed it to be very useful. The presence
of Aspergillus exoantigens of galactomannan (GM) origin, known to be secreted by the fungus during its
growth in vitro and in vivo, is a specific indicator of this invasive disease and has become a detection
target [70]. Monoclonal antibody detection methods for early serological diagnosis of galactomannan
antigens, thus invasive pulmonary aspergillosis, have been experimentally developed since 1980s.
It was not only until 1995 that a double-direct sandwich enzyme-linked immunosorbent assay (ELISA)
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was developed, that this assay employs a rat anti-GM monoclonal antibody, EB-A2, directed against the
β-Galf (1→3)-β-Galf epitopes of GM. Today, two GM antigen detection kits are commercially available,
the Pastorex Aspergillus and the Platelia™ Aspergillus. The Pastorex, latex agglutination test, has mostly
been replaced by the Platelia™ Aspergillus, EIA, which has been available in Europe for more than
20 years and in the USA since 2003. To our knowledge, these are the only commercially available tests
based on the detection of Galf epitopes [71,72].

In parallel, a novel experimental procedure for the non-invasive detection of Aspergillus lung infection,
based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR)
imaging, has been developed and tested. In 2016 the prototype version, [64Cu]DOTA-mJF5 tracer, showed
that a mouse monoclonal antibody (mJF5) specifically binds to the mannoprotein antigen, pathogen
related only, and that the antibody-labeled, radionucleotide 64Cu and DOTA chelator complex, allows for
the combined PET imaging. This highly specific [64Cu]DOTA-mJF5 tracer allows repeated imaging and
distinguishes aspergillosis from pulmonary inflammation and bacterial lung infections [73].

Only a year later, the same team reported the development of a humanized version of the JF5
antibody (hJF5). This new, [64Cu]NODAGA-hJF5 tracer showed not only improved imaging capabilities
but also a high specificity towards Galf (1→3)-β-Galf epitopes, present in a mannoprotein antigen
released by Aspergillus during lung infection. This was the first time that Galf -specific, antibody-guided
in vivo imaging has been used for non-invasive preclinical diagnosis of a fungal lung disease [74].

These recent experimental techniques based on Galf specific antibodies are still under development
and are greatly contributing towards more specific targeting of epitope patterns. The related imaging
and diagnostic aspects have yet to be explored.

5. Conclusions

The impact of modern biotechnology and recombinant DNA technology has made enzymes
available in an economically feasible approach. It enabled a whole new diversity of enzymes to be
accessed in the field of glycoenzymes. In parallel carbohydrate-based materials have emerged in an
increasing number of applications in the food, feed, pharmaceutical and other industries. To access these
carbohydrate structures that are in high demand, natural glycoenzyme catalysts have provided over
the last few decades an alternative to chemical synthesis. A current area of interest is broadening the
search spectrum to rare glycan substrate specific glycoside hydrolases, preferably, from narrow group
of organisms involved in pathological conditions, in order to create altered characteristics, various
functions and application possibilities within protein engineering. The biocatalyzed synthesis of
galactofuranosyl containing conjugates still represents an emerging area due to our limited knowledge
about the interaction of the protein with this specific and rare carbohydrate. Recent findings in the
field described in this review render it very promising.
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EPS exopolysaccharides
EPS extracellular polysaccharides
FAD flavine adenine dinucleotide
Galf galactofuranose
Galf T galactofuranosyltransferase
Galp galactopyranose
GIPLs glycoinosinositolphospholipids
GM galactomannan
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HS toxin host-selective toxin
LPGs lipophosphoglycans
LPPG lipopeptidophosphoglycan
LPS lipopolysaccharide
ORF open reading frame
PAMPs pathogen-associated molecular patterns
PDB Protein Data Bank
PET/MR positron emission tomography/magnetic resonance
pNP-β-d-Galf para-nitrophenyl β-d-galactofuranose
pPGM peptidophosphogalactomannan
UDP uracil diphosphate
UDP-Galf uracil diphosphate galactofuranose
UGM UDP-galactopyranose mutase
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