
1SCIentIfIC REPOrtS | 7: 14903  | DOI:10.1038/s41598-017-14805-y

www.nature.com/scientificreports

Hodgkin Lymphoma has a seasonal 
pattern of incidence and mortality 
that depends on latitude
Sven Borchmann, Horst Müller & Andreas Engert

Seasonal variations in incidence and mortality after a Hodgkin lymphoma (HL) diagnosis have 
been previously described with partly conflicting results. The goal of this analysis is to provide a 
comprehensive analysis of these seasonal variations. In total, 41,405 HL cases diagnosed between 
1973 and 2012 in the 18 Surveillance, Epidemiology, and End Results registries were included. Cosinor 
analysis and Cox proportional-hazards models were employed to analyze seasonality of incidence 
and mortality, respectively. HL shows a sinusoid seasonal incidence pattern (p < 0.001). Estimated 
incidence in March is 15.4% [95%-CI: 10.8-20.0] higher than in September. This sinusoid pattern is 
more pronounced at higher latitudes (p = 0.023). The risk of dying within the first three years after a HL 
diagnosis in winter is significantly increased compared to a HL diagnosis in summer at higher latitudes 
(HR = 1.082 [95%-CI: 1.009-1.161], p = 0.027). Furthermore, increasing northern latitude increases the 
additional mortality risk conferred by a diagnosis in winter (pinteraction0.033). The seasonality patterns 
presented here provide epidemiological evidence that Vitamin D might play a protective role in HL. 
Further evidence on the direct association between Vitamin D levels and the clinical course of HL needs 
to be collected to advance the understanding of the role of Vitamin D in HL.

Hodgkin lymphoma (HL) is among the hematological malignancies with the best prognosis. Ongoing efforts 
to improve treatment efficacy have resulted in 5-year overall survival (OS) rates of above 95% being reported in 
clinical trials in various disease stages1–4. Despite this, pathogenesis of HL is poorly understood and there are 
potential unknown risk factors that might affect HL incidence and mortality. Examining seasonal patterns of 
incidence and mortality might be helpful in improving the understanding of both, the pathogenesis of the disease 
and the influence of seasonally variable risk factors on incidence and mortality.

Seasonal variations in incidence and mortality of HL have been previously described in small datasets5–10 
with partly conflicting patterns and results. Interestingly, all published studies examining these patterns were 
performed in fairly northern countries such as Norway, Sweden and northern parts of England or Scotland.

The goal of the present study is to use Surveillance, Epidemiology, and End Results (SEER) registry data to 
perform a comprehensive analysis of seasonality patterns in incidence and mortality of HL. By using a large and 
geographically diverse dataset, it is possible to analyze geographic variations of seasonality patterns, which might 
allow better insights into possible causes and mechanisms of this malignancy.

Methods
All data was obtained from the SEER incidence database using the November 2014 submission11. The SEER 
program provides population based cancer registry data from 18 SEER registries covering approximately 28% 
of the U.S. population. A detailed description of the SEER registries, methods of data collection and follow-up is 
available through the SEER website12.

To calculate the number of incident cases in each month, the SEER*Stat software13 was used to select all HL 
cases diagnosed between 1973 and 2012 in the 18 SEER registries. This selection resulted in 50,179 actively fol-
lowed cases. All death certificate and autopsy only cases (n = 281) were excluded. Following that, all cases without 
known month of diagnosis (n = 257) were excluded. The SEER registries “Alaska natives” (n = 17) and “Rural 
Georgia” (n = 57) were excluded due to low case numbers. Finally, some cases had no information available for 
age of diagnosis (n = 5) and Ann-Arbor stage (n = 8,157) and were excluded. This selection process resulted in 
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41,405 cases. A CONSORT flowchart visualizing the selection process is provided as Supplementary Figure 1. The 
characteristics of the cases included in the analysis are described in Table 1 and are representative of the general 
HL population.

All calculations were performed using the software R14 and R Commander15,16. Survival analysis and cosinor 
analysis were performed using the R-packages survival17 and cosinor18, respectively. All p-values were calcu-
lated as two-sided p-values. P-values < 0.05 were considered to be statistically significant in all statistical tests 
employed. All p-values < 0.001 are presented as such. All confidence intervals presented are 95%-intervals. With 
regard to the subgroup analysis of the seasonal incidence pattern, correction for multiple testing was performed 
according to the Bonferroni-Holm method19 and adjusted p-values are indicated with padj where applicable.

Seasonality of incidence.  The date of diagnosis was defined as the month, day and year the HL was first 
diagnosed clinically or microscopically by a recognized medical practitioner12. Cases were grouped according to 
month of diagnosis. The number of cases per month were adjusted for differences in the length of the respective 
month by dividing each month’s case count by the number of days in that month, with February having 28.25 
days, and multiplied by the average number of days across all months (30.4375 days). Subsequently, adjusted 
case counts were standardized, so that the average month had an incidence of 1. This was done by dividing each 
month’s adjusted case count by the average case count across all months. Cosinor analysis was performed to 
examine seasonality in the incidence data using the standardized monthly incidence as input. A detailed descrip-
tion of cosinor analysis is provided by Nelson et al. and Tong et al.20,21. In order to examine seasonality in various 
subgroups, the cases were stratified by sex, histological subtype, age group, Ann-Arbor stage, year of diagnosis 
and latitude quartiles. Age at diagnosis was sorted into groups aged 0–19, 20–29, 30–39, 40–49, 50–59, 60–69 and 
>70, respectively. For each case, the location of diagnosis was available from the SEER database at county level. 
Latitude quartiles were defined by sorting all counties by their respective latitude and allocating the counties into 
quartiles by latitude. Data on latitude for the single counties was provided by the U.S. Census Bureau22. The peak 
incidence month is defined as the month closest to the incidence peak estimated by the cosinor model. Amplitude 
is defined as the amplitude estimated by the cosinor model.

Cases were subdivided into cases diagnosed in the northern half (latitude ≥38.05°N) and southern half (lati-
tude <38.05°N) of counties. Subsequently, a dichotomous variable representing the location of diagnosis (north-
ern half vs. southern half of counties) was included into the cosinor model and its influence on the amplitude 
tested.

No. of cases

Total 41405 (100%)

Sex
Male 22708 (54.8%)

Female 18697 (45.2%)

Histological subtype

Lymphocyte rich 1371 (3.3%)

Mixed cellularity 6172 (14.9%)

Lymphocyte depleted 684 (1.7%)

Nodular sclerosis 24631 (59.5%)

NLPHL 1619 (3.9%)

Not otherwise specified 6928 (16.7%)

Age group

0–19 5352 (12.9%)

20–29 9869 (23.8%)

30–39 7865 (19.0%)

40–49 5610 (13.6%)

50–59 4202 (10.1%)

60–69 3647 (8.8%)

≥70 4860 (11.8%)

Ann-Arbor stage

I 8824 (21.3%)

II 16309 (39.4%)

III 8537 (20.6%)

IV 7735 (18.7%)

Year of diagnosis

<1990 4608 (11.1%)

≥1990 & <2000 9024 (21.8%)

≥2000 & <2010 21278 (51.4%)

≥2010 6495 (15.7%)

Latitude

<34.19°N 7932 (19.2%)

≥34.19°N & <38.05°N 12737 (30.8%)

≥38.05°N & <41.68°N 10152 (24.5%)

≥41.68°N 10584 (25.5%)

Table 1.  Patient characteristics and number of cases for each subgroup in the dataset. NLPHL denotes nodular 
lymphocyte-predominant Hodgkin lymphoma.
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Seasonality of Mortality.  In order to analyze seasonal differences in mortality, a Cox proportional-hazards 
model was employed23. Seasonality was first tested by grouping the month of diagnosis into a dichotomous var-
iable and, thus, dividing the cases into those diagnosed during the winter (September to February) and summer 
half year (March to August). This dichotomization was chosen on the basis of the meteorological definition of the 
seasons24. In the present study, the summer half year comprises the meteorological spring and summer and the 
winter half year comprises the meteorological autumn and winter. All known risk factors for a poor outcome of 
HL available from the SEER database were included into the model to control for their effect: Age at diagnosis, 
histological subtype, year of diagnosis, sex and Ann-Arbor stage.

Follow-up was censored at three years to focus on short term mortality, taking into consideration the hypoth-
esis that mortality differences by season of diagnosis are less pronounced with increasing follow-up, as patients 
live through more seasons in total, thus decreasing the relative exposure to a specific season that might be a risk 
factor. A model with 5 years of follow up was fitted as well in order to increase robustness of results. Analysis was 
firstly performed for all cases together and then stratified by the above mentioned subdivision into the northern 
vs. southern half of counties.

In order to evaluate a possible effect of latitude on the difference in mortality after a diagnosis in winter versus 
summer, an additional Cox proportional-hazards model was fitted. This model included a multiplicative interac-
tion term between the dichotomous variable indicating the season of diagnosis and the continuously modelled 
latitude of the county the case was diagnosed in.

In order to test for robustness of results with respect to dividing the year into two half years at specific months, 
a further Cox proportional-hazards model was fitted including a sinusoid term x1 that was calculated with the 
following formula:

π=










− 








x M Mcos 2
12 (1)

max
1

where M is the month of diagnosis (e.g. January = 1, February = 2…) and Mmax is the month with the maximum 
risk. For example, for Mmax = 3, this term assigns March the highest possible seasonal risk 1 and September the 
lowest −1. For Mmax = 4, the seasonal risk term shifts forward by one month so that April is assigned the highest 
seasonal risk 1 and October the lowest −1 and so on. Substituting this seasonal risk term for the dichotomized 
season of diagnosis variable in the Cox proportional-hazards model described above and iteratively determining 
Mmax so that β1 in the Cox proportional-hazards model is maximized makes it possible to find the highest risk 
month that describes the true peak and trough of seasonal mortality risk in the data best. A detailed explanation 
of the concept is given by Efird et al.25.

Data availability.  The data analysed in the current study is available from the SEER registries at https://seer.
cancer.gov/registries/.

Results
Seasonal incidence pattern.  Looking at all incident cases together, a highly significant (p < 0.001) seasonal 
incidence pattern emerged with a peak around March and a trough around September. The estimated amplitude 
of seasonality was 0.077, indicating that the incidence around September is roughly 15% lower than around 
March. Table 2 shows the raw, adjusted and normalized incidence for each month for the whole dataset. Figure 1 
shows a forest plot with all subgroup analyses. The seasonal pattern was equally present in male and female cases. 
Stratified by histological subtype, only cases of the mixed cellularity subtype (padj = 0.027), the nodular sclerosis 
subtype (padj = 0.027) and the lymphocyte depleted subtype (padj = 0.027) showed a significant seasonal incidence 
pattern when analyzed separately, while the lymphocyte rich subtype (padj = 0.412), the not otherwise specified 
(NOS) subtype (padj = 0.244) and the nodular lymphocyte predominant (NLPHL) subtype (padj = 0.412) did not. 
Despite that, there was a clear trend towards seasonality in all histological subgroups. Stratification by age group 

Month
Case 
count

Adjusted case 
count

Normalized 
incidence

January 3698 3631 1.052

February 3454 3721 1.078

March 3846 3776 1.094

April 3701 3755 1.088

May 3412 3350 0.970

June 3466 3517 1.019

July 3283 3223 0.934

August 3318 3258 0.944

September 3154 3200 0.927

October 3355 3294 0.954

November 3298 3346 0.969

December 3420 3358 0.973

Table 2.  Raw, adjusted and normalized incidence of Hodgkin lymphoma for each month in the dataset. The 
adjusted case count is rounded to the nearest integer.

https://seer.cancer.gov/registries/
https://seer.cancer.gov/registries/
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revealed a significant seasonal incidence pattern for all age groups, apart from the age groups 40–49 (padj = 0.244), 
50–59 (padj = 0.084) and >70 (padj = 0.160). The amplitude was particularly high for the age groups 20–29 (0.121), 
30–39 (0.114) and 60–69 (0.096), coinciding with higher HL incidence age groups26. Furthermore, stratification 
by Ann-Arbor stage and year of diagnosis revealed significant seasonality across these subgroups. Despite some 
non-significant results after adjusting for multiple testing, there was a clear trend towards seasonality in all sub-
groups (Fig. 1). The non-significant seasonality in some subgroups might be due to lower case numbers in the 
respective groups.

Looking at the stratification by latitude quartiles, all quartiles showed significant seasonality patterns when 
analyzed separately (Fig. 2). The amplitude was dependent on the latitude. Cases diagnosed at a latitude <38.05°N 

Figure 1.  Forest plot of the subgroup analysis of seasonality of incidence The seasonality amplitude is shown 
on the x-axis. Subgroups are shown on the y-axis. The estimated seasonality amplitude with 95% confidence 
intervals is shown for each subgroup.

Figure 2.  Relationship between latitude quartile and estimated seasonality amplitude Latitude quartiles are 
shown on the x-axis. The first, second, third and fourth latitude quartiles include all counties south of 34.19°N, 
between 34.19°N and 38.05°N, between 38.05°N and 41.68°N and north of 41.68°N, respectively. The estimated 
seasonality amplitude of the respective quartile is shown on the y-axis with 95% confidence intervals of the 
estimated amplitude.
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(southern half of counties) had an amplitude of 0.055 ([0,026; 0.084], p < 0.001) compared to 0.102 ([0.073; 
0.131], p < 0.001) for those diagnosed at a latitude ≥38.05°N (northern half of counties). The difference of 0.05 
([0.01; 0.09], p = 0.023) between these groups was statistically significant.

Impact of seasonality and latitude on outcome.  The results of the Cox proportional-hazards model 
for overall survival after a HL diagnosis with season of diagnosis as a dichotomous variable are given in Table 3. 
Looking at all cases together, being diagnosed in winter does not significantly increase the risk of dying com-
pared to a diagnosis in summer within 3 years after diagnosis (HR = 1.030 [0.981, 1.081], p = 0.234). However, 
when analyzed stratified by latitude, cases from the northern half (latitude ≥38.05°N) of counties exhibited an 
increased risk of death when the diagnosis of HL was made in winter (HR = 1.082 [1.009, 1.161], p = 0.027). In 
contrast, cases from the southern half of counties (latitude <38.05°N) showed no increased risk (HR = 0.990 
[0.926, 1.059], p = 0.772). Confirmatory analysis using 5-year survival data showed similar results (Table 3).

To further examine the relationship between latitude and the increased risk of death after a winter or summer 
diagnosis, a multiplicative interaction term between the dichotomous season variable and the latitude each case 
was diagnosed at (in 10° steps) was included into the Cox proportional-hazards model described above. The 
hazard ratio for this interaction term was 1.119 ([1.009; 1.241], p = 0.033) using 3 year survival data and, thus, sig-
nificantly greater than 1. This interaction term indicates that increasing northern latitude increases the additional 
mortality risk after a winter versus summer diagnosis. Confirmatory analysis using 5-year survival data showed 
similar results with a hazard ratio for the interaction term of 1.105 ([1.005; 1.214], p = 0.039).

In a final Cox proportional-hazards model with 3-year survival data, robustness of the cutoff months for 
dividing the year into a summer and a winter half year was assessed. A seasonal risk term, calculated as stated 
in the methods section, substituted the dichotomized season of diagnosis variable. Table 4 shows the estimated 
hazard ratios for the seasonal risk term for various Mmax, each reflecting a different peak risk month for cases 
diagnosed in the northern half (latitude ≥38.05°N) of counties. The hazard ratio was highest for the seasonal 
risk term with Mmax = 11 indicating the seasonal risk term implying November as the peak mortality risk month 
describes the seasonal mortality risk best. For Mmax = 11, the seasonal risk term takes positive values for the 
months September to January, a neutral value of 0 for the months February and August and negative values for 

Hazard 
Ratio

Lower 
95% CI

Upper 
95% CI p

3-year survival

All cases 1.030 0.981 1.081 0.234

≥38.05°N 1.082 1.009 1.161 0.027

<38.05°N 0.990 0.926 1.059 0.772

5-year survival

All cases 1.027 0.983 1.073 0.238

≥38.05°N 1.073 1.007 1.144 0.029

<38.05°N 0.991 0.932 1.053 0.764

Table 3.  Results of the estimated Cox proportional-hazards model for all cases and stratified by latitude. Age 
at diagnosis, histological subtype, year of diagnosis, sex and Ann-Arbor stage were included into the model 
as known risk factors to control for their effect. Hazard ratio is the hazard ratio for overall mortality in the 
first three or five years after the HL diagnosis when being diagnosed in winter (September to February) versus 
summer (March to August). 95% confidence intervals of the hazard ratio are given. Significant results are shown 
in bold.

Peak risk month
Hazard 
Ratio

Lower 
95% CI

Upper 
95% CI p

January 1.023 0.973 1.075 0.380

February 0.992 0.944 1.042 0.748

March 0.965 0.919 1.014 0.155

April 0.947 0.902 0.995 0.032

May 0.943 0.897 0.991 0.021

June 0.954 0.908 1.003 0.065

July 0.978 0.931 1.028 0.380

August 1.008 0.956 1.060 0.748

September 1.036 0.987 1.089 0.155

October 1.056 1.005 1.109 0.032

November 1.060 1.009 1.114 0.021

December 1.048 0.997 1.102 0.065

Table 4.  Hazard ratio for the seasonal risk term for various peak risk months. The Cox proportional-hazards 
model included only cases diagnosed north of 38.05°N. The hazard ratios for different peak risk months are 
shown. A detailed explanation of the calculation of the seasonal risk term is given in the methods section. 95% 
confidence intervals of the hazard ratios are given.
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the months March to July. These intervals coincide with the chosen dichotomization of the year into a summer 
and a winter half year employed in the previous models. Note how β1 and, thus, the hazard ratio is lowest for 
Mmin = 5, reflecting the sinusoid property of the seasonal risk term. For Mmin = 5, the seasonal risk term is 1 for 
cases diagnosed in May, thus implying the lowest seasonal mortality risk in May. Finally, we tested a multiplicative 
interaction term as described above in this model, this time indicating the interaction between latitude (in 10° 
steps) and the seasonal risk term with Mmax = 11. The hazard ratio for this interaction term was 1.103 ([1.025; 
1.187], p = 0.009) and, thus, significantly greater than 1.

Discussion
Here, we report the most comprehensive analysis of seasonal incidence and mortality patterns in HL performed 
to date and present several new findings.

The overall seasonal incidence pattern of HL in the northern hemisphere has a peak around March and a 
trough around September. Douglas and coworkers looked at seasonal incidence patterns for the different his-
tological HL subtypes demonstrating seasonality for the nodular sclerosis subtype and the nodular lymphocyte 
predominant subtype10. We found similar results for the nodular sclerosis subtype and, in addition to that, a sig-
nificant seasonal incidence pattern for the mixed cellularity and the lymphocyte depleted subtypes. The pattern 
described by Douglas et al.10 for the nodular lymphocyte predominant subtype was not significant in the present 
study, although there was a trend towards seasonality in our data as well. Non-significance might be the result of 
lower case numbers in this rare subgroup. Neilly et al.5 also performed a stratified analysis of seasonal incidence 
patterns by histological subtype and, very similar to our analysis, also found a significant seasonal incidence pat-
tern for the mixed cellularity and the nodular sclerosis subtypes.

A stratified analysis by age group was undertaken by Chang et al.8, however, a comparison of the amplitude of 
the seasonality pattern in the different age groups was not performed. In addition, age groups were defined more 
broadly than in our analysis, possibly due to lower case numbers. Interestingly, the seasonal incidence pattern was 
strongly pronounced for the age groups 20–29 and 30–39. An overall incidence peak was observed in these age 
groups largely associated with Epstein-Barr virus (EBV) negative cases27. Data on EBV association are not pro-
vided in the SEER database, but one can assume that EBV status is an important factor in determining seasonal 
incidence patterns and that the seasonal incidence patterns vary between EBV positive and EBV negative cases. 
We were also able to show that the seasonal incidence pattern is more pronounced at higher latitudes.

We found a significantly increased risk of death in the first three years after a diagnosis of HL made in winter 
as compared to summer at higher latitudes. Seasonal differences in mortality risk after a diagnosis of HL have pre-
viously been described by Porojnicu et al.7 although the authors only found a lower risk of mortality after being 
diagnosed in autumn versus winter. In our study, the increased risk of mortality after a winter diagnosis was con-
fined to counties at higher latitudes (>38.05°N). All seasonal patterns of mortality or incidence have so far been 
described in fairly northern countries of high latitude in Europe5–10. We were able to show that the increased risk 
of dying after a winter diagnosis of HL is dependent on the latitude the diagnosis was made at in a way that a more 
northern latitude increases the risk of dying after being diagnosed with HL in winter. Robustness of our results 

Figure 3.  Illustration of the relationship between the peak and trough of vitamin D levels in humans in the 
northern hemisphere and the overall seasonality pattern of HL incidence The months of the year are shown on 
the x-axis. The ratio of the respective month’s incidence and the average incidence of all months are shown on 
the y-axis. The line indicates a fitted curve through the data as estimated by the cosinor model.
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is shown in an additional model employing a sinusoid seasonal risk term. This model shows November to be the 
least favorable month and May as the most favorable month of diagnosis with regard to subsequent mortality risk.

We hypothesize that seasonal differences in vitamin D levels mediated by ultraviolet radiation (UVR) are 
at least in part responsible for the seasonal patterns described here. The seasonal pattern of vitamin D levels in 
humans is also more pronounced at higher latitudes28,29. Strikingly, the seasonal incidence pattern observed in 
HL cases almost exactly resembles the seasonal pattern of vitamin D levels in humans30 (Fig. 3). In addition, 
the occurrence of a more pronounced seasonal incidence pattern among young patients could be a result of the 
higher seasonal variation in Vitamin D levels that has been described in this age group31,32. Recent epidemio-
logical studies from Australia and the United States showed an increased incidence of HL with longer distances 
from the equator or lower annual ambient UVR, respectively33,34. Furthermore, increased ambient UVR was 
found to be likely protective, reducing HL incidence in a recent meta analysis35. Interestingly, a recent study that 
examined incidence of HL in Mediterranean countries found a higher HL incidence in countries bordering the 
northern Mediterranean Sea compared to those bordering the southern Mediterranean Sea36. However, these 
differences could also be explained by differences in sociodemographic characteristics or cancer registry meth-
odology between these countries. A low Vitamin D status has been described as a risk factor for both, developing 
and suffering from a poor prognosis after a diagnosis of other hematological malignancies. Examples are follicular 
lymphoma37 or chronic lymphocytic lymphoma38. New treatments for HL, such as immune checkpoint inhibi-
tors39,40, might be partially dependent on patients having a functioning immune system. It is known that Vitamin 
D supports various immune system functions and can act anti-proliferative in various hematological cancers41,42.

Other causes of the seasonality described here are certainly possible, for example seasonality of an infectious 
agent, such as EBV, causing some HL cases. This would, however, not explain the observed seasonal differences 
in mortality and would contradict the finding that the seasonal incidence pattern of HL is, in fact, strongest in 
age groups with a fairly high proportion of EBV negative cases. Another possible explanation for the seasonal 
incidence pattern could be an increase in diagnoses of HL in late winter, due to the coincidence of the common 
cold season and an increase in consultations resulting in higher health care exposure and consultations for longer 
lasting reasons like lymph node swellings being postponed until after the holiday season. Lower incidence num-
bers in late summer could be explained by the summer holiday season. However, these alternative explanations 
do not explain the observed mortality pattern.

A potential shortcoming of our study is that many HL relevant variables and known risk factors are not avail-
able from the SEER program. Therefore it is possible that some variables exist that might at least partly explain 
the observed incidence pattern or increase mortality after a diagnosis in winter. For example, bulky disease, espe-
cially in the mediastinum is a known risk factor in HL4 and might be more symptomatic in winter. Likewise, data 
to calculate the International Prognostic Score (IPS), a widely accepted score for risk stratification of HL, is not 
available. However, by including all available potential risk factors into the Cox proportional-hazards models used 
to estimate seasonal differences in mortality, we tried to control for potential confounders as good as possible with 
the available data. Additionally, we compared available disease and patients characteristics between the highest 
and lowest risk months for mortality (November vs. May) (Supplementary Table 1) and the peak and trough 
months for incidence (March vs. September) (Supplementary Table 2). Disease and patient characteristics were 
not different between the compared months.

In conclusion, we found a striking seasonal pattern of incidence and mortality in HL. Further studies are 
needed in order to better understand the reasons for the seasonal patterns described here.
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