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Abstract: Breast cancer is the most prevalent cancer type in women. 
Accumulating evidence indicates that the fidelity of double-strand break repair 
in response to DNA damage is an important step in mammary neoplasias. The 
RAD51 and BRCA1 proteins are involved in the repair of double-strand DNA 
breaks by homologous recombination. In this study, we evaluated loss of 
heterozygosity (LOH) in the RAD51 and BRCA1 regions, and their association 
with breast cancer. The polymorphic markers D15S118, D15S214 and 
D15S1006 were the focus for RAD51, and D17S855 and D17S1323 for BRCA1. 
Genomic deletion detected by allelic loss varied according to the regions tested, and 
ranged from 29 to 46% of informative cases for the RAD51 region and from 38 to 42% 
of informative cases for the BRCA1 region. 25% of breast cancer cases displayed LOH 
for at least one studied marker in the RAD51 region exclusively. On the other hand, 31% 
of breast cancer cases manifested LOH for at least one microsatellite marker 
concomitantly in the RAD51 and BRCA1 regions. LOH in the RAD51 region, 
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similarly as in the BRCA1 region, appeared to correlate with steroid receptor 
status. The obtained results indicate that alteration in the RAD51 region may 
contribute to the disturbances of DNA repair involving RAD51 and BRCA1 and 
thus enhance the risk of breast cancer development. 
 
Key words: RAD51, BRCA1, Loss of heterozygosity (LOH), Breast cancer 
 
INTRODUCTION 
 
Breast cancer occurs in both hereditary and sporadic forms, and is a great 
problem in public health all over the world. Although mutations in the BRCA1 
gene seem to be the most essential for familial and sporadic breast cancer, it has 
become clear that breast cancer is a complex phenomenon in which multiple 
genes may play a role. A wide variety of cellular pathway alterations may confer 
and increase the risk of breast cancer. Among them, the DNA damage response 
is of great importance. DNA repair is critical for maintaining genome integrity. 
The BRCA1 gene product was found to be involved in the repair of double-
strand DNA breaks by homologous recombination, particularly through the 
mechanism involving RAD51. Thus, RAD51 may contribute to breast cancer by 
maintaining genomic integrity and/or modifying the penetrance of BRCA1 
mutations [1-4]. 
The RAD51 gene located on chromosome 15q15.1 consists of 10 exons and  
9 introns, and spans at least 30 kb [5]. The human RAD51 gene encodes a 339-
amino acid protein with a molecular weight of 37 kDa, a homologue of the RecA 
protein of Escherichia coli and Rad51 of Saccharomyces cerevisiae, and is 
involved in both meiotic and mitotic recombination. The RAD51 protein seems 
to be essential for maintaining genomic stability, and it plays a central role in the 
homology-dependent recombinational repair of DNA double-strand breaks  
[6, 7]. RAD51 binds to single and double-stranded DNA, exhibits DNA-
dependent ATPase activity to form nucleoprotein filaments, and mediates 
homologous pairing and strand exchange between DNA duplexes [8-10]. 
RAD51 is expressed in proliferating cells with the highest level in the S or S/G2 
phase of the cell cycle [11-13]. Specific interaction between RAD51 and such 
proteins as BRCA1, BRCA2, p53 and RAD52 has been described [14-18]. 
BRCA1 was shown to bind with RAD51 and co-localize with RAD51 in mitotic 
and meiotic cells [19, 20]. 
BRCA1 is a tumor suppressor gene located on chromosome 17q21, and it spans 
100 kb of genomic DNA [21]. The BRCA1 gene encodes a nuclear 
phosphoprotein of 220 kDa consisting of 1863 amino acids, which has a highly 
conserved amino terminal RING finger domain and a C-terminal domain 
(BRCT) characteristic for many transcription factors [22-24]. Two BRCT motifs 
have been identified in BRCA1 and in several other proteins involved in cell-
cycle control regulation in response to DNA damage [25, 26]. BRCA1 was 
found to be involved in several important cellular functions, including DNA 
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damage repair, transcription regulation, cell-cycle control, protein ubiqutination, 
apoptosis, and chromatin remodeling [27-30]. Some of these diverse functions 
are associated with a specific partner protein. BRCA1 interacts with multiple 
DNA repair/recombination proteins, including RAD51, the 
RAD50/MRE11/NBS1 complex, Bloom’s helicase, BACH1 helicase and 
Fanconi’s proteins [20, 31-36]. 
The accumulated data suggests that genetic instability of BRCA1 is associated 
with an increased relative risk of breast cancer [37, 38]. The aim of this study 
was to evaluate if RAD51 chromosomal region alteration contributes to breast 
cancer. We evaluated loss of heterozygosity (LOH) in the RAD51 and BRCA1 
regions, and their association with breast cancer. The polymorphic markers 
D15S118, D15S214 and D15S1006 were the focus for RAD51, and D17S855 
and D17S1323 for BRCA1. The relationship of LOH with clinicopathological 
parameters was examined to reveal the potential role of the studied genes in 
breast cancer development. 
 
MATERIALS AND METHODS 
 
Patients 
Thirty six paraffin-embedded tissue samples from patients with primary breast 
cancer and matched blood samples were obtained at the Department of Clinical 
Pathomorphology of the Polish Mother’s Memorial Hospital Research Institute, 
Łódź, Poland. The mean age of the patients was 57, ranging from 32 to 79. 
Fourteen were 50 years old or younger, and 22 were over the age of 50. All the 
tumor specimens underwent clinicohistopathological evaluations. All were 
classified as ductal carcinoma. The series included 35 cases at stage II and 1 at 
stage III, according to the modified Bloom-Richardson criteria. Twenty seven 
cases were positive and 9 negative with respect to estrogen receptors, 17 were 
positive and 19 negative with respect to progesterone receptors, and 20 cases 
were negative and 16 positive with respect to lymph node status. 
 
DNA isolation 
DNA was isolated from peripheral blood and tissue samples following the 
standard phenol extraction procedure. The paraffin-embedded tissue samples 
were extracted with xylene to remove the paraffin [39, 40]. 
 
PCR conditions and primers 
The specimens were investigated for genetic alterations at the two genetic regions 
using 5 microsatellite markers. For RAD51, we focused on the polymorphic 
microsatellite markers D15S118, D15S214 and D15S1006, oriented along the 
chromosomal region 15q14-q21. The localization of the studied markers is as 
follows: D15S118–12996900-12997100 bp, D15S214–17166170-17166435 bp, 
D15S1006–24439646-24439859 bp. The RAD51 gene is located between 
17791587 and 17792320 bp (NCBI, Gene Map, Celera). The marker D15S118 is 
at the centromeric position, D15S214 at the middle, and D15S1006 at the 
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telomeric, relative to the RAD51 gene. For BRCA1, we focused on the intragenic 
microsatellite markers D17S855 and D17S1323 (intron 20 and 12)  
(J. Weissenbach, Genethon, Whitehead Institute Center for Genome Research). 
The sequences of primers used for PCR are shown in Tab. 1. The sequences for all 
the primers are listed in the Human Genome Database (www.gdb.org). The 
primers were synthesized and labeled fluorescently by Applied Biosystems 
(USA). Polymerase chain reaction (PCR) was carried out in a 7.5 µl reaction 
volume containing 50 ng of genomic DNA, 0.3 units of AmpliTaq GoldTM DNA 
polymerase (5 U/µl), 1 x GeneAmp® PCR Gold Buffer (10 x concentration),  
1 mM GeneAmp dNTP Mix (10 mM), 2.5 mM magnesium chloride (25 mM) and 
5 pmol of either forward or reverse primer end-labeled with the dye 
phosphoramidite 6-FAM or TET. A 30-cycle amplification (denaturation, 
annealing and extension) was done in a GeneAmp 2400 thermal cycler (Perkin-
Elmer, USA). The PCR cycles for each marker are presented in Tab. 1. 
 
Tab. 1. Characteristics of the microsatellite markers analyzed. 
 

Microsatellite 
marker Primer sequences (5’→3’) PCR conditions 

D15S118 TCA AAG ACC CAT ATC AACC 
GTG CTG AAA AGC GAC ACTT 

D15S214 GGA GGG CAC TTC CTG AG 
GCC TGG CAT CAC GACT 

D15S1006 AGG GAA TAC TTC AAA ACTC 
CCA CTT GGC TAT GGT GAAT 

 
30 cycles of 94ºC for 15 s, 
                    55ºC for 30 s,  
                    72ºC for 30 s 

D17S855 ACA CAG ACT TGT CCT ACT GCC 
GGA TGG CCT TTT AGA AAG TGG 

 

30 cycles of 94ºC for 15 s,  
                    51ºC for 30 s,  
                    72ºC for 30 s 
 

D17S1323 TAG GAG ATG GAT TAT TGG TG 
AAG CAA CTT TGC AAT GAG TG 

 

30 cycles of 94ºC for 15 s,  
                    56ºC for 30 s,  
                    72ºC for 30 s 
 

 
LOH analysis 
PCR products were analyzed on 5% polyacrylamide gel (5% Long Ranger) 
containing 6 M urea and 1 x TBE (10 x TBE: 0.89 M Tris borate, 0.02 M EDTA, 
pH 8.0). Samples of 3 µl of reaction mixture were mixed with 4 µl of stop solution 
containing ten parts deionized formamide, two parts GeneScan™-350 TAMRA 
Size Standard and one part loading buffer (50 mg/ml blue dextran, 25 mM 
EDTA). Samples were denatured at 95ºC for 5 min and chilled on ice. 3 µl of each 
sample was loaded in the well of the gel and run for 2 h in an ABI PRISM 377™ 
DNA Sequencer (Applied Biosystems, USA). The data was collected 
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automatically. Allele sizing was determined with GeneScan version 3.1.2 and 
Genotyper version 2.5 softwares (Applied Biosystems, USA), and also calculated 
as described by Cawkwell et al. [41], with reciprocal correction as required. LOH 
was defined as ≥ 50% reduction (allelic ratio ≤ 0.5) in either allele in the tumor 
compared with the normal counterpart. 
 
Statistical analysis 
All the comparisons between LOH and clinicopathological parameters were 
performed using the Fisher test. P-values of 0.05 or less were considered 
statistically significant. The statistical analysis was performed using the Statistica 
package, version 5. 
 
RESULTS 
 
The LOH analysis of the RAD51 and BRCA1 regions was performed on the 
microsatellite markers D15S118, D15S214 and D15S1006 for the former, and 
D17S855 and D17S1323 for the latter, using DNA isolated from the tumor and 
matched peripheral blood of 36 breast cancer patients. The LOH study detected 
the loss of a single copy of the two alleles. Those with detectable heterozygous 
alleles are defined as informative cases. As shown in Tab. 2, genomic deletion 
detected by allelic loss varied according to the region tested, and ranged from 
29% (6/21) to 46% (12/26) of informative cases for the RAD51 region and from 
38% (8/21) to 42% (11/26) of informative cases for the BRCA1 region. A high 
incidence of LOH (41%) was observed for the highly informative microsatellite 
marker D15S214, which is located near the RAD51 locus. 25% (9/36) of the 
studied breast cancer cases displayed LOH for at least one microsatellite marker 
in the RAD51 region. 31% (11/36) of breast cancer cases manifested LOH for at 
least one microsatellite marker concomitantly in the RAD51 and BRCA1 regions.  
 
Tab. 2. The incidence of LOH in the RAD51 and BRCA1 regions in breast cancer. 
 

Gene/Chromosomal 
localization 

Microsatellite 
marker 

Informative cases 
(%) 

Tumors with LOH 
(%) 

D15S118 26/36 (72) 12/26 (46) 
D15S214 17/36 (47) 7/17 (41) RAD51 

15q15.1 
D15S1006 21/36 (58) 6/21 (29) 
D17S855 21/36 (58) 8/21 (38) BRCA1 

17q21 D17S1323 26/36 (72) 11/26 (42) 
 
The LOH in the RAD51 and BRCA1 regions and clinicopathological parameters 
were compared using the Fisher test. The LOH at D15S118 and D15S214 was 
found to be significantly more frequent in the estrogen-receptor positive than in 
the estrogen-receptor negative patients (P = 0.03 and P = 0.02). There was  
a trend  towards  statistical  significance  in  the  frequency  of LOH at D15S118,  
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Tab. 3. The relationship between LOH in the RAD51 chromosomal region and clinico-
pathological parameters in breast cancer. 
 

Microsatellite marker 
D15S118 D15S214 D15S1006 

 
 
Characteristics T 

I N LOH P I N LOH P I N LOH P 
Tumor cases 36 26 14 12 — 17 10 7 — 21 15 6 — 
Patients’ age 
 ≤ 50 
 > 50 

 
14 
22 

 
11 
15 

 
4 

10

 
7 
5 

NS 
 

 
5 

12

 
2 
8 

 
3 
4 

NS  
8 

13

 
4 

11 

 
4 
2 

NS 
 

Tumor grade 
 II 
 III 

 
35 
1 

 
26 
— 

 
14
—

 
12 
— 

—  
17
—

 
10
—

 
7 

— 

—  
20
1 

 
15 
— 

 
5 
1 

NS 
 

Estrogen receptor 
Positive   
Negative 

 
27 
9 

 
21 
5 

 
14
—

 
7 
5 

0.03 
 

 
8 
9 

 
2 
8 

 
6 
1 

0.02  
14
7 

 
11 
4 

 
3 
3 

NS 
 

Progesterone receptor 
Positive  
Negative  

 
17 
19 

 
10 
16 

 
2 

12

 
8 
4 

0.01 
 

 
8 
9 

 
2 
8 

 
6 
1 

0.02  
8 

13

 
3 

12 

 
5 
1 

0.01 
 

Nodal status 
Negative 
Positive 

 
20 
16 

 
17 
9 

 
8 
6 

 
9 
3 

NS 
 

 
11
6 

 
7 
3 

 
4 
3 

NS  
15
6 

 
10 
5 

 
5 
1 

NS 
 

 

T – Total number of tumors studied; I – Number of informative cases; N – Heterozygous without 
LOH; P – Fisher test. 
 
Tab. 4. The relationship between LOH in the BRCA1 chromosomal region and clinico-
pathological parameters in breast cancer. 
 

 Microsatellite marker 
D17S855 D17S1323 

 
Characteristics 

T 
I N LOH P I N LOH P 

Tumor cases 36 21 13 8 — 26 15 11 — 
Patients’ age 
≤ 50 
> 50 

 
14 
22 

 
6 
15 

 
1 
12 

 
5 
3 

0.01 
 

 
9 
17 

 
2 
13 

 
7 
4 

0.01 
 

Tumor grade 
II 
III 

 
35 
1 

 
21 
— 

 
13 
— 

 
8 

— 

—  
26 
— 

 
15 
— 

 
11 
— 

— 

Estrogen receptor 
Positive  
Negative 

 
27 
9 

 
15 
6 

 
7 
6 

 
8 

— 

0.04 
 

 
17 
9 

 
8 
7 

 
9 
2 

NS 

Progesterone receptor 
Positive  
Negative 

 
17 
19 

 
9 
12 

 
3 
10 

 
6 
2 

0.03 
 

 
10 
16 

 
3 
12 

 
7 
4 

0.04 
 

Nodal status 
Negative 
Positive 

 
20 
16 

 
18 
3 

 
13 
— 

 
5 
3 

0.04 
 

 
12 
14 

 
4 
11 

 
8 
3 

0.04 
 

 

T – Total number of tumors studied; I – Number of informative cases; N – Heterozygous without 
LOH; P – Fisher test. 
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D15S214 and D15S1006 with positive progesterone receptor status (P = 0.01,  
P = 0.02 and P = 0.01, respectively) (Tab. 3). LOH at D17S855 and D17S1323 
also occurred frequently in tumors with positive progesterone receptor (P = 0.03, 
P = 0.04) and negative nodal status (P = 0.04) compared to those with negative 
progesterone receptor and positive nodal status. Furthermore, the incidence of 
LOH at D17S855 was also associated with positive estrogen receptor status  
(P = 0.04) (Tab. 4). These results seem to suggest that genetic instability in the 
RAD51 and BRCA1 regions occurs early in mammary carcinogenesis. 
 
DISCUSSION 
 
Genomic instability is one of the main features of cancer cells. It is expressed by 
the accumulation of chromosomal aberrations, mutations, loss of heterozygosity 
and microsatellite instability. LOH is observed in the early and late stages of the 
neoplastic transformation process [42]. Because of the high level of specificity, 
LOH has recently become invaluable as a marker for the diagnosis and 
prognosis of cancer [43]. 
The repair of chromosomal double-strand breaks is essential to maintain 
genomic integrity, yet the various repair pathways are variably mutagenic. 
RAD51 and BRCA1 proteins are involved in double-strand break repair by 
homologous recombination [44, 45]. Single nucleotide polymorphisms have 
been identified in the 5’ untranslated region of RAD51, namely 5’UTRg135c and 
5’UTRg172t [46]. RAD51-135c itself has not been demonstrated to elevate the 
risk of breast cancer [47-50]. It is not clear whether BRCA1 mutation carriers, 
which also carried the RAD51-135c variant, had a higher susceptibility of 
developing breast cancer compared with BRCA1 mutation carriers without this 
single nucleotide polymorphism. Wang et al. [46] suggested that single 
nucleotide polymorphisms in the RAD51 5’ untranslated region might be 
associated with an increased risk of breast cancer among BRCA1 mutation 
carriers. A matched case study of Polish women showed instead that RAD51-
135c is associated with a decreased risk of breast cancer in women who carry the 
BRCA1 mutation 5382insC [51]. No or a low association was detected between 
epithelial ovarian cancer risk and RAD51 g135c and RAD51 g172t [3, 46]. On 
the other hand, both de novo and therapy-related acute myeloid leukemia (AML 
and t-AML) have been found to be associated with RAD51-135c polymorphism 
[52]. Schmutte et al. [5] did not find any mutations in the RAD51 coding 
sequence or intron/exon boundaries, or hypermethylation in the promoter region 
in breast cancer and metastatic brain tumors. A sequence analysis of the coding 
region of the RAD51 cDNA demonstrated no point mutations or microdeletions 
in the parathyroid cancer [53]. Kato et al. [54] found a missense mutation in two 
patients with familial breast cancer: a G-to-A transition converting codon 150 
from CGG (Arg) to CAG (Gln). Both patients had bilateral breast cancer, one 
with synchronous bilateral breast cancer and the other with synchronous bilateral 
multiple breast cancer.  
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Loss of heterozygosity in the genomic region 15q14-q21, containing RAD51, has 
been reported in 32-70% of breast cancer cases [55-57], 56% of lung cancer 
[55], 67% of colorectal cancer [55], 46-54% of malignant mesothelioma  
[58, 59], and 39% of bladder transitional cell carcinoma [60]. LOH at 17q21 has 
been revealed in about 30-60% of breast [61, 62], ovarian [63] and colorectal 
[64] cancer cases. Gonzalez et al. [56] observed LOH at the RAD51 and BRCA1 
regions for at least one marker, respectively in 32% and 49% of breast cancers. 
In our study, 25% of breast cancer cases displayed LOH for at least one microsatellite 
marker in the RAD51 region exclusively. On the other hand, 31% of cases manifested 
LOH for at least one microsatellite marker both in the RAD51 and BRCA1 regions. The 
obtained results suggest that RAD51 alterations may play a critical role in 
genomic instability due to the lack of efficiency of DNA repair involving the 
RAD51 and BRCA1 genes. 
Recent studies indicated that allelic loss in the aforementioned regions might be 
associated with clinicopathological features of breast cancer. Statistically 
significant differences between breast tumors with and without LOH in the 
RAD51 and BRCA1 regions have been found with respect to estrogen receptor 
content, progesterone receptor content, higher grade, and stage [56, 65, 66]. 
Johnson et al. [62] detected allelic loss of BRCA1 with higher frequency in 
women under 36 compared to postmenopausal patients. However, this difference 
was not statistically significant. On the contrary, Santos et al. [67] observed no 
correlation when LOH frequency in the BRCA1 region was compared with 
tumor size or grade, or the presence of axillary lymph node metastasis. In our 
study, when LOH in the RAD51 and BRCA1 regions was correlated with the 
clinicopathological parameters of breast cancer, we noticed statistically 
significant differences mainly between tumors with LOH and estrogen and 
progesterone receptor status. These results indicate that further studies are 
needed to establish more specific association of LOH in the RAD51 and BRCA1 
regions with clinicopathological parameters in breast cancer. 
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