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ABSTRACT

Background and aims: The working memory (WM) ability of internet addicts and the topology
underlying the WM processing in internet addiction (IA) are poorly understood. In this study, we
employed a graph theoretical framework to characterize the topological properties of the IA brain
network in the source cortical space during WM task. Methods:A sample of 24 subjects with IA and 23
matched healthy controls (HCs) performed visual 2-back task. Exact Low Resolution Electromagnetic
Tomography was adopted to project the pre-processed EEG signals into source space. Subsequently,
Lagged phase synchronization was calculated between all pairs of Brodmann areas, the graph theoretical
approaches were then employed to estimate the brain topological properties of all participants during
the WM task. Results:We found better WM behavioral performance in IA subjects compared with the
HCs. Moreover, compared to the HC group, more integrated and hierarchical brain network was
revealed in the IA subjects in alpha band. And altered regional centrality was mainly resided in frontal
and limbic lobes. In addition, significant relationships between the IA severity and the significant altered
graph indices were found. Conclusions: In conclusion, these findings provide evidence to support the
notion that altered topological configuration may underline changed WM function observed in IA.
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INTRODUCTION

The internet playes an increasingly important role in public life, but excessive use of the
internet may lead to internet addiction (IA), which is usually defined as a person’s inability to
control his or her use of the internet; eventually leads to some negative effects include
emotional, social and mental consequences in a wide range of areas of daily activities (Spada,
2014; Young, 1998). However, prolonged internet using is positive or negative is still
controversial. There are two theories that hold different views, one is the “displacement
hypothesis”, and the other is the “enhance hypothesis.” The displacement hypothesis believes
that the use of the internet may hinder people’s social development, making them experience
more loneliness and depression (Kraut et al., 1998). The enhance hypothesis is a theory that
holds a effective view of the internet. It believes that the internet can break through the
obstacles of time and space, enlarge people’s social connections and interpersonal intimacy
(Kraut et al., 2002). Furthermore, in the field of cognitive neuroscience, the extent to which
prolonged internet using ‘damage the brain’ or ‘boost the brain power’ is also uncertain. A
few studies have reported that long-term different types of internet activities can be expected
to promote positive neurological changes in the brain system, such as video games (Bavelier
et al., 2011; Han, Kim, Bae, Renshaw & Anderson 2015b) and general IA including various
internet applications (Liu, Gao, Osunde, Li & Li, 2010). But, on the other hand, there are also
opinions that the working memory (WM) of internet sex addiction interfered by pornographic
picture cues (Laier, Schulte, & Brand, 2013). Problematic internet game play is often accom-
panied by higher impulsivity (Hong, Sun, Bae, & Han, 2018) and poorer response inhibition
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(Chen et al., 2015; Ding et al., 2014). Moreover, unspecified
internet-use disorder is also associated with robust cognitive
deficits (Choi et al., 2014; Nie, Zhang, Chen, & Li, 2016; Zhou,
Zhou, Li & Wang, 2014; Zhou, Zhou, & Zhu, 2015).

Executive function and WM are essential for cognition
(Zhou, Zhou, Li & Wang, 2014), WM is an executive
function that permits the maintenance of the information
needed to execute high-level plans, which is vital for
reasoning, learning and language comprehension (Nie,
Zhang, Chen, & Li, 2016). WM is a memory system that
allows temporary storage and processing of limited infor-
mation in the mental workspace (Baddeley, 2012). Cognitive
studies have demonstrated that WM ability decreased in IA
individuals like alcohol-dependent patients (Zhou, Zhou, Li
& Wang, 2014) and pathological gambling patients (Zhou,
Zhou, & Zhu, 2015). Nie, Zhang, Chen & Li (2016) found
subjects with IA demonstrated impaired WM that might be
related to poor inhibition especially associated to internet-
related stimuli. However, other researchers found that the WM
ability of behavioral addicts was not significantly different from
that of healthy subjects (Jasper, 2016; Yan et al., 2014).

Although accumulative behavioral studies suggested the
altered WM functions closely associated with IA, how the
brain characteristics are modulated by the memory load is
still unclear. The examination of the human brain functional
connectome with electroencephalogram (EEG) and graph
theory techniques are beneficial research approaches in
present neuroscience (Franciotti et al., 2019; Gomez-Pilar
et al., 2018; Vecchio et al., 2014, 2016, 2017). Some studies
have confirmed the validity of the graph theory to investi-
gate the brain topology for working memory performance
(Cao et al., 2014; Dai et al., 2017; Finc et al., 2017; Liang,
Zou, He, & Yang, 2016; Sun et al., 2014; Yang et al., 2020).
Many prior studies used EEG technology to study the brain
functional connectome of IA at resting state (Kim et al.,
2017; Lee et al., 2014; Park et al., 2017; Wang & Griskova-
Bulanova, 2018). And there are also event-related potential
(ERP) study revealed the WM damage in IA (Xiong & Yao,
2010). Less interest has been directed to the examination of
the IA participants’ brain topologies constructed from EEG
data collected when performing a task, which is vital due to
the fact that certain connectivity features during a task may
additionally no longer be evident at relaxation (Bilek et al.,
2013; Pezawas et al., 2005). It is essential to fill this gap in the
literature in order to determine the brain topological
configuration in IA individuals during the WM task.

Graph theory is a mathematical method that can evaluate
the characteristics of structures that can be modeled as sets
of vertices (i.e., brain regions) and edges (i.e., functional
connections) (Brier et al., 2014). This approach is a pro-
spective way to describe brain functional organization
(Bassett & Bullmore, 2006) and correlate it with behavioral
or task-related performances (Vecchio et al., 2017). The
application of graph theory in IA has provided conflicting
results. Some studies concluded that the network topology
alterations of IA were tiny, significant changes were only
observed for regional nodal metrics, there was no difference
in global network topology between the IA and HC groups

(Lee et al., 2017; Wee et al., 2014). In another study, the IA
was characterized by a less global integrated network orga-
nization with decreased efficiency and increased shortest
path length (Zhai et al., 2017). Considering the extensive
WM alteration, it may be anticipated that IA subjects would
display changes in brain network connectivity and topology.

The functions of frontal lobe consisting of strategic
planning, organized searching, using environmental feed-
back to change cognitive patterns, guiding behavior to reach
a goal, and regulating impulsive response (Zhou, Zhou, Li &
Wang, 2014). An updated Person-Affect-Cognition-Execu-
tion (I-PACE) model for addictive behaviors was proposed
in a recent review (Brand et al., 2019), indicating the
imbalance between limbic/reward-oriented brain circuits
and prefrontal control in behavioral addictions. Previous
researches stress the vital function of prefrontal-cortex-
related inhibitory control during the IA process (Han et al.,
2011; Meng, Deng, Wang, Guo, & Li, 2015). Moreover,
subcortical structures, such as limbic, play a supporting role
in executive and WM functions (Brooks, Funk, Young, &
Schi€oth, 2017; Huang et al., 2017; Ladouceur et al., 2013). In
current study, EEG data was recorded during 2-back task
and transformed into the source space using the exact Low
Resolution Electromagnetic Tomography (eLORETA),
avoiding the feasible deviation in inferring the locations of
the sources within the brain responsible for the observed
activity on the scalp (Ewald, Marzetti, Zappasodi, Meinecke,
& Nolte, 2012; Scheeringa et al., 2009) and the limitation of
the lower temporal resolution of functional magnetic reso-
nance imaging (fMRI) technology (Dai et al., 2017).
Therefore, the comprehensive method in the EEG source
space that accurately describe the regional locations of the
brain has the potential to help us shedding more light on the
mechanism of IA participants’ WM processing.

In this study, using the graph theoretical framework, we
explored the brain topology of the IA and HC participants
during the WM task in different frequency bands (delta: 1–4
Hz; theta: 4–8 Hz; alpha: 8–12 Hz; beta: 12–30 Hz; gamma:
30–45 Hz). Subsequently, the relationship between extracted
neurophysiologic indices and subjects’ IA severity was
assessed to explore to what extent the estimated EEG net-
works topology would account for the behavior of IA par-
ticipants. Based on the previous discoveries, we hypothesized
that (1) the WM performance of IA group would be
different from the HC group; (2) the IA participants would
show altered global topology relative to the HC participants,
and the frontal and limbic areas related to WM would show
different centrality between the two groups; (3) the network
properties would be linked to IA severity.

MATERIALS AND METHODS

Subjects

A sample of 24 IA (14 males and 10 females; mean age 5
20.58 ± 2.39 years) and 23 matched HC participants (10
males and 13 females; mean age 5 21.13 ± 2.51 years) with
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normal or corrected-to-normal vision from Liaoning
Normal University were recruited in this study. All were
right handed as defined by the Edinburgh Handedness In-
ventory (Oldfield, 1971). Participants were recruited through
word-of-mouth and social networks, and they would receive
a short telephone interview before inviting to participate in
the experiment to ensure that they met all inclusion criteria
in the present study, i.e., those subjects who had a history of
alcohol, nicotine or drug use; had symptoms of mental
illness, such as depression, anxiety or attention-deficit/hy-
peractivity disorder (ADHD); were pregnant or menstru-
ating women; had a history of brain injury were excluded.
According to a previous IA study (Yuan et al., 2011), we
chose IA subjects who spent more than 10 h per day, 6 days
per week on internet, and whose internet addiction test
(IAT) score is greater than 50. HCs who spent less than 2 h
per day on the internet were selected. The HCs were also
tested with the IAT criteria that less than 50. The specific
sample information was shown in Table 1.

Internet Addiction Test (IAT)

The IAT was compiled by Young (1998) at the University of
Pittsburgh. The scale is self-reported and contains 20 items.
The title options for rarely, occasionally, sometimes, often
and always are scored as 1, 2, 3, 4 and 5 points, respectively.
The total score is 20–100, a higher total score indicates
increased severity of addiction to internet-related activity:
20–49 for normal users, 50–79 for excessive internet addicts,
and 80–100 for severe internet addicts. This measure has
demonstrated good reliability and validity in Chinese (Zhou,
Li, Xian, Wang, & Zhao, 2017).

Data acquisition and experimental paradigm

A digital EEG recording system produced by the Brain-
Product company (German) was adopted. The 64-channel
electrode cap was complied with the 10–20 international
system. Both the vertical and horizontal channels of the
electro-oculogram (EOG) were recorded simultaneously to
monitor the eye movements and blinks. The unipolar
reference region was linked at the right and left earlobes, and
the ground electrode was located at the AFz (A-Ear lobe, F-
Frontal lobe, z-zero, referring to an electrode placed on the
midline). The sampling frequency was 500 Hz, and the
electrode impedance was less than 10 KΩ.

EEG data was acquired for each subject when they per-
formed the 2-back WM task. N-back paradigm was adopted;
the paradigm requires participants to compare the currently

presented stimulus letter with the n stimulus letters in front of
it. In this study n 5 2, the subjects needed to compare the
currently presented letter stimuli with the two trials before it,
and were instructed to indicate whether the current letter was
the same (Target, key-press “F”) or different (Non-Target,
key-press “J”) as the two trials before it. Subjects were not
required to respond to the first two trials of each block.

Stimulus were presented on a windows computer via E-
prime 1.1 software (https://en.freedownloadmanager.org/
users-choice/E-prime_Software_Version_1.1.html). The
experimental guidance was presented in the center of the
screen. After the participants fully understood the experi-
mental instruction, pressed the Q key to start the experi-
ment. The experiment was divided into practice experiment
and formal experiment. The practice experiment required
the subjects to complete the 2-back WM task in order to
ensure that they fully understood the purpose of the
experiment and the correct response button and then began
the formal experiment. The formal experiment consisted of
10 blocks, each block consisted of 16 trials, the probability of
target condition was 0.33 and the stimulus letters would be
randomly presented from 15 letters, including A, F, H, I, J,
K, L, M, O, P, Q, R, S, U and Y. Each participant was
requested to complete 2 sessions of the 2-back task in a
pseudorandom order. After a half of blocks were completed,
the subjects took a break of about 2 min. The subjects
needed to complete 10 blocks in turn, each stimulus letter
would appear 500 ms, and accompanied by a blank screen of

Table 1. Subject demographics for internet addiction (IA) and healthy controls (HCs)

Items IA (N 5 24) HC (N 5 23) Test values

Sex (Male/Female) 14/10 10/13 c2 5 1.037, P 5 0.308
Age (years)a 20.58 ± 2.39 21.13 ± 2.51 t 5 �0.765, P 5 0.448
IAT scores 58.38 ± 6.53 35.96 ± 7.78 t 5 10.717, P < 0.0001
Profitable hand (Right/Left) 24/0 23/0 –

aValues are expressed as the mean ± standard deviation (SD). IAT, internet addiction test.

Figure 1. Flow chart of 2-back experiment. Each stimulus letter
would appear 500 ms, and accompanied by a blank screen of 2000
ms. The subjects were not required to respond to the first two trials
and need to compare the currently presented letter stimuli with the
two trials before it. They were instructed to indicate whether the
current letter was a target (key-press “F”) or a non-target (key-press
“J”)
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2000 ms, the experimental procedure of WM task to deliver
the paradigm was in Fig. 1. It took about 10 min to complete
the entire experiment. During the EEG data collection, the
participants were instructed to emphasize both accuracy and
speed in their performance and to avoid unnecessary head
movement.

EEG signal processing

Off-line EEG data for all participants were analyzed by Brain
Vision Analyzer 2 software (https://brainvision-analyzer.
software.informer.com/2.0/). First, data was re-referenced
to the “infinity” reference provided by the reference elec-
trode standardization technique (REST; Yao, 2001), and
band pass-filtered from 1 to 45 Hz. Data portions contam-
inated by eye movements, electromyography, or any other
non-physiological artefact were removed using the Inde-
pendent Component Analysis algorithm (Jung et al., 2001;
Mantini et al., 2009). Then, the preprocessed EEG data were
segmented into dozens of epochs, using the stimulus onset
as a reference, including 200 ms before and 2300 ms after
the stimulus onset. Here, only correct trails were selected for
further analysis. Individual epochs were baseline-corrected
(�200–0 ms). Data were visually inspected to remove
epochs contaminated by excessive noise or with amplitude
values exceeding ±150 mV. Finally, the artefact-free epochs
were exported to ASCII files.

EEG cortical functional connectivity network
construction

Exact low resolution electromagnetic tomography (eLOR-
ETA) source localization technique was adopted in current
study based on multichannel surface EEG recordings. The
head model of eLORETA and the electrode coordinates are
based on the Montreal Neurological Institute average MRI
brain map (MNI152) (Fonov et al., 2011). The solution
space was limited to the cortical gray matter, including 6,239
voxels of 5 mm spatial resolution. The 84 commonly used
Brodmann areas were chosen as regions of interests (ROIs)
for topological analysis. The eLORETA tomography has
been validated in several previous EEG studies (Elmer et al.,
2017; Farina, Marca, Maestoso, Amoroso, & Imperatori,
2018; Imperatori et al., 2015).

EEG source connectivity analysis was performed using
eLORETA software package (http://www.uzh.ch/keyinst/
loreta.htm). Subsequently, lagged phase synchronization
(LPS) method was employed for the estimation of cortical
functional connectivity (FC) between all pairs of ROIs. This
algorithm has been widely used to assess EEG FC (Ade-
bimpe, Aarabi, Bourel-Ponchel, Mahmoudzadeh, & Wallois,
2016; Farina, Marca, Maestoso, Amoroso, & Imperatori,
2018; Hata et al., 2016), and is considered to include only
physiological connectivity information (Hata et al., 2016)
and be less sensitive than other techniques to physiological
signals including artifacts and volume conduction effect
(Pascual-Marqui et al., 2011; Stam, Nolte, & Daffertshofer,
2010). For each subject, an 84 3 84 FC matrix was obtained
over the all artifact-free segments in five frequency bands.

Graph theoretical analysis

In order to quantitatively investigate the topological properties
of the cortical network in WM task, we constructed a series of
undirected and unweighted binary matrices at different den-
sity values from the FC matrix. Density is defined as the
number of existing edges divided by the maximum possible
number of edges within a network. From 0.1 to 0.5 with 0.02
increments of the density values were selected to construct the
brain networks. Detailed density selection principles have been
elaborated in previous study (Sun, Wang & Bo, 2019). The
graph theoretical analysis was calculated using the Gretna
toolbox (https://www.nitrc.org/projects/gretna).

The clustering coefficient (C), characteristic path length
(L), global efficiency (Eg) and hierarchy were calculated by
the average over the whole ROIs to investigate the global
topological properties. C is a measure of the degree of local
clustering of a graph, defined as the fraction of the neighbors
of a node i that are also neighbors of each other. L quantifies
the overall communication efficiency between any pair of
nodes, which is defined as the average of the path lengths of
all nodes (Watts & Strogatz, 1998). Eg is a superior measure
of integration, which is the average inverse shortest path
length, measuring the global efficiency of parallel information
transfer in a network (Rubinov & Sporns, 2010). The hier-
archy coefficient is used to identify the presence of a hierar-
chical organization in a network (Ravasz & Barab�asi, 2003).

The degree and betweenness centrality (bc) of each ROI
were calculated to assess the importance of individual brain
regions. The degree is defined as total number of edges
connected to node i, bc is defined as the normalized fraction
of all shortest paths connecting two nodes that pass through
the particular node (Rubinov & Sporns, 2010).

Statistical analysis

The areas under the respective metric curves was used to
investigate the global and local graph properties over the entire
sparsity range, avoiding the bias introduced by the selection of
network sparsity (Dai et al., 2017). To compare the alteration
of the topological properties between the two groups, two-
tailed independent t-test was complied at the WM task.
Bonferroni correction was used to address the problem of
multiple comparisons. In addition, we used Pearson partial
correlation coefficient to test possible correlations between the
IA severity and those significantly altered properties.

Ethics

The study was conducted in accordance with the recom-
mendations of the Declaration of Helsinki and the Liaoning
Normal University Ethics Committee, and all participants
had signed the informed consent.

RESULTS

Behavioral results

We compared the WM performance measured by reaction
times (RT) and accuracy between the two groups. From
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Table 2, a clear effect on group was revealed in the RT.
Compared with the HC group, the RT was significantly
lower in the IA group. However, there was no significant
group effect on accuracy.

Global network topological characteristics

The results of the independent t-test for the C, L, Eg and
hierarchy indices with respect to group were reported in
Table 3 for the alpha frequency band. There was no any
other significant effect in other frequency bands.

We found significant topological alterations in the global
network metrics between the two groups. As shown in
Table 3, the mean values of L were significantly lower in the
IA group with respect to HC group (P 5 0.006, significant
after bonferroni correction), an opposite trend was observed
for the Eg (P 5 0.007, significant after bonferroni correc-
tion) and hierarchy (P 5 0.022) indices that were signifi-
cantly higher in the IA group than the HC group. There was
no any significant effect on C. The areas under the curves of
the three significant global network metrics were shown in
Fig. 2.

Regional network characteristics

The brain regions that showed significantly different degree
and bc values between the two groups in the alpha band
were shown in Table 4 and Fig. 3. Specifically, the bilateral
middle frontal gyrus (MFG), bilateral superior frontal gyrus
(SFG) and the right parahippocampal gyrus (paraHCG)
exhibited increased degree values in the IA group than HC
group. Compared with the HC group, the IA group indi-
cated the bilateral anterior cingulate (AC) with decreased
nodal centrality in both degree and betweenness. In addi-
tion, another brain region, left precentral gyrus (preCG)
only showed decreased nodal betweenness in the IA group
than the HC group.

Table 3. Results on global indices in alpha frequency band

Global index IA HC t P

C 0.174 ± 0.126 0.172 ± 0.012 0.465 0.644
L 0.639 ± 0.004 0.643 ± 0.005 �2.875 0.006a

Eg 0.254 ± 0.001 0.253 ± 0.001 2.810 0.007a

Hierarchy 0.083 ± 0.034 0.057 ± 0.042 2.374 0.022*

Significant results were highlighted in bold, (P < 0.05).
aRepresents P < 0.0125 (0.05/4), significant after bonferroni
correction.

Figure 2. Average values of the global measures in the two groups in the alpha band. The areas under the respective metric curves was used
to investigate the graph properties over the entire sparsity range. Red and blue present the IA and HC group, respectively

Table 2. Behavioral results of the IA and the HC groups in WM task

Group IAa HCa Test values

Reaction time (ms) 393.39 ± 150.44 543.56 ± 324.33 t 5 �2.05, P 5 0.046
Accuracy (%) 76.72 ± 13.57 80.08 ± 7.16 t 5 �1.067, P 5 0.293

aValues are expressed as the mean ± standard deviation (SD). IAT, internet addiction test.

Table 4. Regions showing altered nodal centralities in IA
participants as compared with HC participants in alpha

frequency band

Brain regions

P values

Nodal
degree

Nodal
betweenness

IA>HC
Left middle frontal gyrus,
superior frontal gyrus

0.030* 0.077

Right middle frontal gyrus,
superior frontal gyrus

0.028* 0.066

Right parahippocampal gyrus 0.037* 0.057
IA<HC
Left anterior cingulate, cingulate
gyrus

0.028* 0.025*

Left precentral gyrus 0.105 0.046*

Right anterior cingulate 0.008** 0.016*

Significant results were highlighted in bold, * represents P < 0.05,
** represents P < 0.01.
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Correlation between the IA severity and network
measures

Partial correlation was conducted between all significant
global and local measures and subjects’ IAT scores,
including age and gender as the covariates. From Fig. 4, the
L (r 5 �0.346, P 5 0.020) and the degree of the right AC
(r 5 �0.295, P 5 0.049) were revealed to possess significant
negative correlation with the IA severity during the WM
task. Moreover, significant positive correlations were found
between the Eg (r 5 0.325, P 5 0.029) and the degree of

right MFG (r 5 0.301, P 5 0.044) and the IA severity. No
statistically significant correlation was discovered between
the other graph metrics and the IA severity.

DISCUSSION

This study utilized a graph theory approach to explore
complicated causality patterns derived from EEG recordings
with the aim to explore the topological properties of the

Figure 3. The source brain regions showing significantly different nodal centralities between the IA and HC groups in the alpha band. The
blue node indicated IA<HC, an opposite trend for red nodes: IA>HC. The brain regions were overlaid on inflated surface maps with the
BrainNet Viewer toolbox (Xia, Wang & He, 2013)

Figure 4. Scatter plots showing the partial correlations between the altered graph metrics and the IA severity. L, characteristic path length;
Eg, global efficiency; MFG.R, the right middle frontal gyrus; AC.R, the right anterior cingulate. The r- and p-values of the corresponding
correlations are displayed in the figures
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neural networks related to WM induced in visual n-back
tasks performed by IA and matched HC college students.
We found that (1) topological networks of IA subjects
showed decreased L, and increased Eg and Hierarchy, key
brain regions involving frontal (SFG, MFG and preCG.L)
and limbic lobes (paraHG.R and AC) were identified; (2) the
alterations of brain network topological properties of IA
were correlated with the IA severity. These findings sug-
gested that higher network efficiency and hierarchy of
functional networks may be the underlying neurological
mechanism of better WM process engaged in IA, better WM
performance may additionally arise from alterations in
specific brain regions such as frontal and limbic.

The results of WM performance

WM is a crucial module due to the fact that it gives the
foundation for advanced cognitive functions (Dai et al.,
2017). Our results showed that the IA subjects with a better
performance in 2-back WM task than the HC group. The
increase of memory load leads to larger demands on
cognitive processes such as storage, rehearsal, temporal
ordering and inhibition (Finc et al., 2017). The task with
lower memory requirements can be completed automatically
and effortlessly to a large extent, while to perform the more
effortful 2-back task need integrating multiple brain systems
to complete the complicated cognitive process. These WM
load-related behavioral changes in various sampled popu-
lation have been reported by recent studies (Finc et al., 2017;
Heinzel et al., 2018; Huang et al., 2018).

In addition, different from some previous studies that
found WM performance in the individuals of internet
addicted is impaired (Laier, Schulte, & Brand, 2013; Nie,
Zhang, Chen, & Li, 2016; Zhou, Zhou, Li & Wang, 2014;
Zhou, Zhou, & Zhu, 2015), our observations showed that
there was no significant difference in the accuracy of WM
task between the IAs and the HCs, and the RT was
significantly lower in the IA group than the HC group,
indicating the WM capacity of internet addicted in-
dividuals is not impaired. And some previous researches
also showed that addictive behaviors does not cause dam-
age to WM ability, Yan et al. (2014) reported that the WM
performance of pathological gamblers, a form of behavioral
addiction, was not different from controls on the WM task.
Simon et al. (2000) also found the WM capacity of the
drug-addicted individuals was not significantly different
from that of the control group. Several factors may explain
the difference in research results. First, differences between
IA participants in various studies have been observed. For
example, only male/female participants were enrolled in
some studies (Laier, Schulte, & Brand, 2013; Laier, Pekal, &
Brand, 2014), while gender difference was frequently
demonstrated in various studies (Jun, Sacco, Bright, &
Cunningham-Williams, 2019; Schuck, Flores, & Fung,
2019; Zhang, Dougherty, Baum, White, & Michael, 2018).
Second, different types of IA were focused, such as cybersex
addiction in internet pornography user (Laier, Pekal, &
Brand, 2014; Laier, Schulte, & Brand, 2013) and internet

gaming disorder (Du et al., 2017). In current study, the
subjects may be accompanied by comprehensive IA, such
as gaming, internet shopping, pornography, internet social
interaction, virtual society, and obtaining information.
Third, whether IA was accompanied by other psychological
syndromes (e.g., depression, ADHD) should be taken
seriously, and the more heavy the addiction degree, the
more serious the brain damage may be.

Variations in the global topological brain network

The network with both strong global integration and high
local specialization is considered to be a more economical
network (Watts & Strogatz, 1998). L is a measure of average
connectivity degree or overall routing efficiency of the
network, Eg represents the ability of parallel information
transmission on the network (Zhu et al., 2016), the two
properties are used to characterize network integration in an
expanding body of studies (Baker et al., 2017; Park et al.,
2018; Sun, Chen, Collinson, Bezerianos, & Sim, 2017; Wang
et al., 2018). The Eg of the cortical network of the IA par-
ticipants increased significantly compared with the HC
subjects, while the L exhibited a significant decrease. These
findings indicate increased functional integration of the IA
brain network and strengthened overall interaction among
different brain regions when performing the WM task,
which improve the overall efficiency of information trans-
mission on the brain functional network and greatly pro-
mote the execution of the WM task. The current study in
accordance with the “enhance hypothesis”, it may be because
the long-term use of the internet by addicts to improve the
ability to refresh, convert, store, and suppress information.
The repeated behaviors of internet browsing, such as con-
tacting the network image frequently. The visual center has
been stimulated persistently for a long time, turn out to be
easily excited or to have a raised excitability (Liu et al., 2010).

Besides the economic and efficient small-world
network, there are other two basic network topologies:
regular and random. A random network is characterized
by lower clustering and shorter path length at the same
time, while the opposite is true for a regular network (Van
Diessen, Diederen, Braun, Jansen & Stam, 2013). In the
present study, we demonstrated that the formation of an
altered network associated with IA during WM task
shifting toward a more random topological configuration.

Moreover, an increased hierarchy was observed in IA
subjects during the 2-back task. Another graph property
similar to hierarchy is module. These properties have some
advantages, together with more suitable robustness, adap-
tivity, and evolvability of network function (Meunier,
Lambiotte, & Bullmore, 2010). Modular and hierarchical
organization is described as a subset of highly inter-con-
nected nodes surprisingly moderately linked to nodes in
different modules (Finc et al., 2017; Iordan et al., 2018; Li
et al., 2018). An increased hierarchy in IA subjects may
indicate relatively more short distance connections. There-
fore, taking into account the observed alterations in the
global properties of IA participants, we speculate that the

Journal of Behavioral Addictions 9 (2020) 2, 325-338 331



better WM performance of the IA group might be associated
with the strengthened global integration of brain regions
functionally related during the WM task.

Alterations in the importance of individual brain
regions

It is worth noting that the alterations of brain regional
features are increasingly considered to emphasize the
neurobiological basis of information transmission and
integration (Olaf, Honey, Rolf, & Marcus, 2007). The pre-
sent study confirmed our hypothesis and found that the
altered WM performance in IA subjects was associated with
nodal alterations predominantly in frontal and limbic
cortices. Specifically, there were increased nodal degree in
bilateral MFG, bilateral SFG and the right ParaHG, the
bilateral AC with decreased nodal centrality in both degree
and betweenness, the left preCG only showed decreased
nodal betweenness in the IA group than the HC group.
Conceptually, higher regional degree and bc indicate a more
central or important role of the node in the functional
network. Reduced centrality in bilateral AC and the left
preCG indicated decreased importance within the IA brain
network in the WM task, and increased importance of
bilateral MFG, bilateral SFG and hippocampus lobes may
compensate this unbalance.

Imaging studies have pointed out that frontal has been
consistently determined to be related to WM demand and to
be a dependable index of variations in the memory load of
WM tasks (Grunwald, Weiss, Mueller, & Rall, 2014; Hsieh &
Ranganath, 2014; Niendam et al., 2012). The executive
control processe is located in the prefrontal cortex (PFC);
particularly activations of the PFC has been observed in
tasks that require executive control (Bunge, Klingberg,
Jacobsen & Gabrieli, 2000; Osaka et al., 2003, 2004), and
decreased AC cortex blood flow was discovered during
cognitive tasks that demand attention (deactivation),
including visual spatial and WM tasks (Corbetta, Miezin,
Dobmeyer, Shulman & Petersen, 1991; Rose, Simonotto &
Ebmeier, 2006). To our knowledge, MFG and SFG as a part
of prefrontal cortex involved in executive functions (Yuan &
Raz, 2014). WM is an executive function involving a series of
intricate courses such as encoding, executive maintenance
and retrieval (Toppi et al., 2018). Structural and functional
prefrontal abnormalities were widely reported in individuals
with IA (Choi et al., 2017; Pan et al., 2018; Park et al., 2016;
Shakir et al., 2015), drug addiction (Bolla, Eldreth, Matochik,
& Cadet, 2005; Bolla et al., 2004) and alcohol addiction (Ge
et al., 2017; Han et al., 2015a).

The ParaHG region is a part of the limbic system, which
communicates with the hippocampus to encode, maintain
and retrieve information (Surhone, Tennoe, & Henssonow,
2012), and is believed to contribute to the formation and
maintenance of information in working memory (Aguirre,
Detre, Alsop, & D’Esposito, 1996; Engle & Kane, 2004; Luck
et al., 2010). The ParaHG region has the ability to maintain
stimulus representations for a long time, and in doing so, the
simultaneous stimuli can be combined into relevant

representations in memory, which is important for main-
taining and retrieving the information (Smith & Milner,
1989). Alteration in this region can be revealed in consid-
erable addiction-related studies such as smokers (Hanlon
et al., 2016), internet addicts (Liu et al., 2010; Wang et al.,
2016; Yuan et al., 2011, 2013). Thus, the relative enhance-
ment in ParaHG region importance in our study indicated
an increasing effort in memory recollection of meaningful
experience in IA subjects in order to complete the N-back
WM task. In a word, the alteration of the importance of
frontal and ParaHG regions may imply changes in the WM
performance of IA subjects.

Correlation between global topological properties and
WM performance

The observation that WM-induced topological changes
correlated with IA severity adds to an existing body of
literature showing that performance stability is closely
linked to neurophysiology function. Specifically, we found
a negative relationship between the IA severity and L and
a positive relationship between the IA severity and Eg.
Since the L and Eg are associated with the global inte-
gration, this finding further corroborates the more inte-
grative functional brain network of IA during the WM
task. Furthermore, the nodal network metrics were
correlated with IA severity. We observed a positive rela-
tionship of IA severity with degree of the right MFG, and
a negative relationship of IA severity with the degree of
right AC. Altered neural activity of these regions in IA
group has been demonstrated in the previous studies
(Ding et al., 2014; Dong, Devito, Du & Cui, 2012). These
findings indicate the important role of brain topological
changes derived from graph theory in understanding the
neural mechanism of IA and will help determine affected
regions related to WM in IA.

Limitations and future directions

Several limitations to this study should be mentioned. First,
in order to minimize potential effects of the EEG reference
on signals, a number of different references have been
proposed, such as linked mastoids (Dan, 2018), average
reference (Zheng, Qi, Li, Zhang, & Yu, 2018) and zero
reference (Dong et al., 2017). With some suggestiones (Dong
et al., 2017; Xu et al., 2014), zero reference was adopted in
current study. Until now there is no gold standard; therefore,
future research should pay more attention to explore a more
accurate reference model. Second, each ROI was determined
by predefinition rather than by adaptive parcellation, we
only used the Brodmann atlas including 84 regions to
analyze the topological organization of brain functional
connectomes. However, network properties are sensitive to
nodal definition based on parcellation strategies and spatial
scales (Wang et al., 2011). More robust parcellation scale
and test-retest reliability atlas need to be clearly studied in
the future work. Third, the current study is the cross-
sectional design may reflect baseline differences in cognitive
abilities and not fully differentiate the effects of IA in college
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students, therefore we are cautious in interpreting the study
results. Future studies may benefit from longitudinal as-
sessments of these effects. Fourth, what we focused is a
general IA in current study. In fact, different internet use
behaviors may have different effects on WM (Du et al., 2017;
Laier, Pekal, & Brand, 2014; Laier, Schulte, & Brand, 2013),
or even different types of the same application (e.g. different
types of games) may also have different effects. Therefore,
this also suggests that we can select different types of
internet addicts in the future to explore the differences in the
characteristics and brain mechanisms of verbal and visual
WM. Finally, the relatively small sample size may limit the
statistical power, our results should be confirmed by studies
with a larger sample size.

CONCLUSIONS

In conclusion, graph theoretical analysis of the functional
brain networks of the IA participants during the WM task
was performed in this study, which provides the opportunity
to investigate the broader network aberrations as well as
altered individual regions in IA. We found that there were
significant alterations in topological properties both globally
and regionally in IA, which were also correlated with IA
severity. These findings provide evidence to support the
notion that altered topological configuration may underline
improved WM function observed in IA and highlight the
potential of complex network measures as neural biomarkers
for behavioral presentation of IA.
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