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Ordered collective motion emerges in a group of autonomously motile elements (known as active matter) as their 
density increases. Microswimmers, such as swimming bacteria, have been extensively studied in physics and 
biology. A dense suspension of bacteria forms seemingly chaotic turbulence in viscous fluids. Interestingly, this 
active turbulence driven by bacteria can form a hidden ensemble of many vortices. Understanding the active 
turbulence in a bacterial suspension can provide physical principles for pattern formation and insight into the 
instability underlying biological phenomena. This review presents recent findings regarding ordered structures 
causing active turbulence and discusses a physical approach for controlling active turbulence via geometric 
confinement. When the active matter is confined in a compartment with a size comparable to the correlation length 
of the collective motion, vortex-like rotation appears, and the vortex pairing order is indicated by the patterns of 
interacting vortices. Additionally, we outline the design principle for controlling collective motions via the 
geometric rule of the vortex pairing, which may advance engineering microdevices driven by a group of active 
matter. This article is an extended version of the Japanese article, Ordered Structure and Geometric Control of 
Active Matter in Dense Bacterial Suspensions, published in SEIBUTSU BUTSURI Vol. 60, p.13-18 (2020). 
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Introduction 

 
In nature, one often sees birds, fish, and other elements move on their own, often in groups [1]. Similarly, at the 

microscale, cells—which are the building blocks of individual organisms—move and grow while forming an ordered 
structure during morphogenesis. At the nanoscale, motor proteins in a living cell convert chemical energy into autonomous 
motion fueled by adenosine triphosphate (ATP) hydrolysis. Highly ordered structures regulated by actively moving 
elements are commonly observed in nature, including molecules, cells, and individual animals [2]. Materials or cells that 
move by self-propelling and exhibit highly correlated motion are known as active matter. The physics of active matter is 

"Active matter" refers to a class of materials that move autonomously by consuming chemical energy and form an 
ordered flocking cluster or exhibit a complex turbulent state at a high density. The physics of active matter provides 
a new foundation for understanding the self-organization of complex biological systems at different scales, 
including proteins, bacteria, and multicellular tissues. This review outlines the emergent order of vortices hidden 
in an active turbulent state and provides a simple geometric rule in which the geometry of vortex pairings plays an 
important role in controlling the collective motion of active matter. 

◀ Significance ▶ 
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an emerging field that bridges the gap between physics and biology from the perspective of ordered collective dynamics 
[3].  

In 1995, Vicsek et al. developed a theoretical model of self-propelled particles that considers autonomous motion at a 
constant speed and the interaction among particles aligning their orientation of motion [4]. In this theoretical model, there 
is an effect by which particles try to align their orientation when they are close together, but they are not perfectly aligned 
due to noise. When the noise level is low, collective motion is realized, in which the particles are oriented toward each 
other. As the noise increases, a disordered state appears in which the particles exhibit random motion. Using the Vicsek 
model, the collective motion of active matter can be analyzed within the framework of phase transitions. The model 
provides rich theoretical and experimental frameworks that are essential for understanding various biological phenomena.  

A group of active matter, such as swimming bacteria [5,6], sperm cells [7], eukaryotic cells [8,9], or the complex of 
motor proteins and cytoskeletons [10], exhibits a variety of dynamic ordered structures, such as swarming, flocking, and 
vortex lattices, as well as synthetic systems, such as assemblies of colloids or robots [1–4]. Numerous ordered patterns 
are still being discovered and have been extensively studied in non-equilibrium physics; one fascinating example is the 
active turbulence of dense bacterial suspensions. The bacteria most commonly used in studies on active turbulence are 
Escherichia coli (E.coli) and Bacillus subtilis (B. subtilis), which have rod-shaped bodies with multiple flagella. These 
swimming bacteria align their directions of motion with 
each other as their density increases because of the 
excluded volume effect, which makes the front–back 
axes of the rods parallel to each other. In addition, the 
bacterial body generates a pusher-type force dipole in the 
surrounding fluid owing to the rotation of the flagella. 
The emergent force dipole exerts the stress driving water 
flow, and the long-range hydrodynamic interaction 
between the bacteria (the force dipoles) prevents the 
steric effect from aligning the bacteria in the same 
direction in a quasi-two-dimensional space. As the effect 
of the polar aligning interaction decays over long 
distances, a turbulent state appears in the aligned 
direction at short distances, but disordered motion 
occurs at longer distances (Fig. 1). This is reminiscent of 
classical turbulent flows with high Reynolds numbers, 
i.e., Re >> 1, despite active turbulence occurring at low 
Reynolds numbers (Re ≈ 10-5), rendering the fluid inertia 
negligible. The key difference between active and 
classical turbulences is the manner in which the injected 
energy cascades over scales. In inertial turbulence, the 
energy injection is determined by external driving, 
whereas the energy input in active turbulence is from 
bacterial swimming, which self-organize into correlated 
structures at larger scales [11] (Fig. 1). 

By examining the velocity correlations in this turbulent state, Wensink et al. found that during turbulence, the velocity 
field has a correlation length with a characteristic size, that is, numerous vortices are embedded in the spatial structure 
[12]. The characteristic lengths exhibiting this vortex structure can be reproduced using a continuum model of collective 
motion, which assumes an instability that prevents the formation of long-wavelength structures. Intriguingly, Wioland et 
al. demonstrated that a single vortex of bacteria can be extracted by designing a circular boundary shape using water-in-
oil droplets. These droplets had radii comparable to the characteristic length of the bacterial velocity correlation [13]. 
This finding indicates that the vortical motion becomes stable when it interacts with the circular wall, and geometric 
confinement with a characteristic length scale unveils the hidden order of the constituent vortices inherent in active 
turbulence. However, while the collective motion of bacteria is an experimental model to explore the collective motion 
of active matter, it is known that the Vicsek model does not exhibit order formation at intermediate scales, such as vortex 
patterns. Therefore, various studies have been conducted for clarifying the physical characteristics of the vortex motion 
with the aim of revealing in what respects the collective motion exhibited by bacteria is consistent with the conventional 
Vicsek model and in what respects it requires a new theoretical interpretation. 
 
Geometric Control of Collective Motion in Dense Bacterial Suspensions 

 
Bacterial turbulence comprises numerous mesoscale interacting vortices, such as the co-rotational pairing of two vortices 

 
 
Figure 1  Bacterial turbulence and ordered interacting 
vortices. Bacterial turbulence consists of mesoscale 
vortices of CW (red domain in vorticity) and CCW (blue 
domain). Vortex pairing patterns of ferromagnetic vortices 
(FMV) and anti-ferromagnetic vortices (AFMV) can be 
found. Scale bar is 100 µm. 
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rotating in the same direction and the anti-rotational pairing of two vortices rotating in opposite directions. The ordered 
structure of a vortex has two degrees of freedom: counterclockwise (CCW) and clockwise (CW) rotation directions. The 
pattern of interacting vortices is determined by their coupling, i.e., whether they are oriented in the same direction or 
opposite directions. This concept is similar to the spin orientation of interacting electrons in condensed-matter physics; 
the CCW or CW vortex is regarded as spin up or spin down in the context of condensed-matter physics, and in the same 
manner, the co-rotational (or anti-rotational) pairing of vortices is called “ferromagnetic” (or “antiferromagnetic”) (Figs. 
2A and B). In a simple model of interacting spins, the state in which multiple interacting spins are oriented in an orderly 
manner is called the ferromagnetic phase. The ferromagnetic phase is in a state of global order, with aligned spin 
orientations in the same direction. In contrast, a state in which the direction of the spins is reversed from that of the 
neighboring spins is called an antiferromagnetic phase. Thus, by comparing the rotation of vortices in the direction of 

spins, the analogy of condensed-matter physics can be used to study the self-organization of interacting active vortices. 
Wioland et al. built a microfluidic device in which a bacterial suspension is enclosed via geometric confinement. 

Bacterial vortices arise from collective motion under confinement and interact with each other by arranging themselves 
in a square lattice [14]. Bacteria can swim through microchannels placed between the confined bacterial vortices. By 
changing the microchannel width, the interaction of bacterial vortices can be controlled. Interestingly, two ordered patterns 
of interacting bacterial vortices appeared in this device: a ferromagnetic vortex (FMV) pattern, in which the vortices 
exhibited the same direction of rotation, and an antiferromagnetic vortex (AFMV) pattern, in which neighboring vortices 
were oriented in opposite directions. The FMV pattern appeared when the channel width was sufficient, indicating that 
the vortex pairing patterns in the lattice-like microfluidic device are geometry-dependent. Furthermore, Nishiguchi et al. 
reported that by installing pillars at regular spacing in bacterial turbulence, the turbulent dynamics can be transformed 
into a lattice of AFMV patterns, despite the small volume occupied by the pillars [15]. From a macroscopic viewpoint, 
active turbulence holds symmetry in that the global vorticity should always be zero, implying the presence of robust 
antiferromagnetic vortices. Although it has been clarified that co-rotating and anti-rotating ordered vortices can be 
controlled by changing the geometry, little was known about the physical principle underlying this geometric control until 
recently. 

 
Figure 2  Vortex order and vortex pairing transition in confined bacterial turbulence. (A) Correspondence of spin 
(up and down) and bacterial vortex (CCW and CW). (B) Correspondence of ordered spins and ordered vortices. (C) 
Geometry dependence of vortex pairings (FMV and AFMV) in microwells with the symmetric interface. The dashed 
line at Δ𝑐𝑐/𝑅𝑅 = √2 is the transition point of pairing order transition between FMV and AFMV. Colors code vorticity. 
This figure is modified from [16]. 
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To this end, Beppu et al. developed a new microwell that allowed two bacterial vortices to interact [16]. This study 
focused on two geometric quantities of the constituent ordered vortices (the radius of the vortices 𝑅𝑅 and the distance 
between vortices Δ), and their geometric rule was revealed (Figs. 2C and 3). The RP4979 strain of E. coli that exhibits 
smooth swimming without tumbling is enclosed in double-circular microwells at a density (volume fraction) of ~20 v/v%. 
The dimensionless parameter Δ/𝑅𝑅 defines this double-circular geometry. Intriguingly, both FMV-like vortex pairing and 
AFMV-like vortex pairing emerge, but they depend on Δ/𝑅𝑅, as indicated by the transition of the FMV to an AFMV at the 
critical point Δ𝑐𝑐/𝑅𝑅 ≈ 1.4 (in Fig. 2C).  

To understand the pairing-order transition from the FMV to the AFMV, a theoretical model based on the Vicsek model 
is considered with a confinement boundary condition [4]. The position of the mth particle is 𝐫𝐫𝒎𝒎 = �𝑥𝑥𝑚𝑚(𝑡𝑡), 𝑦𝑦𝑚𝑚(𝑡𝑡)� with 
radial distance 𝑟𝑟𝑚𝑚 and orientation 𝒅𝒅�θ𝑚𝑚(𝑡𝑡)� = (cos θ𝑚𝑚(𝑡𝑡) , sin θ𝑚𝑚(𝑡𝑡)). The orientational dynamics is given as 

 
�̇�𝜃𝑚𝑚 = −𝛾𝛾𝑝𝑝� ∑ sin(θ𝑚𝑚 − θ𝑛𝑛)𝑟𝑟𝑚𝑚𝑚𝑚<𝜀𝜀  + 𝜂𝜂𝑚𝑚(𝑡𝑡), (1) 

 
where γ𝑝𝑝��� is the coefficient of polar alignment among the particles, 𝑟𝑟𝑚𝑚𝑛𝑛 = |𝑟𝑟𝑚𝑚 − 𝑟𝑟𝑛𝑛| represents the distance between the 
mth and nth particles, ε represents the effective radius of polar interactions (Fig. 3A, left), and η𝑚𝑚 represents white Gaussian 
noise that satisfies ⟨η𝑚𝑚⟩ = 0 and ⟨η𝑚𝑚(𝑡𝑡)η𝑛𝑛(𝑡𝑡′)⟩ = 2𝐷𝐷δ𝑚𝑚𝑛𝑛δ(𝑡𝑡 − 𝑡𝑡′), with D denoting the rotational diffusion coefficient, 
δ𝑚𝑚𝑛𝑛 denoting the Kronecker delta function, and δ(𝑡𝑡 − 𝑡𝑡′) denoting the Dirac delta function. The emergent patterns are 
determined by the resulting orientation of bacteria interacting at the tip, where the two circles intersect (Fig. 3C). The 
orientation of bacteria going or coming from the tip (characterized by Ψ) is constrained in the tangential direction. 
Therefore, by considering the geometry of the tip and taking the mean-field approximation for the summation (Fig. 3C), 
we can obtain the effective potential of the FMV and AFMV: 𝑈𝑈𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹 = −γ𝑝𝑝sinΨ at θ =  0 for the FMV, and 𝑈𝑈𝑝𝑝𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹 =
−γ𝑝𝑝cosΨ  at θ =  π/2  for the AFMV (note that we set γ𝑝𝑝 = ∑ γ𝑝𝑝���𝑟𝑟𝑚𝑚𝑚𝑚<ε ). 𝑈𝑈𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹 =  𝑈𝑈𝑝𝑝𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹  gives a transition point 
Δ𝑐𝑐/𝑅𝑅 = √2, which is consistent with the experimental results. This geometric rule corresponds to the case with the tip 
angle 2Ψ =  π/2 at which there is no preference between the FMV and the AFMV, leading to the transition point (Fig. 
3C), which suggests that ordered interacting vortices of bacteria have symmetric polar interactions. 
 

 
Figure 3  Theoretical interpretation of vortex pairing transition. (A) Polar alignment of heading angle among 
neighboring particles (left) and nematic alignment along the wall (right). (B) Definition of doublet circular boundary 
and setting angle. (C) Polar interaction around a tip defined by Ψ. FMV is preferred when Ψ>π/4 (left), while AFMV 
is preferred when Ψ<π/4 (right). Colliding at Ψ=π/4 exhibits no preference in the resulting patterns. This figure is 
modified from [16]. 
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Controlling Chiral Active Matter 
 

A strategy to control active turbulence is crucial for 
understanding the onset of active turbulence and for 
developing a novel route to efficiently harvest energy 
from turbulent-like disordered motions. Although the 
simple geometric quantity Δ/𝑅𝑅 can be used to control 
interacting ordered vortices, it is unclear how ordered 
vortices with a net circulation over scales far larger than 
the correlation length can be controlled. One strategy is 
to use the viscoelastic properties of the ambient 
environment to suppress the decay of directional 
correlations, which has been reported to achieve large 
bacterial vortices with sizes of several hundred 
micrometers [17]. However, the bacteria also have 
properties that affect the velocity correlations, which 
have long been overlooked. One of these properties is 
chirality, that is, the mirror-symmetry breaking of 
individual units. Chirality is ubiquitous; examples 
include amino acids, cytoskeletons, organs, and 
handedness in humans. Active matter that has chiral 
symmetry breaking in velocity or shape exhibits rich 
pattern formation, such as the formation of a large flock 
assisted by chirality [18] and a chiral edge current 
[19,20] under spatial constraints that are reminiscent of 
the quantum Hall effect [21]. Bacteria are also known 
as chiral active matter; they rotate their flagella in a 
CCW direction, but the body rotates in a CW direction 
(when viewed from the back) [22]. When bacteria swim 
near a solid surface, hydrodynamic interactions between 
the bacteria and the wall cause a curved trajectory in the 
CW direction [18]. Hence, bacterial swimming has left–
right asymmetry, and bacterial collective motion 
provides a new platform for studying how the chiral 
nature of active matter can control the pairing order 
transition of interacting vortices. 

Beppu et al. found that it was possible to provide a 
slight chiral bias on the vertical top–bottom axis while 
keeping the lateral boundary achiral by sealing a 
suspension confined in polydimethylsiloxane (PDMS) 
microwells with oil containing a surfactant [23]. Once a 
dense bacterial suspension was enclosed in circular 
microwells with asymmetric interfaces (top: an 
oil/water interface; bottom: a water/PDMS interface), 
the suspension started to generate a stable vortex in 
microwells whose size was comparable to the typical size of vortices (~35 µm) in a turbulent bacterial suspension. The 
directionality of the emergent vortices was selective, with a ≥95% probability of being CCW when viewed from above 
(later referred to as the “top view”) (Figs. 4A and B). Importantly, persistent chiral collective motion, which is called a 
chiral edge current, appeared near the lateral boundary (edge layer within 10 µm from the boundary) in relatively large 
microwells. When a bacterial suspension was confined in concentric microchannels (Fig. 4C), CCW (CW) edge currents 
occurred at the outer (inner) edge viewed from the center of the annuli. This edge current was stable regardless of the 
details of the boundary geometry, such as the channel curvature and width (Figs. 4D and E). 
 
Transformation into Global Chiral Vortex 
 

The interplay between the collective motions at the top and bottom interfaces explains the underlying mechanism of the 

 
Figure 4  Chiral bacterial vortex and chiral edge current. 
(A) A schematic illustration of a dense bacterial suspension 
confined in a microwell with an oil/water interface. (B) The 
bright-field image of a dense bacterial suspension in 
circular microwells with 20 µm and 35 µm in radius 
overlapped by the velocity orientation field. Color codes 
the orientation. Scale bar, 100 µm. (C) Schematics of the 
experimental setup of annular microchannels. (D) A bright-
field image of a dense bacterial suspension in annular 
microchannels with 50 µm in width overlaps the velocity 
orientation field. Color codes the orientation. Scale bar, 50 
µm. (E) Schematics of chiral motions near an outer edge 
and an inner edge. This figure is modified from [23] 
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emergent chiral edge current. Swimming bacteria circle in a CW direction above the surface because of the torque 
generated by the difference in viscous forces between the surface and bulk side, which act on both the cell body and the 
helical bundle of flagella (Fig. 5A). In the microwells sealed by a surfactant-laden oil/water interface, bacteria near the 
bottom PDMS substrate swim in the CW direction (top view). In contrast, bacteria beneath the top oil/water interface 
swim in the CCW direction because of the high shear caused by the almost no-slip boundary condition of the solid surface 
(Fig. 5B) [24]. Bacteria interacting with a lateral wall tend to move in one direction owing to the torque caused by flagellar 
rotation, which leads to effective polar interactions between the bacteria and the lateral wall. In a shallow microwell 
(height h ≈ 20 µm), because collective motions at both the top and bottom interfaces are fully correlated throughout the 
microwell, a coherent rotation between the top and bottom can be generated (Fig. 5C). Although the hydrodynamic 
interaction between bacteria and a solid interface induces chiral swimming, opposite chiral motions are induced at the top 
and bottom interfaces in symmetric cylinder microwells, resulting in no net chirality in the bacterial motion. However, 
the symmetry was broken at the interface where the top surface was the oil/water interface because the bacterial density 
near the top interface was slightly (~1.2–1.6 times) higher than that at the bottom. Chiral collective motion at the top 
interface (CCW preference) has a bias in determining the direction of global chirality; hence, robust CCW chiral edge 
currents can be stabilized without built-in chirality in the boundary condition. One possible reason for the predominance 
of the top side is that the fluidic oil phase at the top has a higher oxygen content than that of the solid PDMS substrate at 
the bottom [23]. The preponderance of collective motions at the top in terms of bacterial density suggests that the 
collective motion at the bottom follows that at the top in the competition between the two interfaces (Fig. 5D). This 
mechanism of chiral edge currents was verified by a numerical simulation based on the Vicsek-style model, where 
confined self-propelled particles belonging to two distinct layers (corresponding to the top and bottom) with different 
densities interact with each other through the coupling strength [23].   

 
Figure 5  Formation of chiral edge current and chirality-induced FMV pairing. (A) Chiral swimming in CW on the 
surface in the absence of lateral boundary. (B) Chiral swimming near an oil/water interface and a water/PDMS 
interface inside a microwell. (C) Chiral collective motions near the interfaces in a deep and a shallow microwell. (D) 
Schematic model for the formation of chiral edge currents. (E) Geometry dependence of vortex pairings (FMV and 
AFMV) in microwells with chiral edge current. The dashed line at Δ𝑐𝑐/𝑅𝑅 = √2 is the transition point of pairing order 
transition without the edge current. Chiral edge current shifts the transition point to Δ𝑐𝑐/𝑅𝑅~1.9. Colors code vorticity. 
This figure is modified from [23]. 
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Geometric Rule of Interacting Vortices 
 

Edge currents result in large-scale net circulation, suggesting that the chiral edge current controls the interacting ordered 
vortices inherent in bacterial turbulence. The next question is how such ordered vortices with geometry dependence 
compete with chiral edge currents seemingly independent of the boundary geometry, or whether the chiral edge current 
enhances the co-rotational order of interacting vortices. 

Beppu et al. predicted the transition point by extending a previous model of self-propelled particles [23]. For microwells 
with an asymmetric interface, because CCW chiral swimming is selected by the interaction with a boundary wall, the 
polar interaction toward the CCW direction is incorporated into Equation (1) as follows:  
 
θ�̇�𝑚 = −γ𝑝𝑝���∑ sin(θ𝑚𝑚 − θ𝑛𝑛)𝑟𝑟𝑚𝑚𝑚𝑚<ε − γ𝑒𝑒��� ∑ sin(θ𝑚𝑚 − θ𝑤𝑤)𝑟𝑟𝑚𝑚𝑚𝑚<ε + η𝑚𝑚(𝑡𝑡), (2) 

 
where θ𝑤𝑤 represents the tangential direction of the wall where the bacteria reach the boundary, and 𝑟𝑟𝑚𝑚𝑤𝑤 represents the 
distance from the nearest boundary wall. The second term denotes polar alignment by a chiral edge current at the tip of a 
doublet circle boundary with γe = ∑ γ𝑒𝑒���𝑟𝑟𝑚𝑚𝑚𝑚<ε . In the same way by taking the geometry of the tip into account, the effective 
potential of chiral edge currents, i.e., 𝑈𝑈𝑒𝑒 = −γ𝑒𝑒cosθsinΨ, can be obtained. Thus, the transition point is given by the 
following summation: 𝑈𝑈𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑈𝑈𝑒𝑒|θ=0 = 𝑈𝑈𝑝𝑝𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑈𝑈𝑒𝑒|θ=π/2, leading to �γ𝑝𝑝 + γ𝑒𝑒�sinΨ𝑐𝑐 = γ𝑝𝑝cosΨ𝑐𝑐 . Then, 
 
Δ𝑐𝑐/𝑅𝑅 ≈ √2 �1 + γ𝑒𝑒

2γ𝑝𝑝
� (3) 

 
is obtained by using the relationship Δ𝑐𝑐/𝑅𝑅 = 2cosΨ𝑐𝑐  and expanding around Δ𝑐𝑐/𝑅𝑅 = √2. This extended geometric rule 
predicts the enhancement of the FMV, of which the deviation from √2 can be described by the ratio of the strength of the 
chiral edge current to that of the polar interactions. 

To verify the effect of chirality on the pairing order transition, as predicted above, the vortex pairing patterns under the 
confinement of doublet circular microwells with asymmetric interfaces were examined. Fig. 5E shows an array of vorticity 
maps overlapped by velocity fields with varying Δ/𝑅𝑅 values. Enhanced FMV patterns with CCW chirality were observed 
up to Δ𝑐𝑐/𝑅𝑅 ≈ 1.9. Conversely, the AFMV patterns inherent in bacterial turbulence were maintained even at large Δ/𝑅𝑅 
values and in the presence of robust chiral edge currents. Additionally, a quantitative comparison of γ𝑒𝑒 and γ𝑝𝑝 between 
the theory and experiment was performed. This result identified the chiral edge current as a novel phenomenon that 
governs the pairing-order transition through chirality. 
 
Conclusion and Perspectives 
 

In conclusion, geometrically controlling active-matter systems have unveiled the geometric features of constituent 
ordered vortices hidden in the chaotic behavior of active turbulence. Meanwhile, bacterial turbulence has intrinsically 
interacting vortices such as the FMV and AFMV patterns, which are determined by the ratio of the distance between 
vortices to the radius of the vortices. Despite the apparent geometry dependence of ordered vortices, chiral edge currents 
suppress the occurrence of an anti-rotational pairing order, allowing us to control a larger flow with net circulation. The 
theoretical model based on confined self-propelled particles, including an edge current, explains the enhancement of the 
co-rotational pairing order and provides an extended geometry, where the shift of FMV-AFMV transition point is given 
by the ratio of an edge current to a local polar alignment. These results may provide a strategy for geometry-based 
engineering of high-performance micromachines.  

This review focused on the geometric control of bacterial collective motion, but the same geometric rule holds for the 
collective motion of active cytoskeletal systems composed of microtubules and kinesin molecular motors with different 
orientation interaction symmetries (i.e., nematic interaction) [25]. This implies that the geometry-focused control has a 
universality that can be applicable to a wide range of active matter. At the interface between physics and biology, there 
are many unanswered questions regarding the derivation of a generalized rule to uncover the geometric universality of 
active matter. 
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