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Understanding and Modeling Teams
As Dynamical Systems
Jamie C. Gorman*, Terri A. Dunbar, David Grimm and Christina L. Gipson

Systems Psychology Laboratory, School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States

By its very nature, much of teamwork is distributed across, and not stored within,
interdependent people working toward a common goal. In this light, we advocate a
systems perspective on teamwork that is based on general coordination principles
that are not limited to cognitive, motor, and physiological levels of explanation within
the individual. In this article, we present a framework for understanding and modeling
teams as dynamical systems and review our empirical findings on teams as dynamical
systems. We proceed by (a) considering the question of why study teams as dynamical
systems, (b) considering the meaning of dynamical systems concepts (attractors;
perturbation; synchronization; fractals) in the context of teams, (c) describe empirical
studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral,
and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical
and practical implications of this approach, including new kinds of explanations of
human performance and real-time analysis and performance modeling. Throughout our
discussion of the topics we consider how to describe teamwork using equations and/or
modeling techniques that describe the dynamics. Finally, we consider what dynamical
equations and models do and do not tell us about human performance in teams and
suggest future research directions in this area.

Keywords: teams, team cognition, interpersonal coordination, non-linear dynamics, communication analysis,
teamwork

WHY STUDY TEAMS AS DYNAMICAL SYSTEMS?

A team consists of two or more people that work interdependently toward a common goal (Salas
et al., 1992). Counter to many approaches in psychology, understanding teams involves not just
understanding isolated mental and behavioral processes in the individual but demands theories
and models for how interacting with other people shape thought and behavior in real time. We
argue that many approaches aimed at studying interpersonal dynamics, such as social psychology,
tend to locate explanations of psychological phenomena within the individual, rather than actual
interactions, which is a shift that team psychology demands (Cooke et al., 2013). Because so
much of the human condition is based on interacting with other people, we argue that a shift
toward interaction- and systems-based psychology, which working with teams entails, touches
on a foundational issue in psychological science. For example, a central question when working
with teams is, “How do real-time interpersonal processes change the way a person thinks and
behaves?” In this article, we advocate a dynamical systems approach for answering this type of
question. In this light, teams are viewed as a system of coupled elements that interact over time to
produce patterns that are themselves not contained within the team’s members. In order to present
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a framework for understanding teams as dynamical systems, we
first examine the concept of a system and what it means for team
psychology.

To appreciate what a dynamical system is, we should first
examine the concept of a system (Turvey, 2009). Whereas a
system exists independently of whether or not it is recognized
as a system (i.e., when something is part of a system, it behaves
differently than if it were not a part of that system), systems
thinking is a matter of perspective. For an astronomer, for
example, we suppose the galaxy is a system, and the earth
is an element of the system; for a climatologist, the earth is
a system, and the earth’s atmosphere is an element of the
system etc. In other words, systems (and subsystems) can have
fuzzy boundaries, but the important point is that when we use
the word “system,” we invoke explanations and understanding
precisely at the system-level, rather than the constituent elements
of the system (Chapanis, 1996). For example, by focusing on
individual-level properties that exist outside of the team in action,
“aggregate” views of team cognition that focus on alignment and
complementarity of team member knowledge (see DeChurch
and Mesmer-Magnus, 2010, for a discussion) present a non-
system explanation of team cognition, whereas by focusing on
interactions, more “holistic” approaches that view team cognition
as the cognition that happens while team members interact
(Cooke et al., 2013) present more of a systems explanation of team
cognition.

At its most basic, the concept of a dynamical system
(Abraham and Shaw, 1992) simply introduces a temporal
element for understanding system behavior. In psychological
terms, “dynamical” denotes an emphasis on process (in addition
to structure) in understanding and modeling psychological
phenomena (Thelen and Smith, 1994). The emphasis on process
is important, because when elements are dynamically linked in
a system, the ways in which those elements act are different
than when those links are absent (Morgan, 2010). Put differently,
behaviors can emerge at the system level that are not encoded
at the level of isolated elements. This concept is captured in
Kozlowski and Klein’s (2000) distinction between compositional
and compilational emergence in team cognition. Compositional
emergence means that properties at the team level (e.g., team
knowledge) are isomorphic to properties at the individual level
(e.g., sum of individual knowledge). Compilational emergence
means that properties at the team level are non-isomorphic to
properties at the individual level, where team properties only
emerge through the process of team interaction (DeChurch and
Mesmer-Magnus, 2010). We take the latter compilational form of
emergence as a more general view of how teams work, wherein
team interactions dynamically shape team members’ thoughts
and behaviors in ways that cannot be known a priori.

The fundamental psychological question we started with
was how interpersonal processes shape human thought and
behavior. Teams are ideal for addressing this question, and
dynamical systems provide a powerful theoretical framework
for understanding how mental and behavioral processes in the
individual are shaped through teamwork. We study teams as
dynamical systems because it allows us to directly address the
question of how the system shapes element behavior in order

to make predictions about future states of the system and the
elements in it. By the end of this article, we hope to demonstrate
three general principles based on this approach:

(1) Local variability ensures global stability, and global stability
entails local variability: Although team interactions can
be highly variable and unpredictable on small (“local”)
timescales, they are necessarily so in order to maintain
stability and predictability of the team on larger (“global”)
timescales.

(2) From heart rate variability (Peng et al., 1995) to postural
control (Collins and De Luca, 1995), local variability with
global stability is a principle that characterizes processes
operating at different levels of analysis. Similarly, local-
global dynamics in teams are substrate-independent and
occur across perceptual-motor, cognitive-behavioral, and
neural levels of analysis.

(3) Extending Principles 1 and 2, “cross-level” effects occur
between levels of analysis, such that we can gain insight
into dynamic processes on one level of analysis (e.g.,
cognitive-behavioral) by engaging and/or observing the
dynamics at another level of analysis (e.g., neural).

We begin by explicating several concepts that will aid in
understanding how a dynamical systems approach has been
applied to teams.

DYNAMICAL SYSTEMS CONCEPTS IN
THE CONTEXT OF TEAMS

Having introduced the general notion of dynamical systems,
in this section we describe several concepts of dynamical
systems that we have found useful for the study of teams. We
describe attractors, perturbation, synchronization, and fractal
(power-law) concepts and how they relate to the study of
teams.

Attractors
An attractor is a behavior that a system settles on over time
after (possibly) displaying initial transient (settling-in) behavior
(Abraham and Shaw, 1992). In predicting system behavior, the
system will gravitate toward the attractor, regardless of where
it “starts out at” or is “pushed to” by an outside force (e.g., a
perturbation; see below). Some attractors are inherently stable,
such that if the system is pushed away from the attractor it quickly
returns to the attractor. Some attractors are unstable, such that if
the system is pushed away from the attractor, it will be hard to
return to the attractor. Other attractors are metastable, such that
stability must be maintained through active control (a teamwork
example is provided later). Sometimes the attractor is cyclical
and forms oscillations. For example, pendulum clocks have an
oscillatory attractor. In teams, attractors and their stability have
been researched in motor coordination and communication
processes (described later), where the formation of behavioral
attractors for adapting to changing environmental demands has
been a central issue (Gorman et al., 2010a,b; Gorman and Crites,
2015).
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Perturbation
A perturbation is an outside disturbance to a system that forces
either a reorganization of the behavioral trajectory toward an
attractor or moves the system toward a new attractor (Abraham
and Shaw, 1992). The effect of a perturbation on the system
depends on the system’s stability. A perturbation to a highly
stable system is unlikely to shift the system’s behavior to a new
attractor. Conversely, a system that is attempting to reach an
attractor state during the initial transient period will be highly
impacted by a perturbation because system behavior is not
stably tied to an attractor. In this respect, the system’s response
to a perturbation can be used either as an index of attractor
stability (its “relaxation time”) or to “push” the system around its
coordination space in order to influence attractor development
(Schöllhorn et al., 2006; Frank et al., 2007; Gorman et al., 2010b).
In teams, perturbations and stability have been researched in the
context of team longevity and training to develop adaptive teams
that respond effectively to novel task demands and events in the
environment (Gorman et al., 2010a,b).

Synchronization
Synchronization is a phenomenon where two or more coupled
oscillatory processes become coordinated in time across some
proportion of frequency (e.g., 1:1, 2:1; Strogatz, 2004). Coupling
simply means that the processes have some form of interaction
with each other. For example, if two pendulum clocks having
oscillatory attractors are coupled by placing them on the
same surface, the pendulums couple through the surface and
eventually oscillate together in time (i.e., synchronize). The
synchronization that is observed over time is a new attractor that
may not correspond to the natural frequencies of the uncoupled
oscillators. Synchronization is an important concept for teams
because it describes the impact team members have on each
other when they are informationally coupled (e.g., through
perceptual channels; through communication). Moreover, there
are different types of synchronization that can occur (e.g.,
different frequency proportions, 1:1; 3:2; 7:5; etc.) between team-
member inputs. Synchronization can occur during interpersonal
coordination both unintentionally and intentionally (Richardson
et al., 2005, 2007; Varlet and Richardson, 2015). In teams,
synchronization has been researched in communication
and team neurophysiology (Stevens and Galloway, 2014,
2016; Gorman et al., 2016), physiological synchronization
(Guastello, 2016; Guastello et al., 2016), and in perceptual-motor
synchronization (Gorman et al., 2017).

Fractals and Power Laws
Fractals (Mandelbrot, 1967) model either spatial or temporal
processes in which similar patterns occur across multiple scales
(e.g., timescales) of measurement. To say that a system exhibits
temporal fractal structure, for example, means that it displays a
temporal nesting property such that smaller copies of a pattern
are nested within larger copies of the pattern, a property called
scale-invariance. Scale-invariant processes are fit by a power-law
distribution (Schroeder, 2009). Power laws are a signature of self-
organization (Bak, 1996) and long-memory effects (Beran, 1994).

Self-organization is a process wherein order at the global scale
emerges from and constrains component behavior at the local
scale (Kelso, 1995), and long-memory effects are correlations
that persist over longer timescales than those that characterize
local variability within the system (Beran, 1994). When those
correlations are positive, it is called persistence, and when they
are negative, it is called antipersistence. It should be noted that
system behavior can self-organize around other attractor states
(e.g., fixed point; oscillatory); however, we will focus on how
teams self-organize around metastable and critical states that
exhibit fractal and long-memory dynamics. In psychology, power
laws capture fractal scaling in cognitive processes (Gilden et al.,
1995; Van Orden et al., 2003) and learning curves across groups of
learners (Newell et al., 2001). Fractal scaling has been observed in
interpersonal tasks when people match complex movement and
communication patterns (complexity matching) that vary across
local and global scales (Marmelat and Deligniéres, 2012; Abney
et al., 2014; Fine et al., 2015; Coey et al., 2016). In teams, power
laws have also been researched in the formation of long-memory
in team communication (Gorman, 2005) and in team perceptual-
motor learning (Gorman and Crites, 2015), whose timescales
extend beyond the memory limitations of the individual. In
accordance with Principle 1, fractals and power laws distill what
is lawful at the global scale from what appears to be “messy” or
“noisy” at the local scale.

TEAM DYNAMICS ACROSS LEVELS OF
ANALYSIS

Just as there are different scales of analysis (i.e., local vs.
global; short timescale vs. long timescale), there are also
different levels of analysis, including perceptual-motor, cognitive-
behavioral, and neural. From a systems perspective, just as
processes are temporally linked across scales of analysis, they
are physically and informationally coupled across levels of
analysis. Therefore, a challenge from the systems perspective
is to learn how team dynamics are reflected across different
levels of analysis. For example, how are more overt processes
observed at the perceptual-motor and cognitive-behavioral
levels (e.g., action; communication) coupled with more covert
physiological processes at the neural level? In the remainder
of this section we present research that examines the unifying
dynamical principles outlined above (Principles 1–3) across
perceptual-motor interpersonal dynamics, cognitive-behavioral
communication patterns in teams, and neural synchronization
as a function of team communication patterns (“cross-level”
effects). In these sections we also present unifying concepts
that get at the question of how team processes shape team
members’ thoughts and actions in the form of unintentional
synchronization, self-organization, and long-memory effects.

Team Dynamics at the Level of
Perceptual-Motor Coupling
This section describes research on interpersonal synchronization,
where behavioral attractors for interpersonal coordination
include 1:1 synchronization and more complex (e.g., 3:1) forms
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of synchronization. The results described in this section begin to
demonstrate how team dynamics structure individual behavior.
Moreover, in this section we begin to illustrate how the general
dynamical principle that teams perform more variable patterns
on local scales that contribute to coherence and consistency on a
global scale (Principle 1) is realized at the perceptual-motor level
of analysis.

One demonstration of perceptual-motor coupling is based
on an interpersonal synchronization phenomenon reported in
a large number of studies (e.g., Schmidt et al., 1990; Amazeen
et al., 1995; Richardson et al., 2007; Ouiller et al., 2008;
Gipson et al., 2016). In one version (Ouiller et al., 2008;
Gipson et al., 2016) the demonstration involves two people
sitting and facing each other while performing oscillatory
finger movements (i.e., oscillating the index finger up and
down in the vertical direction; Figure 1A). From these finger
oscillations, we measure the relative phase (Kelso, 1995; the
difference in the phase angles of each person’s finger oscillations;
Figure 1B) and peak frequencies of their movements (Figure 1C).
Critically, they cannot always see each other. Visual coupling
(being able to see each other’s movements) is used to induce
the spontaneous interpersonal dynamics effect. As shown in
Figure 1A, visual coupling is controlled using visual occlusion
goggles. Participants’ instructions are to oscillate their right index
finger at a comfortable pace when they hear a start beep. For
the first third of the trial, the goggles are occluded (no visual
coupling). Notice in the power spectrum in Figure 1C the gray
and white curves have different peak frequencies during the first
third of the trial, which corresponds to the comfortable oscillation
speed of each participant with goggles occluded. The only other
instruction participants receive is “when you can see, look at
the other person.” During the second third of the trial, the
goggles are un-occluded, and they can see each other. This visual
coupling is accompanied by spontaneous 1:1 synchronization,
represented by a shift in relative phase toward zero (Figure 1B)
and a spontaneous overlap in their peak frequencies (Figure 1C)
during the middle third of the trial. That is, with no guidance,
dyads unintentionally drift toward a state of 1:1 synchronization,
the natural attractor of the system. What is revealing is that it
is not at a movement frequency that either participant naturally
prefers; it is a new behavior that emerges out of interpersonal
interaction. Related to the question we started with in the section
“Why Study Teams as Dynamical Systems?” this is an example
of how interpersonal interaction can change a person’s behavior
in unexpected ways. The last third of the trial shows how
participants’ movements drift apart when the goggles are once
again occluded (no visual coupling). However, we have found that
the drift is not instantaneous; there is a “social memory” effect
(Ouiller et al., 2008; Gipson et al., 2016). That is, when the goggles
are once again occluded, there is a carryover of the interpersonal
dynamic to subsequent participant behavior.

This phenomenon might be related to mirroring or mimicry
(Chartrand and Bargh, 1999). Mirroring is a phenomenon
where if you are sitting across from someone and that person
folds their arms, then this “activates” something in you, and
you unconsciously fold your arms. Mirroring has been argued
to be a pervasive phenomenon that is fundamental to all

human interaction (Ramachandran, 2000; Rizzolatti et al., 2001).
However, we will argue that 1:1 mirroring is but one of
an infinite set of interpersonal ratios whose performance can
be better predicted by dynamical systems, and from a team
psychology standpoint, mirroring may actually be maladaptive.
In team settings that require people to coordinate different but
contemporaneous behaviors, spontaneous 1:1 synchronization—
mirroring—is a tendency that must be overcome. This includes
tasks requiring team coordination across more than one set of
hands (e.g., robotic and laparoscopic assisted surgery; Bermas
et al., 2004; Zheng et al., 2007; Guru et al., 2012; Liu et al., 2014).

Gorman and Crites (2015) described how mirroring might
negatively impact performance in highly skilled tasks such
as surgical knot-tying. The experiment did not use surgeons
experienced at knot-tying but participants who were highly
skilled in terms of tying their shoes; hence, shoe-tying was
a model task for the surgical domain (Figure 2). When
participants tied individually, their performance curves (trial
times for tying a secure knot) were flat, indicating no room for
improvement. In terms of individual knot-tying performance,
they were experts, limited only by the biomechanical constraints
of the task. However, when these experts were asked to work
together as a team to tie the knot, there was still a lot to be
learned, and their performance demonstrated a learning curve
that approached individual performance only after 20 trials.
Calculating a measure of between-hand synchronization, the
authors found that skilled individual tying is characterized by
contemporaneous but independent movements resulting in less
synchronization between the hands compared to team tying,
and amount of synchronization was positively correlated with
trial time (i.e., more synchronization was linked to poorer
performance). The authors concluded that when tying as a
team, the spontaneous mirroring tendency takes over, and the
hands spontaneously synchronize, and participants’ hands are
no longer able to move independently, which is what teams
apparently need to learn to perform the task effectively. As
demonstrated earlier with visually coupled dyads (Figure 1), 1:1
synchronization is the natural attractor of the system, which
is why non-1:1 synchronization may be so difficult to achieve
in a novel team context. We think that the interpersonal
skill needed for the novel team tying task may be similar to
the skill individuals acquire when learning to play a piano
or guitar, where an early challenge is to get their hands to
move contemporaneously but independently to produce the
desired musical notes (Furuya and Kinoshita, 2008; Furuya and
Soechting, 2012).

Mirroring is thought to be a pervasive interpersonal dynamic,
perhaps rooted in our nervous system (Rizzolatti et al.,
2001), but many tasks, such as dancing, playing sports, and
coordinating manual labor require that people not mirror.
Because interpersonal activities are coordinated across and not
just within physiological and motor systems, models that are
not limited to within-person explanations (e.g., mirroring) are
needed. Frequency-locking dynamics provides a model that
describes the stability of not just 1:1 mirroring but an infinite
range of frequency ratios (e.g., 3:2, which is a more complex,
non-mirroring pattern). A graphical depiction of the model

Frontiers in Psychology | www.frontiersin.org 4 July 2017 | Volume 8 | Article 1053

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-01053 July 7, 2017 Time: 16:31 # 5

Gorman et al. Teams As Dynamical Systems

FIGURE 1 | (A) A task demonstrating how perceptual coupling and interpersonal interaction induces spontaneous synchronization between people; (B) relative
phase of participants’ finger oscillations over a one-minute trial; (C) power spectra indicating the peak frequencies of participants’ finger movements when vision is
occluded (left), un-occluded (middle), and once again occluded (right) (from Gipson et al., 2016; reprinted with permission).

for coupled oscillators (e.g., coordinating interpersonal finger
oscillations), called the Arnold tongues, is shown in Figure 3
(Treffner and Turvey, 1993; Peper et al., 1995). For every ratio
on the horizontal axis, there is a black Arnold tongue, whose
width indicates the stability of the attractor for that ratio. There
are an infinite number of Arnold tongues in the interval [0, 1]
(i.e., for any ratio), but most ratios are too unstable for people
to perform—the skinnier the tongue, the harder it is to keep
the ratio. Moving vertically up and down any tongue, it gets
wider or narrower, which is a function of the coupling strength
between oscillators. Coupling strength can be operationalized
as amount of perceptual (e.g., visual; auditory) information
exchange between people. Hence the model predicts that while
mirroring (1:1 synchronization) is most stable, performance of
some non-mirroring patterns (e.g., 2:1) will be more accurate
and stable than others (e.g., 4:1) and that increases in coupling
strength make the performance of any ratio more accurate and
stable.

Our results using the interpersonal finger oscillation task
(e.g., Figure 1A) align with these model predictions, but with
interesting twists based on inherent properties of the human
visual system (Gorman et al., 2017). Figure 4A shows accuracy
of five simple ratios, one of which (1:1) corresponds to perfect

FIGURE 2 | In the team tying task each person handles one lace using one
hand but otherwise attempts to tie a shoelace as they normally would.
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FIGURE 3 | The black Arnold tongues represent the periodic behavior of coupled oscillators in an iterated circle map (θn+1 = θn + �− K/2π× sin[2πθn]; θ

= phase of oscillation). The width of the Arnold tongues corresponds to predicted stability of frequency ratios as a function of the intended ratio (�) and coupling
strength (K) between coupled oscillators (performance of the circled ratios is described in the text) (from Gorman et al., 2017; reprinted with permission).

1:1 mirroring. As the intended ratio moves farther from
perfect mirroring, corresponding to narrower tongue widths,
performance becomes less accurate. This is not surprising: the
more different the movements, the harder they are for people
to keep. However, more support for model predictions can be
seen in Figure 4B, which shows the effect of % visual occlusion
(coupling strength) on the stability of any ratio (more error
implies less stability). As shown on the right side of Figure 4B
(1,000 ms), in accordance with model predictions the higher
the visual coupling the more stable any ratio. However, it is
important to note how the properties of the human visual system
can modify these dynamics (the need to account for individual-
level properties in the context of team dynamics is addressed in
the later section Criticism of the Dynamical Systems Approach
and Future Directions). The 60 ms rate in Figure 4B is below the
critical visual fusion rate (Card et al., 1983), which corresponds
to the principle behind motion pictures that if discrete images
are put together fast enough, then people will perceive them
as a continuous visual stream (Hochberg, 1986). If people are
provided with deprived or noisy information under the critical
fusion rate (e.g., the 60 ms rate), then they tend to fill in
the missing coordinative information to preserve interpersonal
performance even for more complex, non-mirroring patterns.
Based on this, mirroring alone may not explain interpersonal
coordination as well as previously thought, or why our perceptual
systems fill in more complex, non-mirroring patterns when we
coordinate with each other. Systems-level explanations, such as
frequency locking, provide additional insight into how people
coordinate not only mirroring but also non-mirroring behaviors
with each other.

An example of actual team performance that aligns with
what we observe in the laboratory can be found in the sport of
Double Dutch (Gorman et al., 2017). Double Dutch is a team
sport involving two people on either end of two long jump
ropes who simultaneously twirl both ropes while another person
jumps over the twirling ropes. Working with the National Double

Dutch League, we have investigated non-mirroring coordination
patterns between rope turners’ and jumper’s movements under
the predictions of frequency-locking.

Figure 5A shows a highly skilled team performing a 7:5
footfall-to-rope-turn ratio. Their performance is incredibly
consistent (Figure 5B), given the predicted difficulty of the ratio.
Compared to a 1:1 ratio (mirroring), which even beginners can
perform, as they move further from mirroring, they increase their
coupling strength through increased visual attention and through
rhythmic counting, which is a more cognitive form of coupling.
In terms of the model, by increasing coupling strength, they
effectively widen any tongue, which allows them to stabilize any
ratio.

When performing this complicated pattern, participants
modify the 7:5 pattern cycle-by-cycle. That is, for one 7:5
grouping of movements, they perform a particular pattern, and
for the next 7:5 grouping of movements, they perform a different
pattern, such that the pattern is locally variable but globally stable.
As shown in Figure 6, the way the red footfalls are interspersed
with the blue rope turns varies on a local (cycle-by-cycle) scale
but is stable on a global (overall pattern) scale. This recounts the
idea that teams perform more variable patterns on local scales
that contribute to coherence and consistency on a global scale
(Principle 1), which, as discussed next, appears to be something
that is fundamental to team performance across levels of analysis
(Principle 2).

Team Dynamics at the Level of
Cognitive-Behavioral Coupling
This section extends Principle 1 to the cognitive-behavioral
level of analysis, demonstrating how local-global dynamics occur
across different levels of analysis in teams (Principle 2). We focus
on how individual communication and coordination behaviors
are dynamically structured to maintain team effectiveness at
the global scale. Moreover, we demonstrate how team dynamics
at the cognitive-behavioral level compel team members to
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FIGURE 4 | (A) Accuracy of interpersonal coordination of mirroring (1:1) and non-mirroring (2:1–5:1) patterns aligns with Arnold tongue predictions; (B) visual
occlusion (lower coupling strength) makes any ratio less stable (more error) above the critical fusion rate (1,000 ms update rate); however, humans tend to fill in
missing information for any ratio when the presentation rate is below the critical fusion rate (60 ms) (from Gorman et al., 2017; reprinted with permission).

communicate in somewhat unpredictable ways at a local scale
that nevertheless contribute to coherence and consistency—here,
fractal and power law dynamics—on a global scale.

Another useful model for team dynamics is the inverted
pendulum. If this is not familiar, think of trying to balance a rod
upright in your hand (Figure 7A). The challenge is to maintain
the upright balance although the rod’s natural tendency—its
natural attractor—is to fall to the ground. The rod balanced
upright is a metastable state that is created when your hand
movements counteract the natural tendency of the rod to fall to
the ground (Treffner and Kelso, 1999). The hand movements may
appear random or unpredictable, but this behavior is necessary
for keeping the overall system (i.e., rod balanced upright) stable
and predictable on a global scale. Similarly, although team
members share a common goal, because they operate in dynamic
environments the natural tendency of team members is to behave
in ways that might seem unpredictable on a local scale but
necessarily so in order to maintain team effectiveness on a global
scale (Gorman et al., 2010a). In this regard, team dynamics
contains a metastable state that is maintained through team
interaction at the cognitive-behavioral level of analysis (e.g., team
communication).

Interactions among three-person uninhabited air vehicle
(UAV) teams—a photographer, pilot, and navigator working
together to take ground photos—demonstrate these dynamics
(Gorman et al., 2010a). We used timestamps of critical team
coordination events needed for taking photos of ground targets
and combined these into a coordination score (Figure 7B).
The coordination score captures the temporal relations of
the critical coordination events for each ground target and
exhibits inverted pendulum dynamics (Figure 7C). On short
timescales we see persistence, and on longer timescales we see
antipersistence. In the inverted pendulum, drifts away from
straight up in a particular direction (persistence) occur on short
timescales, and these drifts are counteracted by corrections back
to straight up (antipersistence) on longer timescales. Similarly
in the UAV teams, short timescale (local) variability in terms
of a particular target coordination pattern is bounded by a
longer timescale (global) coordination pattern across all targets
(Gorman et al., 2010a). Again, this is the theme of more
variable patterns on local scales that contribute to coherence and

FIGURE 5 | (A) A highly skilled Double Dutch team at the National Double
Dutch League summer camp; (B) performance of a 7:5 (foot:rope) ratio by the
team (from Gorman et al., 2017; reprinted with permission).

consistency on a global scale (Marmelat and Deligniéres, 2012;
Principle 1).

This principle is also apparent in the temporal nesting
of communication behavior over time. Figure 8 shows a
sequence of communication codes obtained from transcribing
a team’s conversation, separating it into utterances, and coding
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FIGURE 6 | To maintain a stable ratio on a global (overall pattern) scale, teams can vary their patterns on a local (cycle-by-cycle) scale.

FIGURE 7 | (A) The inverted pendulum; (B) UAV team coordination score; (C) short-range persistence and long-range antipersistence of the coordination score
follows inverted pendulum dynamics.

them using a mutually exclusive set of communication types,
comprised of Solicitation, Sharing, Iteration, and Consensus
(Gorman et al., 2009). Looking at the code sequence over time,
it appears random, perhaps resembling a memoryless Poisson
process. In that case, a Markov model (Figure 8B) can account
for local variation in the sequence of codes (i.e., which code tends
to follow which), as indicated by the smaller ovals in Figure 8C.
But, there is a good amount of unexplained variation using this
approach (Gorman et al., 2009), leading one to wonder how
accurately a Markov model describes the process that generated
the sequence of codes.

As we incorporate longer timescales, we see that the
conversation continues to exhibit the transition structure of
Figure 8B, but operating on a longer timescale (i.e., the
larger oval, “Vehicles,” in Figure 8C), suggesting a temporal
fractal structure for team communication. For example, on
short timescales you might find these code transitions in a
discussion of airplanes and boats, but those short timescale
conversation transitions are nested within a longer timescale
conversation about vehicles in general. Hence, though linear
transition models such as Markov models do account for some
local variation during conversation, we must also account for

non-linear (fractal) nesting of conversation topics across longer
timescales. More recently, we have quantified this process in
action-based teams who coordinate across real-time perception-
action links and decision-making teams who coordinate across
more cognitive, planning links (for a discussion of these team
types, see DeChurch and Mesmer-Magnus, 2010).

Dunbar and Gorman (2014) examined the impact of
task constraints on the temporal fractal structure of team
communication. In this study, dyads performed either an action-
based task or a decision-making task selected to introduce
different team interaction constraints. After teams performed
their task, their communication was transcribed and coded
using Butner et al.’s (2008) coding scheme into three mutually
exclusive code types: Facts (i.e., communication focused on
perception and action), Interpretations (i.e., communication
focused on cognitive processing), and Conversation Regulation
(i.e., communication focused on maintaining the flow of
conversation). The temporal distribution of each code was
evaluated for each team’s transcript and converted into slopes of
the line relating log scale size (possible number of intervening
codes between each occurrence of the code [e.g., Fact] being
analyzed) by log frequency (frequency count of the number of
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FIGURE 8 | (A) Code frequencies for the sample sequence of codes; (B) a simple linear transition (Markov) model of the most probable Lag-1 code transitions; (C)
hypothesized temporal nesting (i.e., fractal structure) of code transitions organized around task-relevant communication.

occurrences of intervening codes at each scale size) to test for a
power-law relationship (Brown and Liebovitch, 2010).

The results of this study indicated that communication
specific to the type of team task exhibited fractal (power-
law) scaling. Specifically, Fact-based communication was
more fractal for action-based teams, and Interpretation-based
communication was more fractal for decision-making teams.
These results confirmed that the temporal nesting (i.e., fractal
structure) of code transitions was organized around task-relevant
communication. (As expected, Conversation Regulation was
similar for both team types and did not exhibit temporal fractal
structure).

To determine whether these patterns were generated by a self-
organization process, we compared the power-law distribution
fits to a memoryless Poisson process. Memoryless Poisson events
are only locally variable (waiting time parameter) and follow
an exponential distribution. Both Facts and Interpretations
were significantly better fit by a power-law rather than an
exponential function (there was no difference for Conversation
Regulation). We think that the global self-organization of
team communication commences when a system (team) is
continuously balanced on the verge of change as new information
is added (as the conversation evolves) at the local scale (i.e.,
self-organized criticality; Bak, 1996). Hence, the global order
of conversation evolves out of locally variable communication
inputs and evolves most clearly for task-relevant communication
acts.

Systems characterized by self-organization also exhibit long-
memory (Beran, 1994). Long-memory can be thought of as a type
of memory that is not contained in individual elements of the

system (e.g., working memory) but in the history of interactions
among system elements (i.e., system-level memory). In terms of
team communication, the presence of long-memory means that
team members’ interactions are not just intentional acts at a local
scale but are informed by the history of interactions at the global
scale. We have observed the development of long-memory effects
in medical and military teams in terms of the coherence of their
conversation as they communicate over time.

The Latent Semantic Analysis (LSA; Landauer et al., 1998)
cosine measures the relatedness (“coherence”) between any two
pieces of discourse (e.g., any two utterances; any two transcripts;
etc.). The timescale on which the cosine measure demonstrates
coherence can be used to assess the characteristic timescale
on which teams communicate knowledge, a measure of the
long-memory of a team (Gorman, 2005). Figure 9 shows how
cosine (knowledge relatedness) diminishes as the timescale
(distance between utterances) is increased for two medical teams
(these teams are described in the study by Stevens et al.,
2016). The steeper drop off for the team in the bottom panel
suggests that their discourse has a shorter timescale of coherence
(their conversation has a “shorter memory”); by contrast, the
team in the top panel has a longer timescale of coherence
(their conversation has a “longer memory”). In this between-
team comparison, both teams performed a simulated medical
procedure, but the team with shorter memory was a novice team,
whereas the team with longer memory had significant experience
working together.

Another study by Gorman (2005) used the LSA cosine
method to investigate within-team changes in long-memory in
UAV teams. Teams learned to take photos of ground targets
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FIGURE 9 | These figures show how the knoweldge relatedness of
communication diminishes as timescale (distance between utterances)
increases. The communication of the experienced team in the top panel has
more long-memory than the communication of the novice team in the bottom
panel.

over five 40-min mission segments. The first four missions
were low workload, followed by a high workload mission.
The results indicated that the amount of long-memory in
team communication increased from Mission 1 to Mission
4. In Mission 1, long-memory had not been established, and
communication patterns were only locally variable. However, by
Mission 4 long-memory had been established, such that team
communication displayed persistence over short-to-medium
timescales and anti-persistence over longer timescales. Like the
inverted pendulum, there was an interplay between positive and
negative feedback on local and global scales that structured
team communication, which is a general characteristic of self-
organized and long-memory processes. The long-memory effect
weakened at Mission 5, however, indicating that the high
workload condition may have regressed teams back toward a
novel state, similar to Mission 1, before long-memory had been
established.

The studies described in this section are consistent with
Principle 1, that local variations in intentional communication
behaviors are dynamically structured to maintain team
effectiveness and coherence at the global scale. Moreover,
we would argue that as with unintentional synchronization,
global patterns in team communication can compel team
members to interact in unexpected ways (Gorman and Cooke,

2011; Gorman, 2014). In combination with the studies described
in the section “Team Dynamics at the Level of Perceptual-Motor
Coupling,” and in accordance with Principle 2, we see similar
patterns of local-global dynamics at work across perceptual-
motor and cognitive-behavioral levels of analysis. In the next
section, we turn to Principle 3 by examining research on team
dynamics across levels of analysis.

Cross-Level Effects between the
Cognitive-Behavioral and Neural Levels
of Analysis
In this section, we extend Principle 2 by tying dynamics
together across neural and cognitive-behavioral levels of analysis
(Principle 3). In particular, we describe our findings on
cross-level effects wherein changes in communication patterns
are associated with changes in neural patterns and how
environmental perturbations simultaneously impact dynamic
signals at both levels of analysis.

One way of examining neural processes in the context
of team dynamics is by comparing them to simultaneous
cognitive-behavioral processing in team cognition, such as team
communication. When people communicate, their neural activity
often becomes synchronized. This synchronization is present
as a spatial and temporal correlation between the speaker and
listener’s neural activity (Stephens et al., 2010). This correlation
occurs at a delay, often with the listener’s neural activity preceding
the speaker’s neural activity (Stephens et al., 2010). It is argued
that this neural coupling serves as a method for how brains
successfully convey information between interacting individuals.
In this context, cross-level effects examine how neural coupling,
in the context of neural synchronization across team members, is
affected by changes in team communication patterns (Gorman,
2014; Gorman et al., 2016).

Gorman et al. (2016) investigated cross-level effects in novice
and experienced submarine crews. The communication variable
was the LSA vector length, which quantifies the degree to
which an utterance relates to the domain of discourse. The
neural activity variable was the Shannon entropy (Shannon and
Weaver, 1949) over a series of electroencephalography (EEG)
neurodynamic symbols that describe the distribution of neural
activity across team members. Neurodynamic entropy essentially
indicates how much the neurophysiological distribution is
changing across team members over time (Stevens and Galloway,
2014, 2016, 2017). The higher the entropy, the more the
distribution of neural activity is changing; the lower the entropy,
the less the distribution is changing, and the more neurally
synchronized the team. Lagged cross-correlations between the
LSA vector length of each utterance and mean entropy during
each utterance were calculated to determine the presence of cross-
level effects. Peak cross-correlations indicated that changes in
communication patterns are immediately reflected in changes
in neural synchronization for novice crews (i.e., peak cross-
correlation at Lag-0) but that changes in neural synchronization
tend to be preceded by changes in communication pattern for
expert crews (i.e., lead-lag effects). This suggests that as people
continue to work as a team, communication can influence neural
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coupling by dynamically entraining the distribution of neural
activity across team members. Hence, team dynamics at the
neural and cognitive-behavioral levels of analysis are coupled,
and this coupling occurs across a temporal lag as team members
continue to work together (Principles 2 and 3).

More evidence of cross-level effects can be seen in research
on medical teams. Stevens et al. (2016) monitored EEG
signals in surgical teams and measured their neurodynamic
entropy while simultaneously capturing their communication
activity. Figure 10A shows one team’s discrete recurrence plot
(discrete RP; Gorman et al., 2012a) of turn-taking during team
communication. For a sequence x of length N, the discrete
RP is an N × N symmetric matrix, where if the value of
x(j) is identical to the value of x(i), then a dot (“recurrent
point”) is plotted at x(i,j) in the RP. Note that the main
diagonal in the RP is completely filled in because it is the one-
to-one plot of the sequence against itself at i = j. Changes
in how the dots cluster around the main diagonal indicate
changes in communication flow (i.e., patterns of who is talking
and when) over time. The amount of organization (i.e., how
orderly vs. random) in communication flow can be measured
by calculating the determinism (%DET) of the cluster of dots
around the main diagonal. %DET is calculated as the number of
recurrent points forming diagonals divided by the total number
of recurrent points (we refer the reader to Shockley, 2005, for
other measures that can be calculated). The black trace overlaying
the RP in Figure 10 is a moving window calculation of %DET
around the main diagonal. Note the drop in %DET, or turn-
taking organization, at about 1,000 s, which corresponds to a
breakdown in communication when a fire broke out in the
operating room (OR). As shown in Figure 10B, this behavioral
breakdown as measured by a drop in %DET was associated
with a contemporaneous drop in neural entropy in the team
(spikes in entropy of communication codes have also been shown
to be sensitive to changes in task dynamics; Wiltshire et al.,
2017). Specifically, the communication breakdown precedes a
negative spike in neural synchronization, which happens when
a team mentally locks up due to environmental perturbations
and indicates a re-organization of team neurophysiological
state (Stevens and Galloway, 2016). Hence, as communication
becomes disorganized, and then reorganized, the team’s neural
signals display an accompanying re-organization of system state
at the neural level (Principle 3).

Having described in the section “Team Dynamics across
Levels of Analysis” a series of results underpinning Principles
1–3, we turn to a discussion of the theoretical implications of the
dynamical systems approach for conceptualizing psychological
processes and human performance in teams.

THEORETICAL IMPLICATIONS OF THE
DYNAMICAL SYSTEMS APPROACH TO
TEAMS

First, it should be noted that the dynamical systems approach
described in this article has many underpinnings in the history
of psychology. These include psychological theories that embrace

systems thinking, such as the ecological approach (Gibson,
1966), activity theory (Leont’ev, 1981), coordination dynamics
(Kelso, 1995; including interpersonal, Richardson et al., 2005,
2007), distributed cognition (Hutchins, 1996), groups as complex
systems (McGrath et al., 2000), interactive team cognition (Cooke
et al., 2013), dynamical systems in team sports (Grehaigne
et al., 1997; Bourbousson et al., 2010; Vilar et al., 2012;
Cuijpers et al., 2015), non-linear dynamics in human factors and
ergonomics (Guastello, 2017), and systems thinking in human
factors (Chapanis, 1996) and human-computer interaction
(Barnard et al., 2000). What is different about the dynamical
systems approach to teams, and what does it offer team
psychology?

Though there are many different approaches to understanding
how systems in action affect human behavior, the dynamical
systems approach to teams is primarily rooted in objective
team coordination/performance metrics and mathematical
representations that explain how interpersonal interaction
lawfully relates to individual-level variability. One theoretical
implication of this involves the so-called “slaving principle”
(Haken, 1983), which is the control of system elements by an
“order parameter” that captures global coordinative structure.
Demonstrations of this principle can be found in interpersonal
coordination research (e.g., Schmidt et al., 1990; Amazeen et al.,
1995; Richardson et al., 2005, 2007; Ouiller et al., 2008; Gipson
et al., 2016). In the context of the slaving principle, variability in
individual behavior must be understood in the context of global
coordination parameters (e.g., power laws and long-memory
effects) that compel team members to behave in certain ways
(Gorman and Cooke, 2011). A related implication involves how
the perturbation of a system ripples through the system due to
the interconnectedness of system elements. For human behavior,
the important point is to understand how perturbing one or
a few individuals affects and changes the behavior of other,
connected individuals. We have empirically demonstrated this
idea in training adaptive command-and-control teams (Gorman
et al., 2010b; described later) but, moreover, this idea carries
implications for how environmental change (broadly construed)
impacts the thoughts and behaviors of people embedded in that
environment.

Inheriting from some of our theoretical forerunners is
that the dynamical systems approach to teams emphasizes
the “psychology of active systems” rather than the “cognitive
sandwich” (i.e., stimulus, cognitive processing, response) mode
of explanation. The dynamical approach to teams focuses on real-
time interactions as the appropriate level of psychological inquiry
for understanding how other people and our surroundings
structure thought and behavior. This is in contrast with
the nostalgic view of psychology that aims to understand
psychological processes by studying isolated individuals and only
later adding real-time interactions as “context effects” once the
solitary processes have been understood (Wertsch, 1991). As a
matter of course, the difference in analysis is one of beginning
with the system as a whole versus trying to integrate components
into a system once the components are understood. The result
of this is that explanations and models of human behavior
that a dynamical systems approach provides (e.g., attractors;
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FIGURE 10 | (A) Discrete recurrence plot of speaker turn-taking in a medical simulation. The black trace measures the communication determinism (larger values
mean more orderly; smaller values mean more random) around the main diagonal using a moving window of size 150. (B) The black trace measures the
simultaneous neurodynamic entropy across team members.

long-memory) are unfamiliar to many psychologists and other
students of human behavior, whereas traditional explanations
and models (e.g., neurons; representations), although attractive
to psychologists, do not contain the necessary information to
understand how our thoughts and behaviors are shaped by the
dynamic interpersonal interactions in which they are embedded.

As embodied in Principles 2 and 3, there is no preferred level
of analysis for investigating team dynamics. The dynamics are
present across levels of analysis, and the assumption of theory
reduction (e.g., that the psychological must be reducible to the
biological) and the accompanying bridge laws are not required.
Put differently, there is no “fundamental substance” or “unit
of analysis” in team psychology; everything is dynamic process
(Thelen and Smith, 1994). This does not preclude observing

dynamic process on one level of analysis while ignoring others,
but it assumes that behaviors on unobserved levels of analysis
are simultaneously being shaped by the same dynamics. Hence,
the decision to analyze one level of analysis or even to decide
what levels of analysis exist may seem somewhat arbitrary.
In our experience, the first decision is based on the research
question at hand (e.g., is it about overt behavioral acts, or is it
about covert neural processes?) and the second is constrained by
the equipment available to measure the dynamics (e.g., motion
capture vs. voice recordings vs. EEG).

As with any method of inquiry, the dynamical systems
approach carries its own characteristic language and style of
argument that constrains the types of explanations it can offer
(Quine, 1951). Theoretical ideas emanating from the dynamical
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systems approach to teams will tend to focus on how behavior
changes through interpersonal interaction and how global
interaction patterns come to structure individual thought and
behavior. Moreover, there is no preferred level of analysis; the
choice depends on the research question and careful selection of
measurement equipment. This is in contrast to approaches that
emphasize psychological processes that must be localizable within
the individual and must be understood in terms of a fundamental
substance or unit of analysis (e.g., brain function as ultimate
theory reduction).

PRACTICAL IMPLICATIONS FOR TEAM
TRAINING AND ASSESSMENT

Traditional approaches to team training including crew resource
management (Helmreich et al., 1999) and cross-training
(Blickensderfer et al., 1998) emphasize the alignment of team
member knowledge, skills, and attitudes (KSAs; Salas et al.,
2006) to enhance team performance. These approaches have been
successful in enhancing team performance (e.g., Marks et al.,
2002). We argue that the dynamical systems approach to team
training can further enhance human performance under novel
conditions in the post-training environment.

Perturbation training (Gorman et al., 2010b) is a team training
approach that draws on the systems proposition that when a
coordination pattern is perturbed, all team members (not just
those directly affected by the perturbation) must readjust their
interaction patterns at a local scale to maintain system stability
and team effectiveness at a global scale (Principle 1). Well-placed
perturbations (e.g., unexpectedly cutting a communication link)
exercise the potential coordination space of a team beyond
routine conditions by forcing them to develop new solutions for
novel coordination problems. The prediction for team training is
that by introducing perturbations during team skill acquisition,
we increase the flexibility and adaptability of the team members,
thereby enhancing team performance in response to novel
and unpracticed task conditions. This training approach has
precedence in the transfer of motor and verbal learning to novel
situations (Schmidt and Bjork, 1992) and in training individual
and team sports (Schöllhorn et al., 2006; Renshaw et al., 2010).

In the Gorman et al. (2010b) study, perturbation training
led to superior performance under novel task conditions
compared to cross-training and procedural training. Teams in
the cross-training condition developed shared knowledge
to a greater degree than teams in the other conditions
and performed just as well as perturbation-trained teams
on tests of routine task performance. Compared to cross-
training and perturbation training, procedural training led
to the least effective teams under both routine and novel
task conditions. However, performance under novel task
conditions was enhanced through perturbation training
compared to both cross-training and procedural training. We
think that flexibility in real-time interaction processes induced
by perturbation training, rather than shared knowledge or
following scripted procedures, enhances team performance
by exercising the real-time dynamics that team members

FIGURE 11 | Measuring the team response to a roadblock (“relaxation time”)
as a method for team assessment.

need to experience in order to adapt in the post-training
environment.

Perturbing team coordination is closely related to a systems
approach for measuring team situation awareness (team SA;
Gorman et al., 2005, 2006; Cooke et al., 2009). This approach
involves identifying “roadblocks,” which are novel or unlikely
task conditions that require an adaptive and timely coordinated
response in order to maintain team effectiveness. In this
approach, team SA is assessed as a team’s ability to team overcome
roadblocks in a timely manner (Cooke and Gorman, 2009).
Figure 11 shows how the timing of the components of the
UAV coordination score from Figure 7 (the dots) are altered by
a roadblock. Under routine task conditions, the dots gravitate
toward the diagonal line (the attractor). Roadblock onset occurs
at about 500 s, and the dots are “pushed” off the attractor
(diagonal line) by the roadblock, corresponding to an alteration
of the routine coordination pattern. Two measures of team SA
in response to a roadblock are whether the team overcomes
the roadblock (i.e., whether the dots gravitate back toward the
diagonal line) and the time to overcome the roadblock (i.e.,
how long it takes for the dots to gravitate back toward the
diagonal line). The latter assessment is related to the dynamical
concept of relaxation time, which is essentially the time it
takes for a system to return to its attractor after its trajectory
has been perturbed. In actual teams, a roadblock could have
catastrophic consequences if a team has a long relaxation time
and does not respond appropriately and in a timely manner.
For practical purposes, real-time analysis of team coordination
can help prevent catastrophic errors caused by delayed team
responses.

Team communication, cognition, and coordination give rise
to dynamic patterns that change in real time. Breakdowns and
unexpected changes in these processes are at least partially
responsible for the Challenger Shuttle disaster (Vaughan, 1996),
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FIGURE 12 | (A) Graph of communication determinism (%DET) and root
mean square error (RMSE) from a prediction model; (B) RMSE relative to a
99% confidence interval (green line) indicates a significant fluctuation in
communication pattern (drop in %DET) in response to the fire in the OR.

delayed response times to Hurricane Katrina (Leonard and
Howitt, 2006), and poor communication in air traffic control
in response to the September 11th attacks (Kean and Hamilton,
2004). For team assessment, it is important to detect these
breakdowns and roadblocks as they unfold in real-time (Gorman
et al., 2012b).

The assumption behind real-time dynamics is that we can
meaningfully analyze team interaction data ad hoc, as it becomes
available, as opposed to post hoc (Gorman et al., 2012b). This
is plausible due to the “historical” quality of team interaction,
such that team communication has long-memory. That is,
a current observation in a team communication time series
is not independent from previous observations—teams have
momentum (Den Hartigh et al., 2014)—and this creates temporal
dependencies that can be quantified using dynamics (Smith et al.,
2008; Gorman et al., 2012b).

We have been successful in developing methods to detect
teamwork breakdowns and roadblocks in near-real time using

turn taking patterns during team communication in different
real-time contexts (Gorman et al., 2012b; Grimm et al., in
press). Using the non-linear prediction algorithm described by
Kantz and Schreiber (2004), we stream in a communication
variable and scan it to detect fluctuations in communication
patterns that significantly differ from previous observations
of the communication variable. The assumption is that as
in Figure 11, significant fluctuations in team communication
patterns correspond to significant environmental perturbations
that require a timely response. To illustrate, Figure 12A
reproduces the determinism time series from Figure 10A
(top trace) from the surgical team study along with the root
mean square error from the non-linear prediction algorithm
(bottom trace). The root mean square error is also plotted
in Figure 12B relative to a 99% confidence interval, which
indicates that the fire in the OR corresponded to a significant
perturbation to the team’s communication dynamics. Once a
significant perturbation is detected, if the team is responding
adaptively, then we expect the prediction error to return to a
non-significant level in a timely fashion. If not, then some form
of outside intervention might be required to effectively address
the situation. If the team does not respond at all to a significant
environmental perturbation (such as a fire in the OR), then
this could reflect a deeper operational issue in need of remedial
training.

Real-time analysis is useful for detecting change in dynamical
systems in response to a significant environmental perturbation.
Applications of real-time analysis can potentially identify
significant and harmful changes in the team environment
to ensure they are acted on in an appropriate and timely
manner. The above illustration described a method of real-
time analysis as applied to team communication. However, there
is potential for these methods to be applied to perceptual-
motor and neural levels of analysis such as those described in
other sections of this article (i.e., application of Principles 2
and 3).

CRITICISM OF THE DYNAMICAL
SYSTEMS APPROACH AND FUTURE
DIRECTIONS

Dynamical systems approaches in psychology have been
cautioned to avoid the mistake of drawing generalizations about
psychological processes simply because they carry a particular
dynamical signature (Rosenbaum, 1998). This is followed by
the more general criticism that there is no psychological
“mechanism” responsible for producing the dynamics (see Van
Orden et al., 2003 for a discussion). Here, mechanism means
something like a neural pathway or information-processing
component (e.g., working memory) within the individual.
Hence, one issue with the dynamical systems approach is
that it does not naturally align with the mechanism-within-
the-individual explanation so often sought in psychology.
Because it is all about process and interaction, the dynamical
systems approach operates at the systems level of explanation.
From a traditional (e.g., cognitivist) perspective, thinking
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about how to change behavior at the individual level, for
example, could be problematic from a dynamical systems
perspective.

An example is the development of training programs that
seek to alter a worker’s KSAs in order to improve performance
and outcomes (Salas et al., 2006). In the standard approach, the
KSAs to be trained should be understandable to both the trainer
and the trainee. The reason for this is that we must be able to
understand what we are doing incorrectly if we are to change our
behavior, and we must be able to observe whether our behavior
has actually changed. But if behavior is a function of real-time
interactions and not just KSAs, how do we change it? Turning to
dynamics, it seems difficult to identify a particular KSA that we
can instruct individuals on to, say, alter the long-memory effects
or power laws that inform their behavior. While we can observe
changes in the dynamics, it could prove challenging to provide
instructions to an individual about how their local behavioral
variability contributes to and is constrained by global dynamics
over long timescales.

Individual training is critical, but it is only realized in
the context of real-time interpersonal dynamics between an
individual and their teammates, where constructs such as KSAs
must be understood in the context of the stable states of a team’s
attractor dynamics. Formal equations of change in individual
psychological states embedded in the interactions of dynamical
systems have predicted individual variation in domains such
as personality (Nowak et al., 2005) and marital satisfaction
(Gottman et al., 2002), and similar equations have been written
for teams (Guastello, 2017). As Nowak et al. (2005) point out,
individual-level properties, such as KSAs, can give meaning to
or modulate global dynamics, but more precisely, an individual’s
behavior is variable in order to converge on stable states of the
entire system (Principle 1).

Within the context of the dynamical systems approach,
individual thought and behavior are a function of real-
time team interactions, in which KSAs or other individual-
level properties are embedded. Individual-level properties are
considered “intrinsic dynamics” and are a part of the initial
conditions of the system (Nowak et al., 2005), but the way
that thought and behavior play out can only be realized
in the context of real-time team interactions. Returning to
the concept of “mechanism,” future research should not
try to isolate dynamical principals in terms of reductionist
psychological mechanisms such as working memory or pools
of attentional resources. Rather, the notion of a psychological
mechanism must continue to be extended to include dynamical
principles that structure individual-level variability. Dynamical
mechanisms (Peng et al., 1995) include attractor formation
and dynamics, synchronization, and fractal scaling of thought
and behavior. Future research should continue to study these
“systems-level” psychological mechanisms through methods
such as perturbation training and real-time team communication
dynamics, as described above.

Separate from this, we think there are some interesting
future directions that the dynamical systems approach entails
from a cognitivist perspective. For example, investigating the
questions of What do people actually know about the dynamics

they produce, and Can they learn to control them? might
enhance training at the level of individual-level properties. In
terms of training, answering these questions could allow for the
control of unintentional behaviors that interpersonal dynamics
produce (e.g., spontaneous synchronization) and might provide
individuals insight into the global, systems-level nature of their
local behaviors (e.g., how their local behaviors are constrained
by global coordination patterns). One might think of this as
metacognition for systems or, perhaps, systems thinking from the
perspective of an element within the system.

CONCLUSION

In summary, it is important to recognize how interactions
shape our thoughts and behaviors. It is critical to understand
this because so much of what we do involves interacting with
other people and technologies that automate what people do.
Dr. Martin Luther King Jr once wrote, “We are caught in
an inescapable network of mutuality. . ..Whatever affects one
directly affects all indirectly” (King, 1963). Ultimately, we think
that understanding how dynamic interaction processes shape our
thoughts and behaviors is a fundamental psychological question
that is at the heart of understanding human nature.

In this article we have presented dynamical systems concepts
and how they can be used to understand and model teams. Our
results thus far have converged on three principles underlying
human performance in teams. We present them in abbreviated
form here:

(1) Local variability ensures global stability and vice versa.
(2) These dynamics are substrate-independent; there is no

preferred level of analysis.
(3) Cross-level effects occur between levels of analysis.

That global team patterns vary in predictable ways is not a
proxy for individual KSAs that have to exist in order to perform a
task, but it provides systems-level explanations for how real-time
interaction processes shape thought and behavior. Where, then,
does team behavior come from? Based on our research, we think
that the ontology that interpersonal behavior and teamwork are
somehow encoded in the individual is inaccurate; rather, what is
encoded in the individual emerges out of a vibrant network or
interpersonal, social, and cultural interactions that continuously
shape and reshape that which is encoded (Bakhtin, 1986). From
this perspective, not just teams but individuals in any interactive
environment can be understood and modeled using a systems
approach.
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