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Abstract
Objectives: Statistical and artificial intelligence algorithms are increasingly being developed for use in healthcare. These algorithms may reflect 
biases that magnify disparities in clinical care, and there is a growing need for understanding how algorithmic biases can be mitigated in pursuit 
of algorithmic fairness. We conducted a scoping review on algorithmic individual fairness (IF) to understand the current state of research in the 
metrics and methods developed to achieve IF and their applications in healthcare.
Materials and Methods: We searched four databases: PubMed, ACM Digital Library, IEEE Xplore, and medRxiv for algorithmic IF metrics, algo
rithmic bias mitigation, and healthcare applications. Our search was restricted to articles published between January 2013 and November 2024. 
We identified 2498 articles through database searches and seven additional articles, of which 32 articles were included in the review. Data from 
the selected articles were extracted, and the findings were synthesized.
Results: Based on the 32 articles in the review, we identified several themes, including philosophical underpinnings of fairness, IF metrics, miti
gation methods for achieving IF, implications of achieving IF on group fairness and vice versa, and applications of IF in healthcare.
Discussion: We find that research of IF is still in their early stages, particularly in healthcare, as evidenced by the limited number of relevant articles 
published between 2013 and 2024. While healthcare applications of IF remain sparse, growth has been steady in number of publications since 2012. 
The limitations of group fairness further emphasize the need for alternative approaches like IF. However, IF itself is not without challenges, including 
subjective definitions of similarity and potential bias encoding from data-driven methods. These findings, coupled with the limitations of the review 
process, underscore the need for more comprehensive research on the evolution of IF metrics and definitions to advance this promising field.
Conclusion: While significant work has been done on algorithmic IF in recent years, the definition, use, and study of IF remain in their infancy, 
especially in healthcare. Future research is needed to comprehensively apply and evaluate IF in healthcare.

Lay Summary
The use of algorithms in healthcare holds the potential to improve care delivery and reduce costs. However, these algorithms can sometimes 
reflect biases, leading to unfair treatment of individuals, particularly those from marginalized groups. This study reviews the concept of algorith
mic individual fairness (IF), which ensures that similar individuals are treated similarly. The review identifies various philosophies and methods 
used to achieve IF and highlights how they can address biases in healthcare. While IF approaches are still in their early stages, they show prom
ise in reducing disparities in healthcare. The findings emphasize the need for further research to enhance fairness in healthcare algorithms and 
ensure equitable treatment for individuals.
Key words: algorithmic fairness; individual fairness; health disparities; healthcare. 

Introduction
Statistical and artificial intelligence (AI) algorithms have 
improved clinicians’ ability to provide quality healthcare (in 
the biomedical literature, models are frequently referred to as 
algorithms. In this article, we use the terms algorithm and 
model interchangeably and preferably use the term algorithm). 
Such algorithms have accelerated healthcare discoveries, 
improved clinical decision-making, and lowered healthcare 
costs.1 However, ethical concerns have been raised about the 
potential for such algorithms to exacerbate already-existing 
disparities among marginalized populations.2

Algorithmic fairness in healthcare is critical for ensuring 
equitable assessment and treatment of all individuals, regard
less of their background. Various biases can creep into 

algorithmic development and application, affecting the fair
ness of such algorithms.3 A range of protected attributes, fac
tors that should not influence health, have been chosen 
because of legal mandates or organizational values.4 Some 
common protected attributes include race, ethnicity, religion, 
national origin, gender, marital status, age, and socioeco
nomic status. Yet, several healthcare algorithms have been 
shown to be unfair, particularly across racial categories5 and 
nearly 50 clinical algorithms are in use that include race, a 
key protected attribute, as an input variable.6

Unfairness in healthcare algorithms
Broadly speaking, biases in statistical and AI algorithms are 
caused by three factors: (1) unrepresentative data used for 
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algorithm development (data bias), (2) poor design in algo
rithm development (development bias), and (3) improper 
user—clinician or patient—interactions with the algorithm 
(interaction bias).7 Biases in data are problems that arise 
from a variety of issues related to data collection and organi
zation, including minority bias, missing data bias, informa
tiveness bias, and selection bias.8 Minority bias occurs when 
there are insufficient data from minority groups to develop 
an accurate algorithm (eg, the data includes far too few mem
bers of racial minority groups). Missing data bias occurs 
when data from minority groups are missing systematically, 
making it difficult to learn accurate statistical patterns (eg, 
members of racial minorities with limited access to healthcare 
have fewer electronic health record [EHR] data). Informative
ness bias occurs when data and features used by an algorithm 
are less useful in a minority group (eg, detecting melanoma in 
patients with dark skin is more difficult than in those with 
light skin). Selection bias occurs when the data used to 
develop an algorithm is not representative of the population 
it will be deployed (eg, data from a single healthcare system 
may not be representative of other healthcare systems). 
Observational data, such as from EHRs that are increasingly 
used in developing algorithms, likely introduce more biases 
than carefully curated data from research studies due to inad
equate documentation, ambiguous or varying definitions, 
and other systematic issues.9–12

Despite utilizing unbiased and representative data, algo
rithms may still manifest bias due to poor design in algorithm 
development. An example of such development bias issues is 
label bias.7 Label bias occurs when algorithm development 
employs inconsistent labels, which do not mean the same 
thing for all individuals because they are an imperfect proxy. 
For example, racial bias was identified in an algorithm that 
predicted the future healthcare needs of patients because the 
data that was used in development employed medical cost as 
a surrogate for healthcare utilization.13

Interaction biases can occur when healthcare providers or 
patients interact with algorithms in ways that affect the algo
rithm’s performance and fairness.8 Automation bias is an 
example of clinician-interaction bias in which clinicians are 
unaware that an algorithm is less accurate for a specific 
group and place too much trust in it, accepting incorrect rec
ommendations.14 Privilege bias is a type of patient- 
interaction bias that occurs when algorithms are not available 
in settings where protected groups receive care, resulting in 
unequal distribution of algorithmic healthcare benefits.15

Measuring algorithmic fairness
To characterize algorithmic fairness, measures to assess fair
ness or, equivalently, bias are needed. Broadly speaking, 2 
types of fairness metrics have been described: group and indi
vidual fairness (IF).16

Most of the literature focuses on the first notion of fairness, 
which is based on parity of statistical metrics across groups 
that differ in a protected attribute (eg, male and female 
groups). Compared to group fairness (GF), IF is less frequently 
described in the literature. Dwork et al17 was the first to pro
pose that “similar individuals should be treated similarly,” 
with similarity between pairs of individuals defined in terms of 
a task-specific metric. According to Joseph et al, “less qualified 
individuals should not be favored over more qualified individ
uals,” where quality is defined with respect to the true under
lying label that the algorithm does not know.18 Kusner et al19

proposed a type of IF called counterfactual fairness. Counter
factual fairness is a principle for ensuring fairness that states 
that a decision is fair if it would be the same for an individual 
even if their protected attributes (eg, race, gender) were differ
ent in a counterfactual world. This means the algorithm’s deci
sion is not affected by group membership but only by the 
relevant characteristics of an individual. A glossary of terms is 
provided in Appendix S1.

Motivation
Our examination of IF was prompted in part by a rough par
allel in the domain of predictive modeling. Statistical and AI 
approaches for training predictive algorithms can be broadly 
categorized into population-wide and patient-specific model
ing that have rough parallels to GF and IF. The conventional 
predictive modeling approach in healthcare (and other areas) 
consists of learning a single algorithm from a database of 
individuals, which is then applied to decisions for each future 
individual. Such a model is called a population-wide model 
since it is intended to be applied to an entire population of 
future individuals and is optimized to have good predictive 
performance on average on all members of the population.20

Patient-specific modeling, on the other hand, focuses on 
learning models that are tuned to the characteristics of the 
individual at hand, and such models are optimized to perform 
well for a specific individual.20 Many patient-specific meth
ods depend on assessing the similarity between individuals 
and hence use a similarity method. The canonical technique 
is the k-nearest neighbor method, which predicts the outcome 
in an individual based on a group of k-nearest individuals in 
the data. Other patient-specific methods train a model that is 
influenced by the characteristics of the patient at hand with
out using a similarity measure.20–23

While Dwork et al, Joseph et al, and Kusner et al provide 
notions of IF, ambiguity and heterogeneity persist, which 
continues to deter the deployment of real-world applications 
of IF in healthcare.17–19 Furthermore, we uncovered no exist
ing literature reviews focused on IF, which was the primary 
motivation for conducting this review.

Methods
We determined that a scoping review was appropriate due to 
the lack of existing literature reviews on this topic, our desire 
to broadly summarize the approaches to IF, and the potential 
role of IF in mitigating algorithmic bias, especially in health
care. We followed the methodological framework by Arksey 
and O’Malley24 and the Preferred Reporting Items for Sys
tematic review and Meta-Analyses extension for Scoping 
Reviews.24,25 We performed this scoping review in the fol
lowing steps: (1) identify the research questions, (2) find rele
vant articles, (3) select articles, (4) extract data and themes, 
and (5) report the findings. We describe the first 4 steps here 
and report the findings in the “Results” section.

Identifying the research questions
The purpose of this study was to conduct a scoping review of 
the literature on IF to describe current approaches to IF and 
explore the potential role of IF methods in mitigating algorith
mic bias. IF methods relevant to this review were defined 
according to the descriptions presented by Dwork et al, 
“similar individuals being treated similarly,” Joseph et al, “less 
qualified individuals should not be favored over more 
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qualified individuals,” and by Kusner et al, that individual 
decisions should “remain unchanged in a world where an indi
vidual’s protected attributes had been different in a causal 
sense.” Specifically, the review was conducted to address the 
gap in understanding of the characteristics of IF methods and 
their scope of use by addressing the following 2 research 
questions:

1) What notions of similarity are used in IF? 
2) How is IF used to mitigate bias in algorithms? 

Finding relevant articles
We searched for relevant articles and conference proceedings 
in four databases: PubMed, ACM Digital Library (DL), IEEE 
Xplore, and medRxiv. Because we wanted to retrieve as many 
relevant articles as possible, we devised a search strategy that 
prioritized recall over precision. Since the term “fairness” 
spans many disciplines in forms that are not algorithmic, we 
developed distinct search queries for each database to adjust 
for their relative sensitivities concerning these non-algorithmic 
notions of fairness. The search query for PubMed included the 
term “algorithmic individual fairness” appearing in the title or 
abstract. The search query for ACM DL included the term 
“algorithmic individual fairness” appearing in the title or 
abstract along with one or more of the following terms: “fair 
AI,” “individual model fairness.” The search query for IEEE 
Xplore included the term “individual fairness” appearing in 
the title or abstract along with one or more of the following 
terms: “algorithmic,” “model,” “machine learning,” or 
“artificial intelligence.” The search query for medRxiv 
included the term “algorithmic individual fairness” in all fields 
with the filter for papers classified in “Health Informatics.” 
The database-specific fields and queries we used are summar
ized in Table 1.

Selection of articles
We reviewed the titles and abstracts of unique articles 
obtained in the first step to identify articles for a full-text 
review (see Figure 1). We selected articles that studied IF 
methods and their uses based on the inclusion and exclusion 
criteria shown in Figure 1.

Because of the broad search criteria, many of the articles 
returned were not specifically about algorithmic IF. A num
ber of articles that were found discussed differential privacy. 
Differential privacy and algorithmic fairness are closely 
related, and methods from differential privacy have been 
used to develop notions of algorithmic IF.17 Despite this con
nection, we decided to leave these articles out of the final list 
because we preferred explicit notions of algorithmic IF. We 

identified a group of relevant articles for the review using the 
inclusion and exclusion criteria. Reasons for exclusion were 
recorded for the excluded articles. The Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA)- 
ScR flow diagram displays the number of excluded papers as 
well as the reasons for exclusion (see Figure 1).

Data extraction
We extracted information from articles and entered it into a 
spreadsheet for analysis. We recorded the year of publication, 
the similarity metric or methodology used, fairness mitigation 
methods, and the notion of IF for each article. In addition, 
we included a summary of each article’s findings. The 
extracted data were grouped into categories based on notions 
of similarity, types of IF, and types of mitigation; the catego
rizations and themes were iteratively refined based on discus
sions by the authors. A compilation of this information for 
each article is provided in Appendix S2.

Results
We identified 2498 articles through database searches and 7 
articles through citations (see Figure 1). After de-duplication 
and title and abstract screening, 1591 articles were excluded, 
and due to the unavailability of full text, 7 more articles were 
excluded. This resulted in 893 articles for in-depth review, of 
which 868 were excluded after full-text review. A total of 32 
articles (including 7 identified manually) were studied and 
analyzed in this review. Appendix S2 lists and summarizes 
the 32 articles chosen for inclusion in this scoping review.

Based on the 32 articles in the review, we identified several 
themes, including philosophical underpinnings of fairness, IF 
metrics, mitigation methods for achieving IF, implications of 
achieving IF on GF and vice versa, and applications of IF in 
healthcare.

Study characteristics
The publication years for the most articles (both with n¼7) 
were 2022 and 2023. Since the seminal article by Dwork et 
al17 was published in 2012, the rate of publication has 
increased, indicating that this field is still in its infancy, and 
growth is expected to continue. In contradiction to this trend, 
publications in 2024 trended towards GF with a smaller 
number of publications on IF (n¼2), although we noticed a 
higher prevalence of articles applying GF specifically in 
healthcare. This indicates a growing awareness of fairness in 
health informatics, but the focus is still primarily on GF.

Similarity in counterfactuals (n¼ 10) was the most com
mon type of similarity. The literature has begun to deviate 

Table 1. Database queries for identifying relevant articles.

Database Query date Query Filter Number of records

PubMed November 26, 2024 Algorithmic individual fairness [All fields] 2013-2024 192
ACM DL November 26, 2024 [Title: algorithmic individual fairness] AND [Title: individual 

model fair- ness] AND [Title: fair ai] AND [E-Publication 
Date: (01/01/2013 TO 11/26/2024)]

N/A 1523

IEEE explore November 26, 2024 ((“All Metadata”:individual fairness) AND ((“All Meta
data”:algorithmic) OR (“All Metadata”:model) OR (“All 
Metadata”:machine learning) OR (“All Metadata”: 
Artificial Intelligence)))

2013-2024 527

medRxiv November 26, 2024 algorithmic individual fairness [All fields] [Subject area: 
Health Informatics]

2013-2024 256
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from a domain-specific distance metric in favor of alternative 
methods for measuring fairness. Recent publications favor 
learned distance metrics (n¼6) and similarity relating to 
counterfactuals (n¼10). Being the original and most intuitive 
goal for IF, consistency (n¼22) was the most prevalent type 
of IF implied by authors. In-processing methods (n¼21) 
were the popular mitigation type. Our review only found a 
single mitigation method that we considered post-process
ing26 (Table 2).

Philosophical corollaries of fairness
IF is motivated by the notion that similar individuals are treated 
similarly, which has been linked to achieving consistency in fair
ness literature. This notion is linked with Aristotle’s conception 
of justice as consistency.29 It is a desirable aspect of justice for 
judges to render accurate and consistent judgments for every 
individual and arrive at the same conclusion in identical cases. 
In the context of algorithms, consistency ensures that an algo
rithm’s decisions are similar for similar individuals, regardless 
of group membership. Similarity-based or distance-based meas
ures are commonly used to assess and achieve consistency- 
based fairness (see next section).

GF is motivated by the notion that groups of individuals 
should be treated similarly on average when they differ only 
in protected attributes (in this article, we use the terms pro
tected and sensitive interchangeably and preferably use the 
term protected). This notion is linked to anti-discrimination 
laws, which prohibit discrimination against certain groups of 
people based on protected attributes such as race, sex, and 
age. Anti-discrimination in the context of algorithms ensures 
that an algorithm’s decisions for an underprivileged group 

are similar, on average, to decisions for a privileged group. 
To assess and achieve anti-discrimination fairness, discrimi
nation statistics that measure the average similarity of deci
sions across groups are used.30

In addition to consistency and anti-discrimination, a third 
concept is counterfactual fairness, which ensures an algo
rithm’s decisions remain consistent across hypothetical scenar
ios where individuals’ protected attributes are altered.19

Typically, causal models that describe how changes in pro
tected attributes affect decisions and other attributes of indi
viduals are used to assess and achieve counterfactual fairness.

Fairness metrics
Measuring IF is typically based on a metric that measures 
similarity between individuals, and a common way to calcu
late similarity is by a metric or distance function that defines 
the distance between individuals as a non-negative real num
ber. Dwork et al17 defined an IF metric that assesses the fair
ness of an algorithm based on if it assigns the same decision 
to individuals with similar characteristics. The distance 
between two individuals, say a and b, is quantified by a dis
tance measure dða;bÞ, and IF is satisfied when 

X

i
P ijað Þ � PðijbÞj j≤dða; bÞ (1) 

where P(ija) and P(ijb) are the probabilities of decision i for 
individuals a and b, respectively. Similarly, Zemel et al31

defined an IF metric called the consistency index which 
assesses the disparity between the decision assigned by an 

Figure 1. PRISMA diagram of the article screening process.25
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algorithm to an individual and that individual’s k-nearest 
neighbors. The consistency index is expressed as 

1 �
1
n

X

i
bYi �

1
k

X

j2kNNðxiÞ
bYj

�
�
�
�

�
�
�
�; (2) 

where n is the total number of individuals, bYi is the predicted 
output for individual i, and xi is the feature vector of individual i.

Distance metrics are also used to measure counterfactual 
fairness. The counterfactual of an individual is a hypothetical 
scenario in which that individual’s sensitive attributes dif
fer.32 Kusner et al19 originally defined the counterfactual fair
ness metric and compared an algorithm’s decision for an 
individual to their counterfactual. Counterfactual fairness is 
satisfied when 

P bYa Uð Þ ¼ yjX ¼ x;A ¼ a
� �

¼ PðbYa0 Uð Þ ¼ yjX ¼ x;A ¼ aÞ

(3) 

where bYa and bYa0 are the predicted decisions for an individual 
and their counterfactual, respectively, defined by sensitive 
attributes a, a0 2 A, latent variables U, and feature vector 
x 2 X. Rather than simply flipping the value of the sensitive 
attribute(s) to represent the counterfactual, the causal effect 
of A ! X is distributed across Xa to derive the features of the 
counterfactual, Xa0 . Under this definition, predictions of 

P bYa

� �
are counterfactually fair if A is not a cause of bY .

Several types of IF metrics appear in the literature that iter
ate on the work of Dwork et al, Zemel et al, and Kusner et al. 
Most simply, generally defined similarity metrics from mathe
matics, such as Euclidean distance, cosine similarity, and 
Pearson correlation coefficient, are widely applicable across 
various domains and types of data. Domain-specific distance 
metrics are designed for specific types of data or fields, and 
they may not be widely applicable outside of their intended 
domain. For example, Rahman and Purushotham33 use a 
derivative of cosine similarity adjusted specifically for 
hazard-based survival models by Keya et al.34 Learned dis
tance metrics are derived from the dataset on which they will 
be applied. Unlike pre-defined distance metrics, learned met
rics adapt to the specific characteristics of the dataset (see  
Table 3). Additionally, counterfactual methods use a variety 
of unique methods to measure the difference between an indi
vidual and their counterfactual. Methods for counterfactual 
distance vary across each article.

Mitigation methods
In the context of creating fair algorithms, pre-processing, in- 
processing, and post-processing are three categories of meth
ods to mitigate bias. Pre-processing methods adjust or 

transform the data to ensure balanced representation and 
remove discrimination. Resampling (adjusting the data to 
balance the representation of different groups), reweighting 
(assigning different weights to samples to counteract imbal
ances), and removing protected attributes (removing features 
like race, gender, or age that are protected and could lead to 
biased decisions) are examples some examples of pre-process
ing.32,34,38,39 Articles related to pre-processing evaluated the 
effectiveness of methods in a wide range of metrics, from 
increased explainability38 to problem-specific distance 
metrics.32

In-processing methods modify the training of the algorithm 
to incorporate fairness constraints or objectives directly. Reg
ularization techniques (adding a fairness constraint or regula
rization term to the learning objective) and adversarial 
debiasing (using adversarial networks to learn representa
tions that do not contain biased information about protected 
attributes). Post-processing methods adjust or transform the 
decisions or outputs of an algorithm after its training. Exam
ples include calibration (adjusting predicted probabilities of 
decisions to reflect the true likelihoods of those decisions 
accurately) and threshold adjustments (changing decision 
thresholds for different groups to balance performance met
rics) are some examples.39–41 Most articles discussing in- 
processing for IF compare mitigated models to baseline mod
els using IF fairness metrics (eg, consistency, discrimination, 
etc) and discuss the impact on relevant performance metrics 
(eg, true negative rate, accuracy, etc).

Although pre-processing and in-processing techniques 
were frequently employed in the articles we reviewed, post- 
processing for IF was only investigated by Petersen et al.26

Petersen et al evaluated the post-processing by observing the 
trade-offs between IF and accuracy, IF and GF, and the distri
bution of violations of the IF constraint. The results empha
sized the large disparities in GF because of the IF method, 
reiterating the consensus in the literature that these two types 
of fairness are orthogonal (Table 4).

The relationship between the two kinds of fairness
Several GF metrics are incompatible in that fairness cannot 
be achieved simultaneously on those metrics. The incompati
bility of IF and GF metrics has received less attention. GF 
does not imply IF, and IF implies GF if the Wasserstein dis
tance (distance between probability distributions) is small, 
that is, the distributions of similar individuals are relatively 
uniform across groups, which is uncommon in practice.17,44

Binns45 discusses the trade-offs that arise when one type of 
fairness is preferred over another. When ignoring IF favoring 
GF, algorithms may make different decisions for identical 
individuals. Furthermore, emphasizing IF alone can lead to 
significant differences in group decisions.45 According to Fle
isher, optimizing IF alone does not guarantee GF. For 

Table 2. Philosophical corollaries of fairness.

Philosophical corollary Description Example article

(Anti) Discrimination Ensures that algorithms treat different groups similarly. Discrimination statistics based on 
demographic parity or equal opportunity, eg, can be used to accomplish this.

Zhang et al27

Consistency Ensures that algorithms treat similar individuals similarly, regardless of group membership. 
Similarity-based or distance-based measures can be used to accomplish this.

Bechavod et al28

Counterfactual Ensures that algorithms would have made the same decision for an individual, regardless of 
their group membership, even if their attributes had been different. Causal models that 
explain how protected attributes affect decisions can be used to accomplish this.

Kusner et al19
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example, an algorithm that assigns a negative decision to 
every individual will satisfy IF but not GF.46

Applications in healthcare
Rahman and Purushotham, Cheng et al, Chien et al, Tal, Jun 
et al, and Zhou et al discussed the applications of IF in 
healthcare.33,47–51 Rahman and Purushotham33 describe an 
IF method for survival analysis to address the problem of cen
soring in clinical trials, particularly in underprivileged 
groups.52 The authors demonstrated that their IF-based deep 
survival algorithms significantly reduced unfairness in 
censoring.

Cheng et al47 created a framework for interviewing stake
holders to understand better their interpretations and notions 
of fairness in clinical predictive systems. Twelve participants 
were polled, and many of them were skeptical of IF. For 
example, one participant remarked, “I think it’s tricky to 
compare things this way. . . It’s hard to say.” Although more 
participants favored GF, they disagreed on which GF meas
ures were appropriate.

Chien et al48 suggest that the traditional fixed-clinical trial 
method prevents beneficial modifications after trials begin, 
and AI methods can be employed to make trials fairer. 
According to the authors, optimizing for GF is less useful 
than optimizing for IF or counterfactual fairness for the prob
lem of fairness in clinical trials, despite the advantage of GF 
methods being task-agnostic and less complex.

Tal49 argues that an important cause of bias in healthcare 
algorithms is due to conflicting notions of problem defini
tions. For example, a statistical notion of bias and accuracy 
would claim that the two are orthogonal, allowing a model 
to be both biased and accurate. On the other hand, a clinician 
would argue that bias and accuracy are contradictory and 
cannot co-occur. Target specification bias, a particular case 
of this divergence in definitions, occurs when the notions of 
the decision variable by analysts and clinicians differ.49,53

This occurs because a clinician expects to predict a decision 
for a patient if they were treated differently all else being 
equal (counterfactual), whereas most models predict similarly 
observed individuals with measured decisions. This issue is 

closely related to IF, implying that counterfactual fairness is a 
more accurate representation of the problem from the stand
point of a clinician.

Jun et al50 applies fairness-aware causal analysis that links 
social determinants of health (SDoH) to EHRs to evaluate 
unfairness in methicillin-resistant staphylococcus aureus 
infection-related 30-day mortality. While not explicitly 
framed as counterfactual fairness, we include the paper since 
comparisons are made across baseline characteristics to dis
cover unfairness related to SDoH, similar to methods for con
sistency. It is a rare example of an IF method applied in real- 
world EHR data.

Zhou et al51 propose a novel rank similarity regularization 
method, Joint Correlation Learning with Rank Similarity 
Regularization, which improves fairness by enforcing consis
tency in predictions for both common and rare fetal brain age 
cases in highly imbalanced magnetic resonance imaging data. 
The proposed framework enhances the gestational age pre
diction model, with fairness adjustments specifically targeting 
under-represented cases.

Discussion
Given the relatively small number of articles we found (32 
articles from 2013 to 2024), the first implication of our find
ings is that the definition, use, and study of IF remain in their 
infancy, especially in healthcare. However, since the seminal 
article on IF was published in 2012,17 the rate of IF article 
publication has steadily increased, indicating that this field is 
likely to grow in the future. Only 6 articles described the use 
of IF in healthcare,33,47–51 despite evidence that there is 
intense interest in measuring and mitigating bias in clinical 
risk calculators based on race, differential laboratory test 
reference ranges are recommended based on race, and differ
ential therapy is recommended based on race.6 This is most 
likely due to the infancy of the field of IF in general.

There is mounting evidence that due to the limitations of 
GF, alternative approaches to fairness, such as IF and coun
terfactual fairness, are needed.17,19 One limitation of GF is 
that it may mask individual differences within a group, 

Table 3. Types of IF metrics.

Type of IF metric Description Example article

Generally defined distance metric Predefined distance metrics that are widely applicable across 
various domains and types of data.

Ghadage et al35

Domain-specific distance metric Predefined distance metrics that are designed for specific types 
of data or fields.

Rahman and Purushotham33

Learned distance metric Distance metrics that are derived from the dataset on which they 
will be applied.

Hu and Rangwala36

Distance in counterfactuals Various distance metrics are used to compare an individual to 
their counterfactuals.

Ma et al37

Table 4. Types of mitigation methods.

Type of mitigation Description Example article

Pre-processing Adjust, transform, reweight, or augment data to ensure balanced 
representation and remove discrimination.

Zhang et al42

In-processing Modify the training of the algorithm to incorporate fairness  
constraints or objectives directly.

Sharifi-Malvajerdi et al43

Post-processing Adjust or transform the decisions or outputs of an algorithm after 
its training.

Petersen et al26
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whereas IF is more flexible and adaptable and can take indi
vidual features other than protected attributes into account.45

Second, GF may disregard relevant features that are not pro
tected at- tributes, whereas IF may lead to more accurate and 
fair outcomes by considering all relevant features.31 Third, 
defining and measuring GF can be challenging when dealing 
with multiple groups with overlapping memberships or com
plex relationships.48 IF is not limited in such circumstances.17

While IF offers several advantages over GF, it also has limita
tions that need to be considered. One limitation of IF is that 
determining what constitutes “similar individuals” can be 
complex and subjective. Different contexts and tasks may 
require different definitions of similarity, making it challeng
ing to achieve universal applicability. Second, IF methods 
that rely on learning similarity metrics from data are suscepti
ble to encoding existing biases present in the data, which can 
perpetuate existing inequities.46

Our study had some limitations. By limiting our search to 
four databases, it is possible that articles relevant to this topic 
were not found and included in this review. It is also possible 
that relevant articles that used keywords other than those 
that were used were missed in our search. Our search results 
show that the number of articles in IF has increased steadily 
over the last decade. However, we did not investigate how IF 
metrics and definitions have evolved over this period of time.

Conclusion
This scoping review explored the breadth of algorithmic IF 
metrics and methods developed to achieve IF. We provide 
preliminary structure and grouping of varying ideas and 
strategies and describe current research relating to applica
tions in healthcare. The articles that explored this topic 
showed that the definition, use, and study of IF remain in 
their infancy. Future research is needed to evaluate and apply 
IF to continue to have a real-world impact on reducing dis
parities in assessment and treatment in healthcare.
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