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Non-clinical models to study metabolism including animal models and cell
assays are often limited in terms of species translatability and predictability
of human biology. This field urgently requires a push towards more
physiologically accurate recapitulations of drug interactions and disease pro-
gression in the body. Organ-on-chip systems, specifically multi-organ chips
(MOCs), are an emerging technology that is well suited to providing a
species-specific platform to study the various types of metabolism (glucose,
lipid, protein and drug) by recreating organ-level function. This review
provides a resource for scientists aiming to study human metabolism by pro-
viding an overview of MOCs recapitulating aspects of metabolism, by
addressing the technical aspects of MOC development and by providing
guidelines for correlation with in silico models. The current state and chal-
lenges are presented for two application areas: (i) disease modelling and
(ii) pharmacokinetics/pharmacodynamics. Additionally, the guidelines to
integrate the MOC data into in silico models could strengthen the predictive
power of the technology. Finally, the translational aspects of metabolizing
MOCs are addressed, including adoption for personalized medicine and
prospects for the clinic. Predictive MOCs could enable a significantly
reduced dependence on animal models and open doors towards economical
non-clinical testing and understanding of disease mechanisms.
1. Introduction
Metabolism consists of three categories of life-supporting functions [1]. The first
involves the biochemical events across tissues that generate or consume energy
to maintain homeostasis. The second involves the production of building blocks
such as proteins and lipids from food, to support body functions. The final
aspect of metabolism involves the elimination of metabolic waste and xeno-
biotics. The primary organs involved in metabolism include the gut, liver,
adipose tissue, pancreas, kidney and muscles. During metabolic regulation,
these organs interact through different signalling pathways elicited by hor-
mones and morphogens, providing the body with the appropriate amount of
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energy it needs. Immune-related processes also affect -
metabolic function through multiple mechanisms [2].

Metabolism is regulated by complex signalling pathways
that centrally involve hormones such as insulin and glucagon
secreted by the pancreas, provoking effects in energy-con-
suming organs including the muscle, liver and adipose
tissue. The secretion of these signalling molecules differs
with glucose availability, which regulates the adaptive meta-
bolic response. Dysfunction of metabolism has been linked to
the onset of a variety of diseases caused by disturbance of
homeostatic mechanisms required to maintain proper cell
function.
 ob
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1.1. Types of metabolism
Carbohydrate metabolism is closely regulated by insulin and
glucagon, both of which are secreted by the pancreas. When
glucose-containing meals are ingested, the pancreas secretes
insulin, leading to elevated glucose uptake by the muscles
and liver; under fasting conditions, the pancreas secretes glu-
cagon, promoting glucose metabolism from stored glycogen.
This regulation forms the basis of glucose metabolism. Stored
lactate is a hydroxycarboxylic acid produced from glucose by
glycolysis or the pentose phosphate pathway or by the trans-
amination of alanine. Monocarboxylate transporter 4 is
responsible for the secretion of lactate from cells. While exer-
cising or during a state of starvation, lactate becomes a
precursor for gluconeogenesis [3]. Lipid metabolism involves
the uptake and release of free fatty acids (FFAs) into
the circulation, mediated by pathways involved in signalling
with adipose tissue. Adipokines, secreted by adipose tissue,
have been implicated in the progression of insulin resistance
during obesity. Lipids make up many key cell components
but the dysregulation of lipid metabolic pathways leads to
intracellular lipid deposition and functional dysregulation
of cells [4]. Protein metabolism is influenced by various fac-
tors such as food, hormones, inflammatory stimuli and age.
Some hormones have catabolic effects (glucagon, glucocorti-
coids and catecholamines), others have anabolic effects
(insulin, insulin-like growth factor 1 and growth hormone)
and the effects of some are unknown [5]. Essential amino
acids are consumed in the diet and subsequently acted
upon by branched chain amino acid transferase, after which
they undergo a series of transformations to finally become
products that get rerouted to the tricarboxylic acid (TCA)
cycle, like succinyl CoA, etc. Valine is glucogenic; isoleucine
is glucogenic and ketogenic while leucine is ketogenic.
Protein synthesis and protein breakdown determine the
homeostasis of proteins in the body [6]. Drug biotrans-
formation refers to the process by which xenobiotics
are enzymatically converted to make them readily excreta-
ble and to eliminate pharmacological activity [7]. This
mainly involves changes to the drug iso-form or addition of
functional groups, making the parent drug molecule more
hydrophilic and prone to elimination. The liver is one of
the key organs where drug metabolization occurs, closely fol-
lowed by the intestine and kidneys and other organs to a
lesser degree (e.g. heart, blood, skin and brain). Drug-meta-
bolizing enzymes can be classified into two phases (phase
1 and phase 2) depending on the type of metabolism they
carry out.
1.2. Physiology of inter-organ communication and the
disruption of metabolic pathways

Metabolism involves harmonious signalling betweenmultiple
organs and, depending upon the type of metabolism to be
studied, it is imperative to understand the physiology of
organ interactions. Human metabolism involves multiple
organs and specialized tissues to digest, store and retrieve
energy from nutrition. One of the central metabolizing
organs is the liver. The broad range of different biotransform-
ation processes is mainly executed by hepatocytes. Liver
parenchymal cells (i.e. hepatocytes and cholangiocytes) are
surrounded by a network of non-parenchymal cells (e.g.
liver macrophages (Kupffer cells), sinusoidal endothelial
cells and hepatic stellate cells) in the hepatic sinusoid that con-
tribute to and regulate metabolic activities and immunological
responses. Depending on their localization in periportal, mid-
and pericentral zones of the hepatic lobules, hepatocytes are
exposed to various biophysical and biochemical cues. The
liver and the adipose tissue are specialized organs for storing
energy. Adipose tissue makes up 20–50% of body weight and
functions as a storage organ for fatty acids in addition to being
a powerful endocrine organ. There is evidence that the visceral
fat influences metabolism via the secretion of adipokines and
FFAs [8]. Skeletal muscle tissue represents the most abundant
muscle type in the human body and constitutes about 40–45%
of total body weight, but 70–80% of cell mass. Besides provid-
ing mechanical forces for movement, muscle tissue also serves
as an energy depot. It is a vital storage site for proteins and free
amino acids, which represent a major source for generating
glucose through gluconeogenesis to ensure a glucose supply
for the brain during starvation. The pancreas is a compound
gland that discharges digestive enzymes into the gut and
secretes the hormones insulin and glucagon, which play
important roles in glucose metabolism, into the bloodstream.
These two hormones influence the rate of glucose breakdown
in the body [9]. The small intestine covers a considerable length
and is one of the first sites of absorption of nutrients and xeno-
biotics into the bloodstream [10]. The intestinal epithelial cells
have a large surface area for absorption and metabolism,
and the ability to regenerate, thus maintaining intestinal
function. The presence of immune cells and the gut microbiota
contributes significantly to the intestine’s metabolizing
capabilities [11].

The various metabolizing organs in our body interact syn-
chronously to maintain homeostasis. The liver and adipose
tissue are the vital metabolic organs necessary for energy utiliz-
ation and storage. Both organs interact for the regulation of the
metabolism of lipid and glucose by secreting various growth
factors with a vast range of metabolic regulatory effects, includ-
ing fibroblast growth factor 21, adiponectin (APN) and the pro-
inflammatory factors adipose fatty acid-binding protein-4 and
lipocalin-2 [12]. The pancreatic islets of Langerhans are endo-
crine structures distributed throughout the exocrine portion of
the pancreas. They consist of five distinct cell types: α cells
(secreting glucagon), β cells (insulin), γ/PP cells (pancreatic
polypeptide), δ cells (somatostatin) and ε cells (ghrelin). In the
liver, insulin plays a major role in glycogen synthesis and inhi-
bits glycogen breakdown. Additionally, it regulates glycolysis
and inhibits gluconeogenesis, which influences glucose metab-
olism. Insulin also performs different anabolic functions in the
liver, stimulating lipid synthesis and release and protein
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synthesis and inhibiting the breakdownof these substances [13].
Skeletal muscles secrete myokines and peptides that can per-
form autocrine, paracrine and endocrine actions. Exercise
contributes to their release and is shown to produce adipocyte
browning. Myonectin is involved in fatty acid uptake and
oxidation in adipose tissue and liver. Insulin resistance in the
skeletal muscle changes the expression of these myokines
and influences fatty acidmetabolism in the body [14].Myokines
counteract the effects of adipokines. Myostatin is one such
myokine and is important for the maintenance of metabolic
homeostasis and in regulating the size and function of adipose
tissue. Interleukin 6 (IL-6) is secreted into the bloodstream
in response to muscle contractions during exercise, not
because of immune responses in this state [15]. IL-6 is also
hypothesized to increase fatty acid oxidation through AMP-
activated protein kinase and is responsible for glucose pro-
duction during exercise but might worsen insulin resistance
between liver and adipose tissue.

Adipose tissue has revealed itself as a major endocrine
regulator, impacting the metabolic balance in the body and
hence leading to numerous pathophysiologies downstream.
The link between obesity and the metabolic syndrome is
critically dependent on the distribution of body fat. Clinical
data show that abdominal obesity is more strongly associa-
ted with the development of the metabolic syndrome than
peripheral body fat distribution, proving the critical role
of visceral fat in the development of metabolic diseases.
Obese adipose tissue secretes adipokines, thereby causing
damage to pancreatic β cells [16]. Thus, the cross-talk between
pancreatic adipocytes and islets is defined by the metabolic
status, which in turn regulates the secretion of adipocytes
and islet activity and, therefore, the paracrine effects. Adipo-
cytes secrete leptin and APN. Leptin is a peptide that is
produced by mature adipocytes and that acts mainly on the
central nervous system. Leptin release is regulated by cross-
communication of fat tissue, brain and bone and acts on the
β cells of the pancreas by negatively regulating pancreatic β
cell function and cell mass [17,18]. However, some of the endo-
crine actions of leptin on β cells are not mediated via its
receptors on β cells. Leptin regulates bone metabolism,
which demonstrates that bone may exert feedback control on
β-cell function [19]. APN target organs include the liver,
where the hormone counteracts gluconeogenesis; the skeletal
muscle, where it stimulates oxidation of fatty acids; and
the brain, where it ensures a continuous energy supply [20].
Under diseased conditions, adipokines, pro-inflammatory
cytokines, FFAs and other substances are released by adipose
tissue, thereby contributing to a hepatic acute-phase response.
The secreted pro-inflammatory cytokines stimulate liver
resident macrophages (Kupffer cells), which mediate inflam-
mation that interferes with the secretion of regulatory factors
of lipidandglucosemetabolism.Thispathophysiological effect
is thought to be causative for the observed association between
dysregulation in lipid and glucose metabolism and deregula-
tion of metabolic signalling pathways in gluco-metabolic
diseases [21].

Immuno-metabolism represents a key mechanism
central to innate and adaptive immune regulations. Early
studies identified inflammatory cytokines secreted in obese
adipose tissue as drivers of metabolic disease by initiating
the cross-talk between immune cells and metabolism, result-
ing in aggravation of the inflammatory loop [22,23].
Metabolic pathways are intricately linked to cell signalling
and differentiation, giving rise to different immune cell
subsets that adapt in response to biochemical and biophysi-
cal cues of their micro-environments, inducing unique
metabolic fates.

1.3. Non-clinical models to study metabolism
Metabolism has been intensively studied in various in vitro
models, including precision-cut tissue slices as well as cell
lines and primary cells that could be genetically engineered
for the expression of specific enzymes [24]. Advanced
in vitro systems such as three-dimensional cultures and
organ-on-chip (OoC) systems could present advantages for
metabolism-based studies, in being able to isolate certain
pathways and study disease pathophysiology. Organs-
on-chips recreating specific organotypic functions can
enable the understanding of the development of a certain dis-
ease pathophysiology through the lens of one specific target
organ for a specific donor [25]. Furthermore, they can be
specifically tailored to study a specific organ function by inte-
grating non-parenchymal cells that improve the physiological
relevance of the organ model [26]. On one hand, single-
organ chips could serve as a framework to identify vital
biological mechanisms such as disease progression and
immune–organ interactions to identify key biological path-
ways and new targets for drug testing. This leads to the next
application of organ chips to test drug efficacy and metabolism
in target organs at the pre-clinical development stage, thus
providing a reliable data source for clinical trials [27].

To study the full range of inter-organ interactions and
identify potential toxicity of drugs and metabolites, two-
dimensional cultures and animal models are widely used
in biomedical research and drug development. However,
these models are limited in physiological relevance and often
differ significantly in (drug) metabolism from humans.
Systemic studies have so far mostly been performed by use
of in vivo models, i.e. rodent models, which show considerable
interspecies variability in metabolic specificity, hormone
regulation and thermal biology [28,29]. Two-dimensional
models lack the complexity of the three-dimensional tissue
microenvironment and the important cross-talk between
different cell types and the extracellular matrix. Studies invol-
ving animals are often challenging to extrapolate to humans
as different animal species give conflicting results, e.g. on
drug toxicity. In vitro models that are able to recapitulate
the cross-talk between metabolic tissues would be a major
step forward for metabolism-associated research. Especially
to model metabolic diseases, complex bioengineered three-
dimensional model systems that are physiologically represen-
tative of the tissue microenvironment are urgently required
[30]. Although the systemic clinical manifestation of metabolic
disease cannot be fully recapitulated in a single tissue or organ
model, understanding the basic processes can still show useful
information about the whole disease mechanism. To model the
spatio-temporal dynamic processes in the human body and
disease pathogenesis, integration of these three-dimensional
models by linking multiple organs together with functional
vasculature will be crucial.

OoC systems belong to a new wave of in vitro models,
which have the potential to better recapitulate metabolic
physiology in vitro by allowing reliable control of cellular,
biochemical and biophysical cues in a precise and accurate
manner [31,32]. This highly interdisciplinary technology
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Figure 1. Schematic overview of the focus of this review—the study of metabolism spans many organs via various pathways. MOCs coupled with in silico models
provide a strong platform in the prediction of disease progression, PK and PD.
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combines microfabrication techniques, tissue engineering and
(stem) cell biology to create perfused species-specific in vitro
models to answer specific scientific questions related to dis-
ease mechanisms or drug response [33]. The underlying
technological concept of microfluidics paves the way for the
linkage of individual organ models by connecting perfused
microchannels. Further applying mathematical modelling
principles to the data from multi-organ chips (MOCs) will
enable the generation of predictive in silico models that
could predict human-scale metabolic responses.

In this review, we comprehensively review MOC models
relevant for metabolism research towards clinically relevant
predictions of disease progression, absorption, distribution,
metabolism, excretion and toxicity (ADMET) and pharmaco-
kinetics and pharmacodynamics (PK-PD; figure 1). We
introduce the technical aspects of MOC design and strategies
to correlate MOC data to predict in vivo outcomes, as well as
further discuss specific application of OoCs in disease model-
ling, applications for mechanistic studies in ADMET and
quantitative PK-PD modelling.
2. Concepts for linking multi-organ chips
Single-organ chips enable the study of organ-specific ques-
tions [34–36]. These include organ-specific PK aspects such
as absorption in the gut, partitioning of the drug into adipose
tissue, liver metabolism of the drug or excretion of the drug
in the kidney. They also enable the study of disease mechan-
isms triggered in different organs, such as inflammatory
bowel disease, asthma or liver disease [36–38]. Complex
(patho)physiological processes can be captured by models
integrating organ-specific extracellular matrix, multiple cell
types or aspects of the immune system. The interconnection
of OoCs to MOCs presents the opportunity to investigate
organ cross-talk and address questions in a highly controlled
manner, on a systemic level that can be compared with
animal experimentation. Individual OoCs have metabolic
attributes and can interact with each other and exchange sub-
stances via microchannel systems. Compared with the
isolated culture of individual organ models, the organotypic
functions in MOCs could be improved by their close inter-
action with other organs. To link multiple organ models,
complex connection strategies are required. This section pro-
vides an overview of connection approaches. For more
specific reviews of technical design, the reader is referred to
additional literature focusing on designing organ chips, con-
nection strategies for multiple organ models and approaches
for appropriate organ scaling [39–41].

A physiologically relevant connection strategy of OoCs
involves organ communication via simulated vasculature
structures. This can be achieved by enabling flow of
medium from one tissue chamber to another via a common
fluidic channel. A monolayer of endothelial cells lining the
connection channel could further allow for physiological
exchange of signalling molecules across the endothelial
barrier. Connections can be built into one single chip,
where compartments for various tissues with a fixed cell
ratio are perfused with a common cell medium flowing
through fluidic channels built directly into the chip [42].
Since each tissue requires a different microenvironment,
interconnected OoCs can be limited in terms of design flexi-
bility [43,44]. Modular connections enable the culture of
organ chips separately until the tissue is fully formed.
Tissue models can be linked in a modular and flexible
fashion. This type of system has several detachable parts
and, hence, a higher likelihood of leaks, but provides a
high degree of flexibility, allowing, for example, the insertion
of sensors into the modular connection. Some examples of
this methodology include Lego-inspired capillary connectors
[45,46], insert-based connectors [47], three-dimensional bio-
reactors connected via tubing [48] or magnetic snap-fit
connection systems [49]. In the case of fluidic interfaces, mul-
tiple chips can be plugged into a common interface with one
inlet and outlet, while the chips are connected to each other
via the fluidics built into the interface. The MOC designer
is, however, restricted to the dimensions of the fluidic inter-
face in terms of locating ports to connect the chip to the
interface. This system makes it easier for automation and
robotic handling owing to the fixed spatial arrangement of
sampling ports, as demonstrated by Novak et al. [50].

A variety of perfusion approaches exist to flow media
through MoCs. Passive flow represents an approach to using
gravitational hydrostatic pressure difference, or surface tension
to guide flow through channels [41]. This perfusion approach
allows direct access to reservoirs at the inlet and outlet for
medium change or effluent collection. The passive flow is
usually created by rocking the devices back and forth [51]. Syr-
inge or peristaltic pumps as well as centrifugal or pneumatic
systems are able to create active, mechanically driven
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perfusion of medium. Syringe and peristaltic systems require
the use of tubing, leading to a larger dead volume than passive
flow and a higher tendency of leakage and bubble formation
[52]. Syringe pumping is commonly used to circulate fresh
medium in a unidirectional manner, allowing for the study
of downstream effects of individual OoCs. Peristaltic pumping
allows the recirculation of medium or mixing of recirculated
and fresh media in a controlled ratio [53]. Centrifugal force
represents a novel, innovative method that uses a spinning
mechanism to perfuse medium and allows for the control of
flow rates by regulation of the rotation speed [54]. Pneumatic
pressure flow does not require the use of tubing and thus
reduces the amount of required medium volume. However,
these systems rely on gas supply channels to drive medium
flow by membranes and need to be airtight in order to prevent
pressure imbalance causing unpredicted detrimental flow con-
ditions [55]. Electromagnetic actuators enable automated flow
control for unidirectional or recirculating flow [56,57]. A more
detailed overview of pumping approaches for an OoC plat-
form is provided in a recent review by Byun et al. [58].

During the prototyping phase, the choice of material of
construction of MOCs depends on the scientific application of
the organ chips and scale of operation. Polydimethylsiloxane
(PDMS) is gas permeable and ensures that the medium is satu-
rated with gases at the same rate as the environment around it.
Rigid plastics such as polymethyl methacrylate (PMMA) or
cyclic olefin copolymer (COC) allow for locally tunable gas
concentrations around the tissue depending upon the require-
ments of the study (e.g. anaerobic microbes in the gut or
oxygen-dependent zonation in the liver) [59,60]. The absorp-
tion and adsorption of small molecules into the material of
construction of the MOC must be monitored in order to
ensure adequate dose exposures to the tissues for PK and
PD studies [61].

An optimized combination medium is essential to ensure
the proper functional state of each tissue in the MOC. This
was demonstrated in a four-organ system by Oleaga et al.
[62], who connected functional cardiac, neuronal, muscle
and liver modules over an extended time period of 14 days
via vascular perfusion of a common medium. Liver function
was confirmed via albumin and urea production, cardiac and
skeletal microtissue function was assessed in their contractile
response to broad-field electrical stimulation and neuronal
function was analysed using patch clamp electrophysiology.
The integrated modules were exposed to drugs with known
side effects for 7 days to show correlation with published
human and animal data. The authors also attempted to inves-
tigate animal serum-free medium to ensure better control
over MOC culture conditions [62]. In a similar approach,
Miller & Shuler [43] presented a 14-organ MOC which
remained functional over a 7-day period and was perfused
via gravity-driven flow. While these systems lacked an endo-
thelial barrier layer across which nutrient exchange could
take place, they provide insights into functional MOCs with
common circulating media.

To monitor metabolic activity in MOCs, the effluent or
perfused medium is typically analysed outside the chip.
A number of approaches, however, integrate in-line sensors,
which can be used for in situ readout of metabolic function [63].
An interesting development is the integration of enzyme-based
multi-analyte biosensors into a multi-tissue culture platform
for MOC application. Misun et al. [64] developed a multi-
tissue platform with integrated sensors for lactate metabolism.
The sensor modules were designed as small glass plug-ins fea-
turing platinum working electrodes, coupled with oxidase
enzymes to allow continuous measurement of lactate and glu-
cose. The biosensors recorded high sensitivities of 443 ± 37 nA
mM–1 mm–2 for lactate; the corresponding limits of detection
were below 10 μMT. The model enabled tissue-size-dependent,
real-time measurement of lactate secretion from the three-
dimensional microtissues cultured in a hanging drop configur-
ation [64]. Glieberman et al. [65] demonstrated a high-
throughput pancreatic islet capture chip with in-line insulin
sensing during glucose-stimulated insulin secretion exper-
iments. Taken together, the use of integrated sensors for
glucose, ammonia, insulin, oxygen [66] and reactive oxygen
species [67], among others, will allow for in-line data acqui-
sition that can support in silico modelling. That being said,
in-line sensing is still an important challenge for the field,
owing to the limited number of analytes, sensor robustness
and fabrication limitations.
3. Multi-organ chips to study metabolism
This section provides an overview of the literature involving
MOCs that study the four previously described types of metab-
olism—carbohydrate, lipid, protein and drug metabolism
(figure 2).

Lee et al. [69] designed a three-organ chip system of pan-
creas, muscle and liver models to mimic glucose metabolism
and homeostasis. An in silico model of glucose metabolism
was developed for the quantification of glucose uptake
based on experimental data obtained from the MOC. The
organs were allometrically scaled with respect to each other,
and the flow rates were calculated based on physiological resi-
dence time of blood in each organ chamber [69]. The usage of
automated robotic systems to study metabolism in multiple
organ models has recently been proposed by Novak et al.
[50]. The robotic interrogator maintained the viability and
organ-specific functions of eight vascularized, two-channel
organ chips (intestine, liver, kidney, heart, lung, skin, blood–
brain barrier and brain) for three weeks in culture. The robotic
interrogator and a physiological multi-compartmental model
of the experimental system was used to quantitatively predict
the glucose metabolism and distribution of an inulin tracer, a
complex sugar, perfused through the platform [50]. Bauer
et al. [70] presented a pancreas–liver MOC which allowed for
the co-culture of human pancreatic islet microtissues and
liver spheroids in an insulin-free medium. Similar to in vivo,
hepatocytes take up glucose at a low level in the absence of
insulin. Upon exposure to glucose, insulin was released by
pancreatic islet microtissues, which stimulated an increased
glucose uptake by liver spheroids. As the glucose concen-
tration decreased, insulin secretion subsided, showing an
efficient feedback loop between the liver and the insulin-secret-
ing islet microtissues [70]. Glucose metabolism was also
studied in another MOC integrating hepatocytes, adipose
tissue and endothelial cells. This platform sustained glucose
and fatty acid homeostasis in vitro over a period of 72 h. After-
wards, it was challenged with insulin and high glucose
concentrations to mimic hyperglycaemia, and the ability to
retain or restore physiological circulating glucose concen-
trations in response to insulin was investigated to determine
the effects of these conditions on other metabolites involved
in glucose and lipid metabolism. The authors demonstrated
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the impact of high glucose levels and their significant effects
on the metabolic profile and insulin response [68]. In a
follow-up study by the same group, two different scaling
models were implemented in a hepatocyte–endothelial
model—one based on cell numbers and the other based on
metabolic rates and cell surface areas. An analysis of the meta-
bolic response of the two configurations showed varying
glucose and lipid balance, with the cell number-based scaling
model displaying higher glucose consumption per hepatocyte
and higher functional activity per cell than the metabolic rate-
based scaling model [75].

In another system reflecting gut–liver–vascular inter-
action, Duan et al. [71] tested the hypothesis of fine
particulate matter (PM2.5) influencing lipid metabolism.
The main forms of exposure that were tested included gut
to liver and liver to gut, highlighting oral and systemic deliv-
ery, respectively. In both cases, the PM2.5 particles were able
to infiltrate the liver and gut cells and contribute to dysregu-
lation of the cholesterol pathway in the liver first, followed by
a dysregulation of the bile acid metabolism in the liver and
gut [71].

Carbohydrate and protein metabolism was captured in a
study by Maass et al. [72], who monitored gut, liver and car-
diac OoCs over a period of one week in order to gauge
nutrient consumption and metabolic profiles. Starting with
the long-term assessment of the gut microphysiological
system (MPS), the study was extended to a computational
model of the gut, liver and heart MOC, highlighting the
importance of understanding the metabolic needs of the indi-
vidual OoCs not just from the perspective of carbohydrate
metabolism but also from the perspective of metabolism of
other species such as proteins [72].

For many years now, increased lactate levels have been
consistently associated with morbidity and mortality in a
wide range of metabolic disease states. To measure lactate
consumption, a co-culture of human artificial liver microtis-
sues and human neurospheres were exposed to fluid flow
over two weeks in a multi-organ platform. Daily monitoring
of lactate dehydrogenase (LDH) activity measurements in the
medium and immunofluorescence endpoint staining showed
the viability of the tissues and the preservation of differen-
tiated cell phenotypes. Moreover, the lactate production and
glucose consumption values of the tissues cultured indicated
that a stable steady state was achieved after 6 days of co-cul-
tivation. Toxicity testing was performed with the exposure of
the system to the neurotoxin 2,5-hexanedione, which showed
that the MOC responded with increased LDH release
compared with the individual tissue cultures [73].

In a publication by Viravaidya & Shuler [74], a micro-
scale cell culture analogue device was used to study drug
metabolism. Their four-organ MOC captured physiologically
based PK in a rat model on a microfluidic chip, highlighting
drug toxicity, bioaccumulation and distribution [74].
4. Applications of metabolism-focused
multi-organ chips

The previous chapters covered the fundamentals related to
setting up MOCs to study a specific type of metabolism,
along with some examples of state-of-the-art MOCs used to
study metabolism. This section highlights case studies
where the MOCs were applied towards two main areas—
metabolic disease modelling and ADME/PD.

4.1. Metabolic liver disease modelling
Metabolic diseases represent a spectrum of disorders ranging
from obesity, coronary artery disease, cardiovascular dis-
eases, non-alcoholic fatty liver disease (NAFLD) and type 2
diabetes. Owing to an ageing population and the rise of
obesity, this disease spectrum belongs to one of the fastest
growing epidemics globally [76]. The pathophysiology of
metabolic diseases is multifactorial and complex, with an
increased incidence in industrialized countries because of
the numerous environmental and genetic factors. NAFLD
represents the most common chronic hepatic disorder in
which fat is deposited in the hepatocytes. Metabolic injury
to hepatocytes can lead to non-alcoholic steatohepatitis
(NASH), which can result in liver fibrosis and cirrhosis.
Although recent findings identified liver inflammation and
toxic accumulation of lipids as the main molecular drivers
for disease progression, it is not clear whether NASH devel-
ops sequentially based on fatty liver formation or whether it
is a de novo event in a lipotoxic environment [77].

Developing new approaches to prevent or treat these
diseases requires an understanding of the molecular mechan-
isms and signalling pathways that contribute to the disease.
Although great progress has been made through genome-
wide association studies in the identification of genetic
variants or loci which play a part in metabolic diseases, the
challenge remains to unravel the molecular mechanisms
through which these genes contribute to pathophysiology.
Animal models have been used to recapitulate metabolic
diseases, but interspecies differences make it difficult to fully
mimic human pathophysiology in clinical findings [78]. Fur-
thermore, high failure rates have been observed, when
efficacious concepts from pre-clinical testing were tested in
clinical trials in patients, in which most of these drugs failed
to provide convincing data regarding efficacy [79].

Here, we highlight what has been learnt from different
models in which multi-tissue interaction has been shown to
impact metabolic disease phenotype, with a focus on
NAFLD and diabetes using MOC platforms.

4.1.1. Multi-organ chips towards modelling non-alcoholic fatty
liver disease

In a recent study by Yang et al. [80], a gut–liver-on-a-chip
platform was created to study the initiation and progression
of NAFLD. Microscopic high-content analysis and mRNA
sequencing was combined to study the cross-talk between
the gut and liver in the context of NAFLD. More so,
NAFLD-induced FFA build-up was observed in the liver
cells, alongside upregulated gene expressions linked with
retinol metabolism and glucuronidation. Furthermore,
accumulation of intracellular lipid droplets in the FFA-treated
liver cells and gene expression patterns in relation to cellular
endoplasmic reticulum stress was observed [80].

FFA uptake in the liver with subsequent lipid deposition
in a liver model was also studied by Lee & Sung [81] to
investigate processes of lipid absorption and induction of hepa-
tic steatosis. In this model, anti-steatotic compounds mediated
an improvement in a dysfunctional gut barrier and were able
to ameliorate hepatic steatosis. By contrast, tumour necrosis
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factor α (TNF-α) treatment induced the progression of hepatic
steatosis owing to compromised gut barrier function [81].

Further, Hughes and colleagues [82] established a com-
bined gut–liver model to mimic NAFLD. In this study, the
gut cultures were susceptible to inflammatory stimuli that
decreased gut integrity, a similar process known to occur
in vivo during NASH [82].

Although these in vitro NASH models served as ideal
tools to understand the basic mechanisms of human NASH,
none of these models served as a useful tool for assessing
the efficacy of novel anti-NASH therapeutic compounds
against a wide range of targeted pathways. The utilization
of these micro-physiological three-dimensional steatosis
liver platforms in an MOC would enable the study of cross-
talk with organs involved in the development of NAFLD
and provide valuable insights into glucose homeostasis in a
physiologically relevant scale. Other notable models pro-
posed include the liver–pancreatic islet communication by
InSphero AG to study NASH.

A major limitation of the above models is that several
NAFLD-associated organs such as the pancreas, white adipose
tissue and kidney are neglected. To address this, previously
established OoC modules integrating adipose [83], pancreatic
[84], kidney tissue [85] and hepatic tissue [86] could be
linked together. Thus far, organ cross-talk via bacterial metab-
olites, exosomes, miRNA etc. has not been mimicked. In order
to study the impact of immune cell recruitment for disease
progression, there is an added requirement of blood flow,
cell sources from genetically diverse donors (e.g. PNPLA3,
TM6SF2, MBOAT7 etc.) and bile acid recirculation (and modi-
fication by gut microbiota). Fibrosis as the main clinically
relevant endpoint develops in vivo over years or decades and
recapitulating this phenotype faithfully in vitro remains
challenging. More scope for future study also relates to
changes in bio-mechanics due to fibrosis and in identifying
novel biomarkers to indicate the progression of NAFLD.

4.1.2. Multi-organ chips towards modelling diabetes

Type 2 diabetes mellitus (T2D) is often linked with a high inci-
dence of hepatic comorbidities, e.g. NAFLD. It is still
debatable whether NAFLD is a consequence or a cause of pan-
creatic disorders [87]. Understanding the mechanisms which
lead to T2D is important in the search for novel molecular
drug targets to prevent and control this disease. Although
the development of pancreatic chip models to study diabetes
is still in the early stages, different pancreas-on-chip platforms
are incorporated as co-cultures with other cell types [70,88].
A comprehensive overview of existing OoC models to study
T2D research has been given by Rogal et al. [33].

Recently, a thermoplastic microfluidic-based pancreatic
islet which automates islet loading and insulin sensing was
used to deliver glucose pulses to positioned islets. Beyond
glucose monitoring, the islets responded to other functionally
relevant stimuli such as glucagon and amino acids. A per-
fusion with the suspension of human cadaveric islets
confirms the capture of pancreatic islets in an automated
manner with precise fluid control [65].

Zbinden et al. [84] recently developed an endocrine pan-
creas-on-chip model based on a tailored microfluidic
approach, which allowed for self-guided entrapping of
single human pseudo-islets. Human pseudo-islets were
derived from the immortalized EndoC-βH3 cell line. This
platform enabled precise control of vasculature-like
perfusion, enabling prompt delivery of nutrients to the
pseudo-islets and the excretion of metabolites. A unique
addition is the incorporation of Raman spectroscopy to
monitor the functionality of human pseudo-islets [84].

In another study, human pancreatic islet organoids gener-
ated from hiPSCs were perfused in a microfluidic platform.
The islet organoids showed a similar tissue morphology
and multi-tissue complexity mimicking human pancreatic
islets in vivo. Moreover, the derived pancreatic organoids
showed improved expression and maturation of β-cell-associ-
ated genes, insulin secretion and influx of calcium ions in
response to glucose under dynamic culture conditions. This
highlighted the role of biomimetic biophysical cues improv-
ing the islet organoid function and maturation, therefore
serving as a promising tool for modelling diabetes in vitro
and testing drugs for T2D therapy [89].

Substantial progress has been made in the development
of multi-organ platforms emulating diabetes in vitro.
Nguyen et al. [90] established an endocrine-on-chip system
to model diabetes and to screen drugs for the treatment of
diabetes by measuring insulin release over time. In this
model, pancreatic and intestinal cells were co-cultured to
quantify the effect of glucose on the release of glucagon-like
peptide in the intestinal cells and insulin secretion from the
pancreatic cell. In the study, glucose concentrations in
response to different stimuli and change in the profiles of
diabetes-associated genes were investigated. Despite the
prospects that this model holds for diabetic therapy, a
major limitation of this platform is the absence of a hepatic
component, since T2D is often linked with hepatic comorbid-
ities. Future platforms should incorporate liver cells to gain a
better understanding of the multi-organ interplay in the
disease process [90].

Mechanisms of T2D were further recapitulated in liver
spheroids co-cultured with pancreatic islet microtissues to
study liver–pancreas cross-talk, based on the regulation of
glucose and insulin.

To assess the functionality of this model, the feedback loop
between the liver and the insulin-secreting islet microtissues
was recapitulated in vitro. The model served as a useful tool
in understanding the mechanisms and comorbidities of T2D-
associated diseases, including β-cell failure, insulin resistance,
steatohepatitis and liver cirrhosis. However, the incorporation
of other cell types such as white adipose tissue or kidney
would be more metabolically representative [70].

Recently, the Leclerc group developed a pancreas–liver
chip using rat islets and hepatocytes. The characteristic
functions of the hepatocyte–islet co-culture model were
evaluated and compared with monoculture conditions of
the individual cell type. To assess pancreatic activity, the hep-
atocytes improved the islet response to hormonal cues as
there was an increase in the secretion of insulin and changes
in the expression patterns of the genes involved in regulating
insulin and glucagon balance [91].
4.2. Absorption, distribution, metabolism and
excretion/pharmacodynamics

Mechanistic toxicology is the identification and understand-
ing of the cellular, biochemical and molecular mechanisms
by which chemicals or drugs exert toxic effects. Mechanistic
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data are required to demonstrate adverse outcomes in risk
assessment or to measure the relative toxic potential among
the different species. In drug development, mechanistic
studies are the key for repurposing studies of molecules
that have an adequate PK profile (e.g. thalidomide).

MOCs allow for new perspectives in mechanistic toxi-
cology that in the past could only have been addressed by
animal or clinical studies. These platforms allow for the col-
lection of data on biotransformation and the effect on target
organs. They also allow for the simulation of kinetics in
coordination with in silico data [92,93]. The possibility to
monitor the generation of bioactive metabolites and their
effect and/or accumulation inoff-target organs within the
same MOC allows for the generation of complex human-
relevant information before any in vivo study is performed.
MOCs allow for designing ADMET studies that support
mechanistic toxicology approaches because it is possible to
use common in vitro toxicity methods such as cytotoxicity,
cell viability and apoptosis, gene expression of metabolic
enzymes and transporters, and combine them with non-inva-
sive and clinically used toxicity biomarkers and advanced
live imaging techniques. Additionally, diverse administration
or exposure routes can be mimicked and compared, which
could support future decisions on the ideal exposure route
for a specific drug.

In the drug discovery process, the emergence of unex-
pected toxicity is often a problem resulting from a poor
understanding of different drug metabolites. To assess the
relevance of MOC for drug metabolism, several models
have been developed. Materne et al. [73] presented a liver–
neurosphere model which remained stable when connec-
ted, over a period of two weeks. The connected system
seemed to be more sensitive to the neurotoxic drug 2,5-hexa-
nedione than individual OoCs [73]. In a system reported
by Wagner et al. [94], human liver microtissues and skin
biopsies were studied for drug metabolism and inter-tissue
cross-talk for up to 14 days of co-culture with trogalitazone
[94]. Maschmeyer et al. [95] reported a complex system,
capturing the absorption aspect via small intestine and skin
models, the metabolism aspect via the liver and excretion
via a kidney-on-chip system. They showed stable culture for
up to 28 days, with two streams of circulating media—one
circulating nutrients across the four organs, and the other
ensuring drainage of effluent from the kidney epithelial
compartment [95].

In a human-on-a-chip platform comprising models of
the brain, pancreas, liver, lung, heart, gut and endometrium,
with a mixer channel for the systemic circulation of tolcapone,
tolcapone metabolism was investigated by analysing the super-
natants in the medium using mass spectrometry. In this study,
12 different metabolites were identified, three of which were
novel. These metabolites showed that reduction, oxidation and
conjugation reactions are significant routes of drug metabolism
[96]. In another study, four tissues—liver, heart, muscle and
neurons—were integrated as a functional unit. In this model,
primary cells and hiPSC-derived cells were used in the system
under perfusion for 14 days, after functional analysis of the
readouts in the system, interchangeofmetabolites and signalling
molecules were exhibited. Furthermore, heart rate, muscle
contractility, neuro-electrophysiology and production of liver
albumin and urea were quantified and assessed; this served as
an accurate model for predicting metabolism in different
human organs [62]. In a follow-up study, the effect of
cyclophosphamide on hepatic metabolic function was assessed.
In a liver–heart co-culture cyclophosphamide induced cardio-
toxic effects only after metabolism. Interestingly, the toxicity
in the heart could be significantly reduced for the initially cardi-
otoxic terfenadine through metabolization [97].

Furthermore, Lee-Montiel et al. [98] recently created a
multi-organ system consisting of hiPSC-derived hepatocytes
and cardiomyocytes to study the metabolic conversion of
cisapride to non-arrhythmogenic norcisapride through cyto-
chrome P450 enzyme. This cisapride metabolism led to
arrhythmia in the cardiac model. The authors were able to
show functional integration of these systems allowing
drug–drug screening and testing for toxicity [98]. Rajan
et al. [99] developed an integrated system to accommodate
six tissue constructs including liver, cardiac, lung, endo-
thelium, brain and testes organoids. The tissues were
incubated for 14 days; they were able to show that the metab-
olism of ifosfamide in their liver organoid produced
chloroacetaldehyde and induced neurotoxicity. The platform
represents an expandable, multi-organoid body-on-a-chip
system that can be used for flexible characterization of drug
interactions in vitro in a modular approach combining differ-
ent organoid models [99].

A multi-layered chip was also proposed by Li et al. [100]
that included tissues recapitulating functions of the liver,
tumour, breast, lung and gastric tract. The system was used
to assess drug metabolism, drug efficacy and toxicity in
different organ-specific cells in parallel. The biomimetic
organs-on-a-chip model not only captured the primary and
secondary metabolism of capecitabine in different organs,
but also enhanced the characterization of drug metabolism
in a dynamic manner and its bioactivity on different organs
in a simple approach [100].

In all these models, basic aspects of in vivo cross-talk of
metabolic drug activity, their efficacy, mode of action and
potential toxicity of off-target effects, which is critical for
therapeutic interventions, could be mimicked with two or
three organs in an in vitro platform. Most of these studies
emphasized the inclusion of the liver because of its crucial
role in entero-hepatic circulation as a central metabolizing
organ to adequately mimic drug metabolization.

Lin et al. [101] studied the metabolism and toxicity of
ciclosporin A in a liver–kidney MOC for its chronic nephro-
toxicity and its role as substrate and inhibitor of CYP3A4
and p-gp. A 14-day repeated-dose systemic administration of
ciclosporin A in combination with rifampicin from day 6
onwards showed the modulation of the biotransformation by
the second drug at the hepatic level reducingmediated chronic
nephrotoxicity. In this study, the authors used several clinical
biomarkers for liver toxicity demonstrating the potential of
MOC platforms for translational medical research [101].

The use of MOCs in mechanistic toxicology still faces
numerous challenges, related to the confidence in the
models, the perfusion settings, the selection of the ‘universal
medium’, the inclusion of key components (endothelization
and immune component) and the combination with systems
biology approaches.

A recent assessment of the adoption of advanced cell culture
systems (like OoCs) for toxicology studies and regulatory pur-
poses revealed that model adoption depends on a detailed
assessment of themodel performance [102]. Ishida [103] defined
theminimal requirements for systemsmimicking the liver, small
intestine and kidney epithelium covering cell culture properties
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such as transporter activity, membrane permeability and the
capacity to withstand long-term culture. Cong et al. [104]
reviewed the toxicity biomarkers already used in established
single OoC systems covering hepatotoxicity, nephrotoxicity, car-
diotoxicity and neurotoxicity. Indeed, the combination of
physiological requirements and the use of translatable endpoints
are essential for the application ofMOCs in biomedical research,
drug development and chemical toxicity [104].

A key consideration in the use of MOCs for ADMET
studies is the perfusion system , which can be arranged as
single pass or recirculating (reviewed in detail by Ronaldson-
Bouchard et al. [105]). The use of complementary platforms
that allow for both perfusion settings and the flexibility to
test several directions of circulation would be beneficial to
better answer questions related to bioactivation and positive
or negative feedback responses. Also, the recapitulation of
endothelial barrier functionality remains a challenge that
should be addressed in future studies because of its relevance
for systemic distribution and biotransformation of drugs in the
‘first-pass’ organ, the liver. Several single-organ chip models
include an endothelial component but very few MOC models
do. An initial approach of endothelization in a two-organ
(liver and skin) model in 2015 enabled the evaluation of oral
exposure with troglitazone to liver–intestine co-cultures as
well systemic liver–skin co-cultures [106]. There exist other
instances of ADMET studies being performed in MOCs
[70,95,101,107–110]; however, no ADMET study has been per-
formed so far with the presence of the endothelial
component. More recently, Ingber and colleagues described a
quantitative PK study in a vascularized organ-chip, character-
izing the data from a first-pass MOC model perfusing a
universal blood substitute between endothelium-lined vascular
channels [50,111]: an arteriovenous reservoir enabled mimicry
of drug distribution and dilution through the entire vascula-
ture. The data compared closely with clinical data of cisplatin
PK. This reinforces the importance of the commonly over-
looked endothelial component contributing towards
mitigating the challenge of a universal medium.

Most of the MOC publications addressing toxicological
questions are focused on drug development [97,104,112].
Indeed, these cell culture platforms can provide valuable
information in regard to chemical risk assessments here,
but a significant need exists for replacing animal tests in (i)
skin sensitization; (ii) repeated-dose toxicity; (iii) carcinogeni-
city; (iv) reproductive toxicity; and (v) toxicokinetics and
quantitative in vitro–in vivo extrapolation (qIVIVE). Replacing
these five systemic toxicity testing schemes requires a deep
understanding of the possible mechanism of toxicity and
the animal experiment cannot be replaced by an in vitro or
in silico method on a one-to-one basis. As recently discussed
by Veening-Griffioen [113], ’Tradition, not science, is the basis
of animal model selection in translational and applied
research’. MOCs and especially those combined with
in silico modelling offer the possibility for a transition from
current to future toxicology in safety science [114]. Also, the
recent report from an EPAA Blue Sky Workshop suggested
a workflow that allows for identification of suitable ana-
logues for a target chemical and integration of toxicokinetic
data to establish an acceptable level of exposure, or the incor-
poration of in vitro data to support the decision [115].

The contribution of MOCs for skin sensitization could be
substantial. The general mechanisms of skin sensitization are
well defined. A two-organ model with an immunocompetent
skin chip [116] connected to a lymph node chip [117–119]
allowing for topical exposure and for the perfusion of
immune cells would suffice to quantify the four key events
and adverse outcomes of the skin sensitization adverse out-
come pathway (AOP) [120]. Carcinogenicity, especially of
non-genotoxic chemicals, could be screened on MOCs com-
bining the key administration and metabolism routes (e.g.
gut, liver, skin and lung) connected to other key tissues
when carcinogenesis is more likely to happen (e.g. pancreas,
brain and kidney) and addressing the issues of metabolic acti-
vation of xenobiotics, causing immunosuppression or
changes in cell death and proliferation at the tissue level
[121]. The potential of using MOCs for repeated-dose toxicity
comes hand in hand with carcinogenicity (recently reviewed
by Yang et al. [122]). MOCs can be cultured under perfusion
for many weeks and allow different combinations of organs
that can be included to investigate their role on the toxicity
and its molecular mechanisms. This is particularly important
for ab initio studies of chemicals where other data and read-
across methods do not provide sufficient information [115].
A current challenge in mechanistic toxicology is to bridge
the data obtained from availability of advanced cell culture
systems with systems biology (i.e. toxicogenomics) [123].
Addressing these challenges as well as the costs of these
technologies will pave the way for merging MOCs with tox-
icogenomic approaches, high-content imaging as well as
untargeted metabolomic approaches [124,125] covering cell
products as well as chemical- or drug-related metabolites.
These would place MOCs as essential tools for animal-free
chemical risk assessment of human hazards.

Integrating in silico models with data from MOCs would
create a powerful predictive tool for in vivo drug response or
disease development. Table 1 summarizes the MOCs men-
tioned above. In the next section, we outline the framework
to set up in silico models and potential applications for
in vitro–in vivo translation.
5. In silico modelling of multi-organ chips
and in vitro–in vivo translation

Pre-clinical and clinical drug development calls for the investi-
gation of PK-PD parameters of a drug candidate by testing
with a variety of in vitro and in vivo models. Experimental
and computational models could complement each other in
the prediction of drug–body interactions. Computational
models could also enable the prediction of potential
metabolic pathway disruptions, leading to diseases.

MOCs are now being used to define PK parameters for
various drugs [32,111]. They allow for the study of the fate
of a drug when exposed to a functional organ tissue, to deter-
mine PK properties such as absorption, distribution,
metabolism and excretion. This opportunity comes from the
advantage of the ability to monitor effluents and to study
response parameters in real time with the help of sensors or
downstream effluent analysis and hence complete control
over the characterization of a model and the parameters
that go with it. This has led to the investigation of multi-
compartment bioreactor models to demonstrate pharmaco-
logical interactions between organ models [43]. In order to
use these pharmacological data to be able to predict the
dose requirements in a clinical setting, there arises a need
to create integrated models which require more inputs than
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flow rate and PK parameters. These inputs include metab-
olites, externally administered and secreted soluble factors,
and a model shift from PK-PD to a more physiologically
based PK (PBPK)-PD model where the outputs
consist of response markers such as cytokines and growth
factors which could then influence the progression of the
drug response. Yu et al. [126] demonstrated this with an
example of a traditional PK model and a mechanistic model
for concentrations of hydrocortisone (HC), which when not
bound to human serum albumin (HSA) can be metabolized
by the liver. The mechanistic PK model accounted for HC-
HSA binding and produced a constant value of kmetabolism

for different values of initial bound/unbound HC ratio,
which could be used to study drug PK in vivo, compared
with the traditional PK model, which did not consider the
mechanism of HSA binding [65]. Such studies lay the foun-
dation work for in vitro to in vivo extrapolation (IVIVE),
where MOCs could be used to predict in vivo PK properties
of the drug [127].

So far, in silico models have evolved along a spectrum in
terms of the amount of detail that they capture. A mini-review
on thesemodels byHelmlinger et al. [128] displays the evolution
of in silico modelling approaches depending upon the appli-
cation. There exist models that focus solely on intracellular
mechanisms, and these follow the principles of systems biology.
At the other end of the spectrum there exist computational
models which represent a human as a collection of organ ‘com-
partments’ and these are the PBPKmodels, where the functions
of the compartments are quantified on a large scale, and this
general interaction can predict PD of the drug when interacting
with this system [129]. Quantitative system pharmacology
(QSP) models allow for intracellular detail depending upon
the scientific question and can still maintain the broad inter-
action between different organs within the model undergoing
said interaction. The European Union Reference Laboratory
for alternatives to animal testing (EURL ECVAM) is heavily
involved in understanding the current state of affairs of
in silico modelling and requirements to bridge the gaps in
regulatory acceptance of in silico models [114,129–132].

5.1. Framework of in silico modelling in multi-
organ chips

The process of correlating MOC data and in silico models
with in vivo responses consists of three blocks (figure 3).

5.1.1. Block 1—study decisions and multi-organ chip
development

In block 1, the MOC is developed, based on the type of study
and organs involved. The mechanism of action of the drug or
disease pathophysiology is determined, in addition to the
decisions about the involvement of the immune component.

To use MOCs for PBPK-PD studies, the organ models
should be designed and appropriately scaled to maintain
a physiological relation similar to the in vivo situation. A com-
pilation of scaling approaches has been provided by
Ahluwalia [133]. Simple allometric scaling relies on using
the quarter power law to scale weight/volume of organs
down from macro-scale to micro-scale in correlation with
the whole-body weight [134]. Wikswo et al. demonstrated
that this approach leads to disproportionately sized micro-
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organs with respect to each other and fails to capture how
organ functions scale with respect to each other [39]. Shuler
and colleagues did some fundamental work on organ
model scaling considering specific organ mass and the resi-
dence time of blood within the organs. Briefly, each organ
was scaled according to organ mass or volume and the
blood flow into each chamber based on in vivo residence
times, then ordinary differential equations were used to cal-
culate time-specific concentrations per compartment of drugs
and metabolites [42,66,74]. For unknown mechanisms of tox-
icity, it is crucial to scale tissues with respect to their
functionality. The third method of scaling accounts for the
functional property of the organ and aims to scale that to
the micro-scale, while additionally considering the spatial
arrangement of cells in an MPS platform. An important
aspect of this approach involves accounting for the distri-
bution of resources to the organ tissues in vitro compared
with in vivo. In vitro, the cells are in a resource-rich environ-
ment, and this would cause them to behave differently
from their in vivo counterparts. Moraes et al. [135] investi-
gated insulin-dependent glucose uptake in adipose tissue
and discussed how the spatial arrangement of cells could
influence the functional activity, for example the metabolic
activity. They also highlighted considerations for scaling
organs based on volume or surface area (three- or two-
dimensional) depending on whether the organ is functionally
three-dimensional (secretory, storage functions of glands,
bone marrow and fat) or functionally two-dimensional (fil-
tration, absorption, molecular transport functions for
membrane organs such as endothelial cells, kidney, the
blood–brain barrier and lungs) [135]. Other work on func-
tional scaling has been done by West et al. [136] and
Toussiant et al. [137]. The organ scaling process is iterative
and requires the use of computational mechanistic models
to validate the quantitative data obtained from the model
and, in the process, helps to refine the scaling parameters to
iterate the model [136,137]. Maass et al. [72] show that
mechanistic computational models enable an improved
design of MOCs by highlighting the medium component
requirements of each connected organ at a steady state to
enable longer term pharmacological studies. In a novel com-
putational multi-organ scaling approach, the functional
scaling in comparison with allometric and direct scaling
approaches was investigated. In the study, an objective func-
tion was defined that represents the biological functions of
interest and aims to minimize the discrepancy between
model-derived and previously established data [138].

To expand the effectiveness of the IVIVE study, it is impor-
tant to consider the following points about the system: age,
sex and bodymass index could change the extent of organ func-
tion—a number of studies demonstrate that plasma
concentrations of glucocorticoids and progestins are signifi-
cantly lower for obese women than for women of normal
weight. Immune responses–drug treatment could trigger the
immune system and the pathways for these processes have
not been well defined. Many drugs that were not intended for
immune modulation could trigger immune side effects [139].
Traditional PK models can capture their effect only to a limited
extent, while PBPK-PDmodels ormechanistic PKmodels could
be coupled with multi-organMOCs to predict the impact of the
drug-related immune response on the metabolism. Trapecar
et al. [140] show this as well in a multi-organ ulcerative colitis
model including liver, gut and circulating Treg and Th17 cells.
They note that short-chain fatty acids incite an immune
response from CD4+ cells, which in turn leads to a disrupted
gut barrier and reduced liver function [140].

5.1.2. Block 2—gathering multi-organ chip data and in silico
model design

Experimental data derived from MOCs under highly repro-
ducible conditions providesa valuable basis for mechanistic
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in silico modelling of the observed metabolic effects. Essential
parameters such as glucose turnover and oxygen consump-
tion could be continuously monitored by integrated glucose
and oxygen sensors and its change linked to treatments
with different drug dosages. These data could be comple-
mented by specific biomarkers, cytokine profiles and drug
metabolite formation. Maass et al. [72] studied the effects of
medium renewal on tissue function and validated their
quasi-steady-state model by performing experiments to
observe the effect of medium change on tissue function.
These data were correlated to observed and predicted concen-
trations of medium components such as glucose and lactate.
For their study, the glucose and lactate concentrations were
kept within physiological ranges (a glucose concentration of
4–7 mM and lactate concentration below 20 mM). They
reported that 15% of medium change every 24 h is enough
to maintain functional properties of the tissue cultures in
their model (iPS-derived cardiomyocytes, primary human
hepatocytes and differentiated Caco2 intestinal cell line),
allowing for in silico models to predict strategies for the judi-
cious use of medium components within a physiological
range [72].

General considerations to be made while running meta-
bolic in vitro studies include: (i) the role of serum present at
different levels in the medium and the impact of drug binding,
i.e. by albumin [141–143], (ii) concentrations of medium
components and how they relate to the in vivo situation,
(iii) differences between cell sources and functional variations
between cell lines or cell types, and (iv) the material used for
MOCs and its drug absorption/adsorption characteristics.

In order to characterize the PK-PDproperties of the drug in
the MOC, it is essential to set up a baseline drug profile within
the system in the absence of cells, in order to establish a blank
‘system control’. Partitioning of lipophilic compounds into
PDMS could influence the initial drug concentration that the
cells are exposed to. Rigid plastics mitigate this issue but
have lower levels of oxygen permeability than PDMS.

5.1.3. Block 3—in vitro to in vivo translation

The in silico model can be used to predict in vivo outcomes
based on physiologically based PK modelling or systems
pharmacology approaches and validated against the in vivo
situation based on clinical biomarkers and drug serum
levels. Criteria for the MPS validation are the time-dependent
changes of drug levels in blood against unbound drug levels
in the medium perfusate of the MOC.

Quantitative systems PK has been extended from an
approach to determine PK for therapeutic development to
understanding relations between MOCs from a biological
and physical dynamics standpoint. This can then aid defining
appropriate experimental conditions and predict in vivo out-
comes. Edington et al. [93] applied the principles of
quantitative systems pharmacology (QSP) to determine the
conditions required to maintain functionality of up to 10
organ tissues connected on a flow platform with a built-in
pumping system. The platform was used to measure metab-
olite concentrations in effluents and to calculate metabolite
formation rates. The organ model platform was further used
to quantify diclofenac metabolism and the correlation of the
effluent measurements with the PBPK model [93].

Arakawa et al. [144] created an MOC model of Caco2 cells
and HepaRG cells representing cross-talk between intestine
and liver tissue. The obtained data were used to predict
plasma profiles of triazolam in humans. The authors used
scaling factors to predict blood plasma concentration of
metabolites and triazolam in humans [144].

Tsamandorous et al. [145] performed an array of tests on
cryopreserved hepatocytes from five different donors to
assess drug effects and the possibility, by using a simulation
framework, to predict in vivo drug metabolism. They assessed
hepatocyte functionality through albumin secretion and
expression of metabolism-related genes upon exposure to
six different drugs and were able to successfully predict in
vivo clearance of drugs [145].

A number of software tools can be employed to solve the
equations generated to set up the in silico model. Ordinary
differential equations are generated to describe the time-
dependent variation of concentration of a component within
the MOC system. Common software for ordinary differential
equation modelling includes R, Matlab, SAAM2, Berkeley
Madonna [146] and others. Examples of more integrated plat-
forms for PBPK modelling are the OSP Suite from Bayer/
esqLABS [147], SimCYP [148] from Certara and GastroPlus
[149]. For QSP modelling, the OSP Suite from Bayer/esqLABS
is more widely used.

The MOC field is rapidly growing, proven by advances in
hardware technology to culture cells, perfuse media and inte-
grate multiple organs in a single platform with advanced
sensor arrays. Likewise, the recapitulation of human physi-
ology in vitro is rapidly advancing. However, an integrated
software solution to streamline MOC experiments within
the drug development process is still lacking. A software sol-
ution may guide experimental designs, provide model-
informed selection of drug concentrations to analyse in vitro
data and translate it into clinical outcomes predictions by
using human QSP/PBPK models. Individual reports have
demonstrated the predictive power of such an approach
over conventional methods already. Further adoption and
development are now needed to fully demonstrate the
impact of in silico and in vitro models on the drug develop-
ment process with improved prediction of drug efficacy,
a reduction of attrition rates and identification of as yet
non-clinically detectable toxicity effects.

5.2. Case studies
While there are a considerable number of publications on
MPSs, publications of studies that combine computational
modelling and MPS-derived experimental data are scarce. A
Pubmed query (pubmed.ncbi.nlm.nih.gov) including the
search terms (OoC) or (MPS) resulted in 2733 entries from
2013 to 2021. When including search terms such as PK, PBPK
and QSP, 103, 12 and 12 publications, respectively, were
found (corresponds to 4%, 0.5% and 0.5% of the total entries).
Thus, only a handful of reports directly report computational
analysis of the biological data and the subsequent integration
with human-based PK or PBPK/QSP models. In this section,
we highlight two of these reports as example case studies.

5.2.1. Assessing the toxicodynamic effects of terfenadine on a
heart–liver multi-organ chip

In a publication by McAleer and co-workers, the authors pro-
posed a workflow integrating both experimental data and
computational models to inform pre-clinical outcomes after
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terfenadine administration causing QT-prolongation [150].
They investigated the potential of MOCs to recapitulate
pre-clinical PK-PD relationships of terfenadine. The toxicody-
namic effects of terfenadine on the heart, which are pre-
clinically and clinically well characterized, are caused by
QT prolongation, which was quantified by changes in the
field potential duration in a heart MPS. It is also known
that mainly CYP3A4 enzymes metabolize terfenadine to fex-
ofenadine, which does not cause any QT prolongation.
The authors then fluidically coupled the heart MPS to a
liver MPS. The aim was to demonstrate that, in the presence
of a metabolically competent MPS, the toxicodynamic effects
on the heart MPS were less pronounced, as soon as terfena-
dine was metabolized to fexofenadine. Therefore, they
quantified generic biomarkers such as cell viability and
MPS-specific biomarkers such as the heart-MPS beat rate or
the field potential duration over the course of the experiment
(24 h). Additionally, they quantified both terfenadine and fex-
ofenadine concentrations in the cell medium and lysate of the
liver and heart MPSs (multiple time points over 24 h). The
authors confirmed the presence of fexofenadine and thus
indirectly confirmed that the liverMPS was metabolically
competent and could indeed metabolize terfenadine to fexo-
fenadine via CYP3A4. The authors then developed a four-
compartmental mathematical model of the multi-MPS to
describe the kinetics of both MPS-specific biomarkers and
drug concentrations. They even accounted for the absorption
of highly lipophilic compounds (such as terfenadine) to the
multi-organ platform, which is mainly made of PDMS and
would reduce the actual drug concentrations available for
metabolism or adverse effects. After the mathematical
model was calibrated to describe the heart–liver system bio-
logical data, the authors used this model to predict the
change in FPD in animal models (guinea pig and dog) as
well as humans. This was done by providing the in vitro
model with terfenadine kinetics taken from available
literature reports.

5.2.2. Predicting clinical outcomes after administration of
cisplatin in a kidney immune in silico model

In a recent publication by Maass et al. [151], a different work-
flow was applied by integrating both experimental data and
computational models to inform clinical outcomes after cis-
platin administration causing acute kidney injury (AKI). A
PBPK model was developed to describe the kinetics of cispla-
tin in humans (based on literature reports). Especially for the
kidneys where damage is observed in vivo, the model was
used to inform the drug concentrations that should be
tested in organ chips. The toxicodynamic effect of cisplatin
was quantified by measuring cell viability and the kidney-
specific biomarker KIM-1 (kidney-injury molecule). This bio-
marker is routinely used in clinical studies for the assessment
of AKI. KIM-1 profiles were compared between a kidney chip
model and two-dimensional cell culture. Following the in
vitro experiments, the authors developed another PBPK
model to describe the distribution and synthesis of KIM-1
in humans. This model served as an in silico MOC model.
This model included an immune system response (neutrophil
recruitment) causing elevated KIM-1 levels. The experimen-
tally derived biological data on KIM-1 kinetics after
cisplatin administration (multiple time points over the
course of the experiment) as well as the simulated drug
concentration kinetics were used as inputs into this newly
developed human PBPK model. The authors successfully
described the kinetics of KIM-1 in humans as a function of
drug concentrations at the site of action, which was informed
by the in vitro experiments. The results were compared with a
list of clinical reports on elevated KIM-1 levels in patients
with AKI . This demonstrates the power of integrating
in vitro and in silico approaches.

These two exemplary studies demonstrate the power of
combination of MOC experimental data with computational
modelling to identify drug-related toxicity in pre-clinical
studies to inform the dosing regimen and to predict clinical
outcomes.

The ability to precisely and accurately predict adverse
events and efficacy in pre-clinical studies could help to
reduce patient burden and drug attrition rates. Yet current
animal models and state-of-the-art in vitro systems fail to do
so. The examples presented above show the potential of the
translational workflow in two specific applications. Future
studies may extend the approach for various translational
pharmacology applications, such as toxicity assessment,
first-in-human dosing and metabolism. The adoption and
validation of the presented workflow would include testing
a broader set of drugs, measure platform and medium bind-
ing of compounds routinely, and identify clinically relevant
and organ-specific biomarkers. More studies highlighting
the predictive power of an integrated approach over conven-
tional methods (in vitro–in vivo correlation/extrapolation,
two- versus three-dimensional or MPSs, animal testing) in
the assessment of drug-related clinical toxicity and efficacy
testing are needed.
6. Outlook
With advances in microfabrication techniques, three-dimen-
sional cell culture methods, stem cell technologies and
biomarkers, the development of OoC technology has been
rapid over the last decade [25]. As a result, multiple ready-
to-use OoC models are already commercially available, for
biomedical research, toxicity screening and drug testing
[152]. In a recent publication, the question of how much
impact MPSs could have in early drug discovery (high-
throughput screening) and pre-clinical studies was investi-
gated and estimated to save up to 25% (approx. US$700M)
of total research and development costs per drug candidate
[153]. While both industry partners and regulatory agencies
are starting to recognize the impact and predictive power
that OoC systems may have on drug testing, the full potential
of the technology is not used yet.

Mastrangeli et al. [154] highlighted six components in the
development of OoC technology that the field is making
headway in, in one form or another. However, certain limit-
ations are to be overcome for OoCs to get approval by
regulatory bodies. Table 2 provides a summary of the
challenges faced by the MOC field. Allwardt et al. [155]
also conducted a survey consolidating the challenges of the
OoC field. Alongside a roadmap of requirements for the tech-
nology, they highlighted challenges and these are considered
at Technology Readiness Level 4 (technology validated in the
laboratory) [155].

In order for OoCs to be taken up as a drug-screening plat-
form, either an ‘evolutionary’ approach or ‘revolutionary’



Table 2. A summary of requirements of the MOCs and the current challenges that the field still faces. The reader is referred to specific sections within the
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approach is needed, as highlighted by Heringa et al. [156]. In
the evolutionary approach, OoCs could be compared with
animal data for toxicity endpoints, after which the validated
OoC model could be used to derive safe limits for humans.
The revolutionary approach seeks to redefine toxicity end-
points by the development of quantitative AOPs and to use
OoC and in silico data to predict the drug response in
humans. In both cases, in silico modelling could provide a
bridge for in vivo prediction and strengthen the data obtained
from the OoC.

To increase trust in the novel technological advances, col-
laborations of academics, industry partners and regulatory
agencies should prove that OoCs are better predictors of
human outcomes and establish best practices for using com-
mercially available OoCs. There is an immediate need for an
integrated workflow that combines both computational
models and data derived from MPS experiments (i.e.
in vitro–in vivo translation (IVIVT)). Such a translational
workflow may enable the assessment of toxicity and safety
hazards, could inform first-in-human drug dosing and may
help to identify potential drug failures pre-clinically, reducing
time, cost and attrition rates.

Diseases associated with metabolism tend to be chronic, i.e.
NAFLD andNASH,which could proceed to hepatocellular car-
cinoma not only in adults but also in children and adolescents,
especially with the spike in obesity [157]. The global prevalence
ofNAFLD is 24% and these chronic illnesses are associatedwith
metabolic syndrome, which is characterized by increased visc-
eral fat, insulin resistance and circulating fatty acids. Another
important facet of OoC technology is the ability to integrate
immune cells, which are involved in many hepatotoxicity
responses to drugs.
Current therapeutic regimes are primarily designed for
the average patient, based on the observed benefits and suc-
cess rates within the general population, without considering
the tremendous genetic diversity between individuals [158].
Such a uniform treatment strategy bears the risk of significant
adverse events and the administration of inappropriate drug
dosages with insufficient drug efficacy. Therefore, the clinical
need for patient-specific treatments, based on individual
genomic backgrounds, remains [159]. Microfluidic MOCs,
using patient-derived cells, represent a promising tool to
such personalized medicine. While the utility of mature dif-
ferentiated cells is often limited owing to their low
regeneration, the use of induced pluripotent stem cells
(iPSCs) may overcome this drawback. Indeed, iPSCs show a
remarkable capacity of cell renewal and a potential to differ-
entiate into a plethora of cell types. However, it should be
mentioned that such iPSC-based techniques are not yet up
to the mark, causing a high level of heterogeneity, or imma-
ture phenotype, in the derived cell types [160,161].
Improved differentiation protocols are thus needed to gener-
ate more mature cell types with a higher homogeneity and
lower batch-to-batch variation. Additionally, to allow for
high-throughput screening of compounds, the parallelization
of MoCs should be possible [162]. Once fully optimized, these
personalized MoCs may provide a tool for long-term tests,
mimicking the biological environment, to predict the
response of multiple organs to a specific drug and to define
appropriate dosage, therefore elevating the potential for a
beneficial clinical outcome. For example, MoCs with inte-
grated circulatory systems could have high potential in
oncology, as they might predict the tissue to which metastatic
cells will migrate [163].
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The key values to obtain a high translational value of
MOCs relies on the recreation of a biologically relevant on-
chip environment, the use of suitable and sustainable cell
models and the availability of sensitive and reliable readouts
[164]. Indeed, while many of these features have been
addressed by current research, significant improvements of
the OoC models are still required to allow their integration
into the drug development process and even diagnostics. A
key asset in the adoption of OoC systems is the ability of
in silico modelling to contribute to the predictability of the
OoC system. Another aspect includes the cell source—while
most OoC models still use cells from animal origin, more
advanced models will integrate cells of human origin, i.e. pri-
mary cells or iPSC-derived cells. Current OoC models are not
yet able to fully reflect the key characteristics of in vivo cellu-
lar homeostasis or pathology, such as zonation of tissues,
zonal pressure, integration of a complex microbiome, physio-
logical fluctuation of hormones or integration of a full-scale
organ-specific immune response [105,164,165]. However,
emerging techniques and materials, such as the use of novel
biomaterials (considering the importance of cell–material
communication), integration of high-throughput microfluidic
systems (allowing parallel experimenting) and integration of
novel sensor arrays will contribute to improving current
OoC platforms [166]. We are thus confident that the signifi-
cant advancements in MOC technology will enhance and
encourage its broader use in biological and clinical research
and help to transform non-clinical research towards precision
medicine with improved capabilities of personalized disease
modelling and drug discovery.
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