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Abstract

Potential trade-offs between learning speed and memory-related performance could be important factors in the evolution
of learning. Here, we test whether rapid learning interferes with the acquisition of new information using a reversal learning
paradigm. Bumblebees (Bombus terrestris) were trained to associate yellow with a floral reward. Subsequently the
association between colour and reward was reversed, meaning bees then had to learn to visit blue flowers. We demonstrate
that individuals that were fast to learn yellow as a predictor of reward were also quick to reverse this association.
Furthermore, overnight memory retention tests suggest that faster learning individuals are also better at retaining
previously learned information. There is also an effect of relatedness: colonies whose workers were fast to learn the
association between yellow and reward also reversed this association rapidly. These results are inconsistent with a trade-off
between learning speed and the reversal of a previously made association. On the contrary, they suggest that differences in
learning performance and cognitive (behavioural) flexibility could reflect more general differences in colony learning ability.
Hence, this study provides additional evidence to support the idea that rapid learning and behavioural flexibility have
adaptive value.
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Introduction

Learning gives animals the opportunity to modify their

behaviour in response to changes in the environment. Results

emerging in recent years support the idea that variation in learning

performance appears to be linked to differences in fitness. In the

laboratory, insects able to form associations between cues and

predictable rewards perform better than animals prevented from

learning [1,2]. Selection experiments indicate that enhanced

learning [3,4] or long term memory performance [5] are

associated with potential fitness costs in Drosophila. Furthermore,

fast learning appears to confer a selective advantage for

bumblebees colonies foraging under natural conditions [6]. All

this evidence lends support to the hypothesis that animal learning

and memory performance is likely to be under selection. However,

if faster learning confers fitness benefits, why don’t all individuals

in a population display high-speed acquisition? One possibility is

that there is a trade-off between rapid learning, and other

memory-related performance [7,8]. Might very rapid acquisition

result in tightening of associations too quickly, at the expense of

future flexibility to deal with environmental change? In an extreme

form, this is illustrated in the phenomenon of imprinting, where

one-trial learning can essentially result in a fixed and life-long

behaviour pattern [9]. But the same question is of course equally

relevant in other forms of learning [10,11]. Reversal learning [12]

is a standard experimental paradigm used to examine such

cognitive/behavioural flexibility [13–17] because it involves either

suppressing or undoing the initial association, and/or overwriting

it with new (potentially conflicting) information [18,19]. Reversal

learning relies on different molecular/neural mechanisms to initial

associative learning, and, at least in mammals, involves different

brain regions [15,16,18,20–23]. Here, we investigate the potential

trade-off between acquisition and reversal learning using bumble-

bee (Bombus terrestris) colonies faced with an ecologically relevant

associative reversal learning paradigm.

In nature, bees forage in a dynamic floral market, typically

containing dozens of flowers species, which not only differ in their

nectar and pollen rewards, but also their appearance, handling

costs, and spatial distribution. Depending on patterns of reward

production and the activities of other flower visitors, the average

rewards in a flower species may change rapidly during the course

of a day [24–26]. Thus, learning to associate which flower species

are the most rewarding, and when, could have a significant impact

on foraging success. Previously, we have demonstrated that

variation in learning speed among bumblebee colonies is directly

correlated with foraging performance, a robust fitness measure,

under natural conditions [6,27]. The slowest learning colonies

collected around 40% less nectar than the fastest learning colonies,

suggesting strong selection for higher learning speed. This raises
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the question of what maintains this appreciable intercolony

variation in learning speed.

The apparent fitness costs of enhanced cognitive performance in

insects [3–5] could create an investment trade-off between

learning/memory and other essential functions (e.g. immunity).

While mounting an immune response to fight an infection reduces

the ability of individual bees to both form and recall a learnt

association [28,29], there is no evidence for an investment trade-

off between learning and immune function at the colony level [30].

An alternative hypothesis is a potential trade-off between learning

speed and memory-related performance such that rapid learning

(and memory consolidation) might interfere with the acquisition of

new (potentially conflicting) information [18,31,32]. For example,

bees can learn the necessary motor skills to effectively extract

rewards from multiple flower species, but task efficiency suffers if

bees juggle multiple memories in a short time period [33,34].

During acquisition, a learnt association becomes consolidated

(stabilised) as a memory trace over time. Memory consolidation

may occur during the initial acquisition of the association or may

happen multiple times (reconsolidation) after the memory is

retrieved [31,35]. Results from honeybees (Apis mellifera) suggest

there are differences in the cellular mechanisms of memory

consolidation following initial and reversal learning [23,36],

underlining the differences in these two learning processes. A

simple way to test whether rapid initial learning interferes with

acquiring new (and potentially conflicting) information is a reversal

learning paradigm, which involves suppressing an earlier (learned)

association while a new association is formed [14,19,37,38]. Here

we compare variation in learning performance amongst individual

workers within the same colony and among colonies. Whilst

learning occurs at the individual level, bumblebee reproduction is

restricted to a subset of individuals within each colony. Hence

heritable intercolony (rather than inter-individual) variation in

performance forms the raw material upon which any selection for

learning ability could act [39–41]. If a trade-off exists between

rapid learning and other memory-related performance, we expect

faster learning colonies in the initial phase to learn more slowly

than other colonies in the reversal foraging scenario.

Materials and Methods

We obtained bumblebee (Bombus terrestris dalmatinus) colonies

from Koppert Biological Systems (Berkel en Rodenrijs, Nether-

lands). Prior to experiments, bees were fed pollen and artificial

nectar ad libitum without exposure to coloured stimuli associated

with food. All workers were uniquely marked on the thorax with

numbered, coloured tags (Opalith tags, Christian Graze KG,

Germany). This allowed individuals to be accurately identified in

laboratory learning experiments.

Controlled illumination for laboratory experiments was provid-

ed by high frequency fluorescent lighting (TMS 24F lamps with

4.3 kHz ballasts, Philips, Netherlands fitted with Activa daylight

tubes, Osram, Germany) to simulate natural daylight above the

bee flicker fusion frequency.

Learning performance
Pre-training. Bees were pre-trained to forage from 20

bicoloured, blue and yellow, artificial flowers in a laboratory

flight arena. The square, bicoloured flowers were constructed from

two halves (each 12624 mm): one yellow (PerspexH Yellow 260)

the other blue (PerspexH Blue 727). During pre-training all

bicoloured flowers were rewarded with 50% (w/w) sucrose

solution providing previously colour-naı̈ve bees with an equal

chance to associate both colours with reward [6,27]. Bees

completing at least 5 consecutive foraging bouts on bicoloured

flowers were selected for training.

Results from a pilot study indicate that variation in the number

of pre-training bouts, beyond this threshold of 5 consecutive

foraging bouts, does not significantly affect the speed with which

bees subsequently learn to associate yellow as a predictor of

reward. The learning performance of 20 bees (from a single

colony) was assessed using the same paradigm as the initial

training phase in experiment 2 (see below). Individual bees varied

in the number of pre-training bouts they performed (range = 5–24

bouts) prior to training. The number of pre-training bouts

performed by a bee was not significantly correlated with

subsequent learning speed (t value) during training (when yellow

flowers were rewarding and blue flowers were empty: Spearman’s

rank correlation coefficient (rs) = 20.270, n = 20, p = 0.249).

Experiment 1: Inter-individual variation in learning

performance. Foragers were trained individually in a flight

arena containing 15 blue (PerspexH Blue 727) and 15 yellow

(PerspexH Yellow 260) artificial flowers (each 24624 mm). During

the first phase of training (initial learning), yellow flowers were

most rewarding (each contained 10 ml of 50% (w/w) sucrose

solution), whilst blue flowers contained lower concentration

rewards (10 ml of 25% (w/w) sucrose solution). We recorded the

choice sequence made by each bee from the time it first entered

the flight arena, until it made at least 100 flower choices (over at

least two consecutive foraging bouts), including the first time it

probed a more rewarding (yellow) flower, plus any choices made

before this first probing event. In all cases this resulted in the bee

reaching saturation performance on the initial learning task.

The following morning we tested overnight memory retention

of the initial phase of the learning task with an unrewarded choice

test. Each test bee was observed during a single foraging bout in

the flight arena containing 15 blue and 15 yellow unrewarded

artificial flowers. During this bout we recorded the number of

times the test bee chose each flower colour from which we could

calculate its learned colour preference for yellow.

Following the overnight memory retention test, we reversed the

association between flower colour and reward (reversal learning):

therefore, in this second training phase, blue flowers were most

rewarding (each contained 10 ml of 50% (w/w) sucrose solution),

whilst yellow flowers contained lower concentration rewards (10 ml

of 25% (w/w) sucrose solution). We recorded all flower choices

made by each bee (following the reversal of rewarding flower

colour) until it made at least 100 flower choices including the first

time it probed a blue (more rewarding) flower in the second

training phase (plus any choices made before this first probing

event). Hence, each bee made at least 200 flower choices in total,

i.e. at least 100 choices in each of the two, initial (day 1) and

reversal (day 2), training phases. In total we tested 18 bees from a

single colony in this experiment.

Experiment 2: Intercolony variation in learning

performance. The general training procedure for this exper-

iment was similar to that described for experiment 1. Foragers

were trained individually, in a flight arena containing 10 blue and

10 yellow artificial flowers. During the first phase of training (initial

learning), yellow flowers were rewarding (each contained 15 ml of

50% (w/w) sucrose solution), whilst blue flowers were empty

(completely unrewarding). Each bee was observed until it made at

least 100 flower choices, including the first time it probed a

rewarding (yellow) flower. Upon completion of the initial learning

phase of training, we immediately reversed the association

between flower colour and reward (reversal learning): therefore,

in this second training phase, blue flowers were rewarding (each

contained 15 ml of 50% (w/w) sucrose solution), and yellow flowers
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were now unrewarding (empty). Hence initial and reversal phases

of the learning task were conducted on the same day (meaning that

overnight memory retention of the association of yellow as a

predictor of reward learned during the initial training phase could

not be assessed). We recorded all flower choices made by each bee

(following the reversal of rewarding flower colour) until it made at

least 100 flower choices, including the first time it probed a

rewarding (blue) flower (plus any choices made before this first

probing event). Hence, each bee made at least 200 flower choices

in total, i.e. at least 100 choices in each of the initial and reversal

training phases.

Fifteen bees were trained from each of six colonies (i.e. 90 bees

in total) of which 80 completed both training phases (of the 10 bees

that failed to complete reversal training 6 failed to probe a blue

(rewarding) flower and 4 ceased foraging before completing a

sufficient number of flower choices). In both experiments flowers

were changed and their positions re-randomized between foraging

bouts to prevent bees using scent marks or previous flower

positions as predictors of reward. Flower colours were selected so

that bees had to overcome their innate preference for blue [42,43],

before associating yellow (one of their innately least favourite

colours) with reward during the initial training phase. Bees were

then challenged to reverse this association in the reversal training

phase. Some earlier studies suggest a correlation between

bumblebee worker body size and learning and memory perfor-

mance [44,45], although we have not found such a correlation in

our work [27]. Nonetheless, because body size is correlated with

sensory performance in some tasks [46,47], thorax width

measurements were taken for each test bee as a measure of body

size.

Learning data were collected simultaneously from multiple

colonies, with observers moving haphazardly between colonies

when foragers were ready for training (i.e. when bees choose to

participate in the paradigm). Hence, while there will always be

some minor variation in conditions (e.g. time of day) when each

bee was tested our approach should not have introduced any

systematic (consistent) differences among colonies in variables (at

least partially) outside experimenter control. This view is

supported as we see no significant difference among colonies in

the average time of day when training started (Table 1a). All

colonies began this experiment at a similar age/developmental

stage and we ensured they all had equal access to food throughout

the experimental period. We found no significant variation among

colonies in the average number or duration of bouts performed in

either the initial or reversal training phases (Table 1b–e). While

minor variation in ‘uncontrolled parameters’ is inevitable, even

under laboratory conditions, this actually enhances the ecological

relevance of our results since when foraging in the field bees are

learning in the face of significantly greater variation in environ-

mental conditions.

Fitting learning curves
In both experiments, bees were regarded as choosing a flower

when they either approached (inspected), or landed on it (although

landing on a flower did not necessarily result in a feeding (probing)

event). Approach (inspection) flights have been found to be

informative as indicators of floral choice in our paradigm, since we

found that bumblebees increased the frequency of both approach

flights and landing events to the (more) rewarding flower colour

with increasing individual experience (see Figure 1, [48]).

Bees are highly sensitive to the sugar concentration of nectar

and will choose more concentrated nectar when it is available

[37,49,50]. Hence, choosing the most rewarding (experiment 1)/

sole rewarding (experiment 2) flower colour was regarded as

T
a

b
le

1
.

In
te

rc
o

lo
n

y
va

ri
at

io
n

in
se

ve
n

tr
ai

n
in

g
p

ar
am

e
te

rs
fo

r
e

xp
e

ri
m

e
n

t
2

.

C
o

lo
n

y
D

3
D

4
D

6
D

8
D

9
D

1
0

K
ru

sk
a

l-
W

a
ll

is
(X

2
)

p
-v

a
lu

e

m
e

a
n

±
S

.E
.

(m
e

d
ia

n
)

a)
St

ar
t

ti
m

e
o

f
tr

ai
n

in
g

1
1

:5
7
6

0
0

:2
5

(1
1

:4
0

)
1

2
:5

2
6

0
0

:3
5

(1
2

:2
9

)
1

4
:0

7
6

0
0

:0
7

(1
4

:1
2

)
1

3
:4

6
6

0
0

:3
9

(1
3

:5
2

)
1

3
:0

1
6

0
0

:3
4

(1
3

:1
1

)
1

2
:4

4
6

0
0

:2
8

(1
3

:1
1

)
(1

0
.0

0
)

0
.0

7
5

In
it

ia
l

L
e

a
rn

in
g

b
)

N
u

m
b

e
r

o
f

b
o

u
ts

4
.1

3
6

0
.3

5
(4

)
4

.8
7
6

0
.3

9
(5

)
3

.8
6

0
.0

9
(4

)
3

.7
3
6

0
.4

2
(3

)
3

.6
7
6

0
.2

3
(4

)
3

.7
3
6

0
.5

3
(3

)
(7

.5
2

)
0

.1
8

5

c)
b

o
u

t
d

u
ra

ti
o

n
/s

e
cs

2
4

6
.7

6
1

7
.5

(2
6

0
)

2
6

7
.8

6
2

6
.5

(2
3

5
)

2
8

7
.9

6
9

.8
(2

6
0

)
3

5
4

.7
6

6
1

.3
(2

3
4

)
2

3
7

.6
6

1
7

.6
(2

2
2

)
2

7
1

.1
6

3
4

.7
(2

5
3

)
(2

.5
3

)
0

.7
7

1

R
e

v
e

rs
a

l
L

e
a

rn
in

g

d
)

N
u

m
b

e
r

o
f

b
o

u
ts

4
.2

7
6

0
.4

9
(4

)
5

.7
3
6

0
.5

7
(6

)
4

.9
3
6

0
.5

1
(5

)
5

.1
4
6

0
.4

0
(5

)
4

.4
7
6

0
.3

6
(4

)
4

.6
7
6

0
.6

5
(5

)
(5

.5
2

)
0

.3
5

6

e
)

b
o

u
t

d
u

ra
ti

o
n

/s
e

cs
2

5
1

.3
6

2
6

.9
(2

4
6

)
2

6
0

.0
6

2
6

.6
(2

4
1

)
2

1
2

.0
6

2
0

.3
(1

9
0

.5
)

2
4

4
.5

6
2

6
.7

(2
0

7
.5

)
2

2
7

.1
6

1
4

.6
(1

9
5

)
2

2
4

.7
6

2
4

.1
(1

9
9

)
(4

.9
0

)
0

.4
2

8

N
u

m
b

e
r

o
f

L
a

n
d

in
g

s

f)
ye

llo
w

la
n

d
s

(i
n

it
ia

l)
2

9
.9

6
2

.0
(2

8
)

3
7

.4
6

2
.8

(3
3

)
2

5
.3

6
2

.2
(2

7
)

3
1

.4
6

2
.2

(3
0

)
3

6
.1

6
2

.5
(3

6
)

3
0

.9
6

2
.7

(2
9

)
(1

2
.4

1
)

0
.0

2
9

g
)

b
lu

e
la

n
d

s
(r

e
ve

rs
al

)
3

2
.1

6
3

.1
(3

5
)

4
5

.7
6

4
.0

(4
3

)
3

8
.0

6
3

.4
(4

0
.5

)
4

2
.1

6
2

.7
(4

3
.5

)
4

4
.0

6
3

.2
(4

2
)

3
8

.7
6

4
.0

(3
8

)
(7

.7
2

)
0

.1
7

3

(a
)

T
h

e
av

e
ra

g
e

ti
m

e
w

h
e

n
tr

ai
n

in
g

st
ar

te
d

fo
r

b
e

e
s

in
e

ac
h

o
f

th
e

si
x

co
lo

n
ie

s.
T

h
e

av
e

ra
g

e
n

u
m

b
e

r
(b

)
an

d
d

u
ra

ti
o

n
(c

)
o

f
b

o
u

ts
p

e
rf

o
rm

e
d

b
y

b
e

e
s

in
th

e
in

it
ia

l
tr

ai
n

in
g

p
h

as
e

.T
h

e
av

e
ra

g
e

n
u

m
b

e
r

(d
)

an
d

d
u

ra
ti

o
n

(e
)

o
f

b
o

u
ts

p
e

rf
o

rm
e

d
b

y
b

e
e

s
in

th
e

re
ve

rs
al

tr
ai

n
in

g
p

h
as

e
.

T
h

e
av

e
ra

g
e

n
u

m
b

e
r

o
f

la
n

d
in

g
s

m
ad

e
b

y
a

b
e

e
o

n
re

w
ar

d
in

g
fl

o
w

e
rs

,
ye

llo
w

la
n

d
in

g
s

d
u

ri
n

g
in

it
ia

l
tr

ai
n

in
g

(f
)

an
d

b
lu

e
la

n
d

in
g

s
in

re
ve

rs
al

tr
ai

n
in

g
(g

),
d

u
ri

n
g

th
e

1
0

0
fl

o
w

e
r

ch
o

ic
e

s
(i

n
cl

u
d

in
g

th
e

fi
rs

t
ti

m
e

it
p

ro
b

e
d

a
re

w
ar

d
in

g
fl

o
w

e
r

fo
r

th
e

fi
rs

t
ti

m
e

).
In

al
l

ca
se

s
th

e
m

e
an

(6
S.

E.
)

an
d

m
e

d
ia

n
va

lu
e

s
ar

e
g

iv
e

n
fo

r
e

ac
h

co
lo

n
y.

T
h

e
re

su
lt

s
fr

o
m

K
ru

sk
al

-W
al

lis
te

st
s

in
d

ic
at

e
w

h
e

th
e

r
va

ri
at

io
n

am
o

n
g

co
lo

n
ie

s
is

si
g

n
if

ic
an

t
(s

ta
ti

st
ic

al
ly

si
g

n
if

ic
an

t
p

-v
al

u
e

s
ar

e
sh

o
w

n
in

b
o

ld
).

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
4

5
0

9
6

.t
0

0
1

Cognitive Flexibility of Bumblebees

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e45096



‘correct’, whilst choosing a less rewarding (experiment 1)/totally

unrewarding (experiment 2) flower colour was deemed to be an

‘error’ (the colour of correct choice changed between the initial

and reversal learning phases of training).

Two learning curves were fitted to the flower choice data for

each individual bee to capture the dynamic nature of the

associative learning process in both the initial and reversal phases

of training. In each case the starting point for each learning curve

was the percentage of errors made (less rewarding or unrewarding

flowers chosen) before the bee first probed a (more) rewarding

flower for the first time (Figure 2). For bees making fewer than 5

flower choices (either by approaching or landing on them) before

probing a rewarding flower (n = 0 of 18 bees experiment 1; n = 17

of 90 (19%) initial phase and 8 of 80 (10%) reversal phase

respectively experiment 2), we used the colony mean percentage of

errors (calculated from bees making at least 5 such choices). Flower

choices made by each bee after (and including) the first time it

probed a (more) rewarding flower were evaluated as the number of

errors (less rewarding or unrewarding flowers chosen) in each

group of 10 choices. Learning curves (first order exponential decay

functions: y = y0+Ae2x/t) were fitted to these eleven data points (i.e.

the starting point and subsequent 10 groups of ten flower choices)

for each individual bee, using Microcal OriginH [6]. This was

repeated twice for each bee, once for the initial phase in which

yellow flowers were (more) rewarding, and again for the reversal

phase in which blue flowers were (more) rewarding. In both cases,

x is the number of flower choices made by a bee, starting with the

first time it probed a (more) rewarding flower, and y is the number

of errors (i.e. number of less rewarding or unrewarding flowers

chosen). The saturation performance level (y0) is the number of

errors made by a bee after finishing the learning process, i.e. when

reaching a performance plateau. The decay constant (t) is a

measure of learning speed: high values of t correspond to slow

learning, whereas lower t values indicate faster learners. A is the

curve amplitude: the maximum displacement (height) of the curve

above y0 (Figure 2). Both amplitude (A) and saturation perfor-

mance (y0) were constrained between 0–10 for curve fitting.

Results

Experiment 1: Inter-individual variation in learning
performance

Individual bees from the same colony showed appreciable and

predictable variation in learning performance during both phases

of this experiment. We found a significant positive correlation

between the speed with which an individual learnt to associate

yellow as the most rewarding colour in the initial phase and the

speed with which they learned to associate blue as a predictor of

higher rewards in the reversal phase (rs = 0.600, n = 18, p = 0.009:

Figure 3). On average, bees which were quick when learning to

associate yellow as a predictor of higher reward in the initial phase,

were also fast at learning that blue was a good predictor of higher

rewards in the reversal phase (low t values for both phases of the

experiment).

Faster learning individuals in the initial phase also retain the

learnt association in memory better than slower learners. Workers

that were quicker to learn to associate yellow as a predictor of

higher rewards in the initial training phase (i.e. those with low t

Figure 1. Summary of all flower choices made by foragers in the initial and reversal phase of experiment 2. Choices are broken down
into the colony mean (61 S.E.) numbers of blue and yellow landings (panels A and B) and approaches (panels B and D) made during consecutive bins
of 10 flower choices (n = 6 colonies). The flower choices begin with the first time the bee fed from a rewarding flower (yellow in the initial and blue in
reversal phase).
doi:10.1371/journal.pone.0045096.g001
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values) also showed stronger overnight retention of this learned

colour association (rs = 20.473, n = 18, p = 0.047: Figure 4).

However, the performance of bees in the unrewarded overnight

memory retention test was a very poor predictor of their learning

speed in the reversal training phase (rs = 0.009, n = 18, p = 0.974).

This shows that a) ‘forgetting’ the initially learnt association

overnight was not a prerequisite for faster reversal learning; and b)

visiting more flowers of the previously rewarded colour during the

unrewarded retention test did not predispose bees to reverse learn

faster.

When comparing the performance of individual bees within the

same colony we see no evidence of a trade-off between the speed of

initial learning and either the subsequent ability to acquire new

information or the reliability of memory retrieval (rather both

these factors are positively correlated with initial learning speed).

In addition, these data indicate that choices for the less rewarding

flower colour are indeed ‘errors’, rather than the bee exploring

alternatives to gather information: if this was not the case we

would expect that bees making more errors in the initial phase

Figure 2. Schematic diagram illustrating how bee performance changes during the initial and reversal phases of the learning task.
Here, the percentage of errors (less rewarding (experiment 1) or unrewarding (experiment 2) flowers chosen) is plotted against number of flower
choices made by a hypothetical bee. The initial learning phase (during which yellow flowers are (more) rewarding) is shown in the left hand panel,
whilst the reversal learning phase (during which blue flowers are now (more) rewarding) is shown on the right hand side. The dashed vertical line
indicates the point at which the association between floral colour and rewards are reversed. The bee starts the initial learning phase with an innate
preference for blue (over yellow), hence initially chooses a high percentage of blue (less rewarding or unrewarding) flowers. Once the bee probes a
(more) rewarding, yellow flower the percentage of blue flowers chosen begins to drop as it learns to associate yellow as a predictor of floral rewards.
The rate of performance improvement is initially fast, before gradually levelling off to the final task performance plateau (y0). Bees return to making a
high percentage of errors when the association between flower colour and reward are reversed. The yellow flowers they learned to visit in the initial
learning phase are now less rewarding/totally unrewarding. As soon as bees probe a blue flower, which now contains (more) rewards, they receive
positive reinforcement that this colour is now (more) rewarding.
doi:10.1371/journal.pone.0045096.g002

Figure 3. Correlation between initial and reversal learning speed for eighteen bumble-bee workers from a single colony. High t
values correspond to slow learning, while low values are generated by fast learners. Each data point corresponds to the learning speed (t value) for an
individual bee. On average, workers which learnt faster (had lower t values) in the initial learning task were also faster at learning to reverse this colour
association (rs = 0.600, n = 18, p = 0.009). This correlation remains significant even if the outlying data point on the right hand side of the figure is
excluded (rs = 0.525, n = 17, p = 0.031).
doi:10.1371/journal.pone.0045096.g003

Cognitive Flexibility of Bumblebees

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e45096



should learn faster in the reversal phase, which is the opposite of

what was observed.

Experiment 2: Intercolony variation in learning
performance

There was significant variation in colony learning speed in both

the initial and reversal phases of the learning task (t value: Kruskal-

Wallis: X2 = 14.283, p = 0.014 (initial) and X2 = 21.67, p = 0.001

(reversal); Figure 5). The differences in learning speed between

bees in these colonies were highlighted when we compared the

number of flower choices taken to reduce the number of errors

made by 80% from starting performance towards their saturation

level (y0, i.e. move 80% of the way from the top to the bottom of

their learning curve). In the initial phase bees from the fastest

learning colony (D3) took on average only 29 flower visits to

achieve an 80% improvement in task performance (from starting

error levels), while bees from the slowest learning colony (D10)

took 105 visits to reach the same performance level (therefore,

these two colonies differed in learning speed by a factor of 3.6). In

the reversal phase, bees from the fastest learning colony (D4) took

on average only 5 flower visits to achieve an 80% improvement in

task performance (from starting error levels), while bees from the

slowest learning colony (D10) took 33 visits to reach the same level

of performance (therefore, these two colonies differed in learning

speed by a factor of 7.2).

Although there was also significant variation among colonies in

the number of rewarding (yellow) flowers bees landed on during

the initial training phase (Kruskal-Wallis: X2 = 12.417, p = 0.029:

Table 1f), this was not significantly correlated with (t value)

learning speed (rs = 20.257, n = 6, p = 0.623) or other measures of

learning performance. There was no significant intercolony

variation in the average number of rewarding (blue) flowers bees

landed on during the reversal training phase (Kruskal-Wallis:

X2 = 7.715, p = 0.173: Table 1g).

We found a significant negative correlation between colony t

value and percentage of unrewarding (yellow) flowers chosen

before probing a rewarding flower in the reversal phase

(rs = 20.853, n = 6, p = 0.031: Figure 6). This suggests that

colonies which choose yellow more frequently (before probing

blue) in the reversal task also have higher learning speed (lower t

values). This correlation remained significant when controlling for

significant intercolony variation in average forager size (thorax

width: Kruskal-Wallis: X2 = 20.464, p = 0.001) with partial corre-

lation (partial correlation coefficient = 20.8894, p = 0.043).

Comparing the average colony performance we found a

significant positive correlation between colony learning speed (t

value) in the initial and reversal learning phase (rs = 0.872, n = 6,

p = 0.023; Figure 7). Controlling for significant intercolony

variation in average forager size (thorax width), this correlation

between initial and reversal learning speed was still upheld (partial

correlation coefficient = 0.8941, p = 0.041). Thus colonies which

were fast at learning to associate yellow as a predictor of reward in

the initial phase were also quick to learn in the reversal situation.

Discussion

Our study relates to a fundamental question in the evolutionary

biology of learning – why is learning gradual rather than

instantaneous [10,11]? We examine the potential trade-offs

between rapid learning and other memory-related performance

using an ecologically relevant associative learning paradigm. If

variation in the speed with which an association is learned has

significant repercussions for subsequent behavioural flexibility, we

would expect the learning performance of initially rapid learners

to be subsequently impaired when associations (such as those

between floral colour and reward) are reversed. Here, we find a

positive correlation between the learning speed of both individuals

within a single colony (experiment 1), and also among colonies

(experiment 2), in their performance in the initial and reversal

phases of a colour learning task. This suggests that both at the

individual and colony level fast initial learning does not appear to

constrain subsequent cognitive flexibility. Overall, our results

provide no evidence of a trade-off between learning speed and

Figure 4. Correlation between initial learning speed and overnight retention of learned association for eighteen bumble-bee
workers from a single colony. Bees which were quick to learn to associate yellow as a predictor of high levels of floral reward have low t values.
Overnight retention of this learned association was assessed by recording the percentage of yellow flowers chosen in an unrewarded choice test with
both blue and yellow flowers (see Methods for details). On average, workers which learnt more quickly that yellow was a predictor of higher
concentration sucrose solution rewards (had lower t values) in the initial learning phase were also likely to show a stronger learned preference for
yellow in the overnight retention test (rs = 20.473, n = 18, p = 0.047).
doi:10.1371/journal.pone.0045096.g004
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memory performance in bumblebees in this visual associative

learning task, but indeed the opposite.

Whilst the process of learning happens within the brain of an

individual bee, reproduction in social insects is restricted to a

subset of individuals within each colony. Hence heritable

intercolony, rather than inter-individual, variation in cognitive

performance forms the raw material upon which any selection for

learning ability might act. However, before we consider the

potential adaptive consequences of variation in cognitive flexibility

at the colony level, we must first consider the evidence for trade-

offs in individual workers. Comparing the performance of

individual bees (experiment 1), our results support the idea that

Figure 5. Variation in learning speed (t values) of bumblebees from the six colonies in the initial and reversal learning phase of
experiment 2. High values of t correspond to slow learning bees, whereas lower t values indicate faster learners. In each box the thick horizontal bar
is the colony median, whilst the lower and upper edges represent the 25% and 75% quartiles respectively. Whiskers indicate the maximum and
minimum values that are not outliers. Outliers are represented by open circles, extreme values by asterisks. The number of bees tested in each colony
(N) is displayed along the x-axis, and colonies are ranked by increasing 75% quartile values from left to right. Variation in learning speed for the initial
phase is shown in panel A, and for the reversal phase in panel B.
doi:10.1371/journal.pone.0045096.g005
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workers which were fast learners in the initial phase were also

quicker to reverse this association; this contrasts with the

hypothesis of a trade-off between initial learning speed and

subsequent cognitive flexibility (at least within the same sensory

modality). Increasing interest in the behavioural syndrome

perspective [51–53], suggests this angle deserves further direct

investigation. Indeed, more consistent relative performance of

individuals might be observed across contexts if learning ability

was assessed across different sensory modalities rather than two

visual tasks as used in our experiments. In the field of human

research this interest in consistency of ‘intelligence’ across tasks

dates back well over 100 years, and is the very philosophy

underpinning IQ tests [54–56].

Decision accuracy is dependent on the information available to

the animal making the choice. Gathering additional information,

or improving the quality of the information already available,

typically improves decision accuracy. However it usually incurs a

cost in terms of the time invested to obtain it [57]. If information,

such as which flower species currently contains the most rewards,

can quickly become inaccurate due to changes in the environment

animals may adopt behavioural strategies to update the informa-

tion they have. One possible strategy for foraging bees could be to

make periodic exploratory visits to each different flower species to

check what rewards they contain [24,58,59]. Hence, it is possible

that bees in our experiments may have chosen flowers containing

lower quality rewards to evaluate whether the information about

the relative rewards of both flower colours they had learnt was still

Figure 6. Correlation between percentage errors before probing first rewarding (blue) flower and learning speed for six colonies in
reversal phase. High t values correspond to slow learning, while low values are generated by fast learners. Data presented are colony mean (61
S.E.) t values on the x-axis, and the mean (61 S.E.) percentage of unrewarding, yellow flowers chosen by each colony on the y-axis. On average,
colonies which made more errors before probing a rewarding, blue, flower for the first time also had higher learning speed in the reversal phase of
this learning task (rs = 20.853, n = 6, p = 0.031).
doi:10.1371/journal.pone.0045096.g006

Figure 7. Correlation between initial and reversal learning speed for six bumble-bee colonies. High t values correspond to slow learning,
while low values are generated by fast learners. Data presented are colony mean t values (61 S.E.). On average, colonies with higher learning speeds
(lower t values) in the initial learning task were also faster at learning to reverse this colour association (rs = 0.872, n = 6, p = 0.023).
doi:10.1371/journal.pone.0045096.g007
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correct. In such a scenario these choices for the less rewarding

flower colour would not be an error in their associative learning,

but potentially an adaptive choice. If bees choosing the less

rewarding colour were indeed gathering information we would

expect bees making more such choices to perform better in the

reversal learning phase. However, our results provide no support

for this idea suggesting that choices for the less rewarding colour

are indeed decision errors.

We also observed that faster learning individuals in the initial

phase were better at retaining this learnt association in memory

overnight than slower learners. Interestingly, this finding contrasts

with work on Drosophila larvae indicating that the rover genotype is

quicker at learning to avoid a conditioned odour than the sitter

genotype, but that rovers were poorer than sitters at retaining this

learned association [7,8], although the Drosophila research com-

pared the performance of two distinct genotypes with a single gene

polymorphism, and our study documented variation among

bumblebee workers within a colony.

Although lasting only a single foraging bout, the overnight

memory retention test (in which both flower colours were

unrewarding) could have lead to partial extinction of the initial

learned association (in experiment 1). However, even in the

absence of such an unrewarded overnight retention test, the

overall effect (a positive correlation between the initial and the

reversal learning phase) was the same in experiment 2. It is also

important to keep in mind that extinction (on a per trial basis) is a

much slower process than acquisition (i.e. many more extinction

trials are needed to achieve the same change in behavioural

response as in rewarded trials [60,61]) - in other words a brief

unrewarded phase is unlikely to have a profound effect on

subsequent reversal learning, especially since it was experienced by

all individuals equally. Comparable reversal learning protocols to

experiment 1 have been used in other studies (e.g. [62]), although

because they trained bees in groups using proboscis extension

reflex (PER) conditioning it is not possible to elucidate any

differential effects of extinction trials (between initial and reversal

learning phases) on individual bees.

The overnight memory retention test might have differential

effects on bees depending on their performance in the initial

training task. Bees with better overnight memory could visit yellow

more frequently during the retention test, allowing them more

opportunity to extinguish the initial association, potentially making

them better prepared to undertake reversal training. If this

hypothesis is correct we would expect that overnight retention

performance should predict reversal learning speed. However this

is not the case - the performance of bees in the unrewarded

overnight memory retention test was very poorly correlated with

their learning speed in reversal training. So while the initial

learning speed of individual bees predicts both their overnight

retention performance and reversal learning speed, individual

overnight retention performance does not predict reversal learning

speed.

Comparing mean t values for the initial and reversal tasks for

each colony indicates that members of all colonies learned the

reverse association (between blue and reward) considerably more

quickly than the initial association between yellow and reward

(initial phase: Figure 7). Whilst all bees have more experience

learning in this particular context (arena cues, etc.) by the time the

reversal is performed, we might have expected this result because

naı̈ve B. terrestris workers show a strong innate bias for blue over

yellow in unrewarded choice tests [42,43]. Hence, during the

initial phase bees must overcome their innate preference for blue

(over yellow) and learn to associate yellow as a predictor of floral

reward. In this experiment all colonies showed an initial

preference for blue prior to probing a rewarding, yellow flower

for the first time (overall mean across 6 colonies = 64.3%:

Figure 8a). This initial blue preference was effectively modified

by experience during the initial learning phase, meaning that bees

began the reversal learning phase with a strong learned preference

for yellow (colony mean range = 82.3–95.2%: Figure 8a). It is

interesting that despite the fact that this yellow preference at the

start of the reversal phase is considerably stronger than the blue

preference at the onset of initial learning, the learning speed of

each colony was appreciably faster in the reversal (compared to

initial) phase. Also, those colonies which chose yellow more

frequently, prior to probing a blue, rewarding flower for the first

time, had higher average learning speed in the reversal phase. This

suggests that stronger initial colour bias, whether learned or

innate, promotes more rapid association of the initially non-

preferred colour and reward. Another possible explanation why

bees learned the reverse association more quickly than the initial

association might be related to the overlearning reversal effect

[63,64]; when training continues beyond the task saturation level

this ‘overtraining’ (overlearning) can lead to the animal showing a

greater readiness for reversal learning [13,65].

Evidence from honeybees suggests that their associative learning

performance deteriorates significantly following serial reversal of

stimulus-reward contingencies with either two colours [64] or

odours [38]. This suggests that serial reversals of same pair of

stimuli (whether odours or colours) cause honeybees to struggle

with the discrimination task (whether free-flying [64] or harnessed

[38]). Another study suggesting honeybee learning performance

actually improved with exposure to serial successive reversals

between odour cues and reward [66] could be explained by

configural learning as the odour pairs to be discriminated in each

phase of the reversal training procedure were unique (e.g. phase 1:

A+ vs. B2, phase 2: B+ vs. C2, phase 3: C+ vs. D2

(+ = rewarded, 2 = unrewarded odours) [38]). It would be of

interest to examine if bumblebees respond in a similar way if

trained in serial reversal experiments in the laboratory. Evidence

from Bombus impatiens trained to turn left or right in a T-maze

depending on the colour presented at the maze entrance suggests

that after a period of relatively poor task performance, learning

can improve after seven or more reversals [32].

It is easy to see how both fast initial learning and subsequent

behavioural flexibility, by rapid reversal of learned associations,

might be advantageous to a bee foraging in a complex

environment in which the predictive value of floral cues changes

rapidly. As bumblebee colonies in our study that learned to

associate yellow with rewards rapidly were also quick to reverse

this association, this suggests fast learning does not compromise

subsequent flexibility (at least when considering visual learning

tasks). This ability to rapidly learn to make and break associations

between floral colour and reward is likely to have contributed to

the higher levels of nectar foraging efficiency (a robust proxy

measure of colony fitness) shown by faster learning B. terrestris

colonies in our earlier study [6]. As all colonies experienced very

similar environmental conditions (both in commercial rearing

facilities and during their time in the laboratory) we infer that the

variation in learning performance observed at both the individual

and colony level is largely genetically determined. Due to

reproductive division of labour, any selective forces on cognitive

performance will act primarily on heritable variation at the colony

level. However, the similar correlation between initial learning

speed and subsequent behavioural flexibility both among individ-

uals (within a colony) and also among colonies suggests that

selection could also be indirectly affecting individual performance

(e.g. via pleiotropic effects).
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Our results indicate that some colonies are better able to learn

to form and reverse associations between colour and reward. This

might suggest that colony differences in learning performance and

flexibility could reflect more general differences in colony cognitive

ability, or ‘general intelligence’ (g) [54,56]. It would be interesting

to examine whether colonies which learn (and reverse) colour

associations rapidly also show consistently high levels of learning

performance in other visual tasks (e.g. spatial learning) or in

associative tasks involving other sensory modalities (e.g. odour or

tactile cue learning). Preliminary support for this view comes from

honeybee learning experiments (using proboscis extension re-

sponse conditioning) in which the group of individuals which were

most sensitive to sucrose stimuli show improved learning in both

odour and tactile conditioning [50,67]. If future work can confirm

that performance levels in an associative learning task using one

modality are indeed indicative of relative performance in other

modalities across individuals and colonies we would be closer to

the important goal of understanding the adaptive value of

variation in cognitive abilities.

Figure 8. Flower choices made before probing a rewarding flower for the first time in both the initial and reversal phase of
experiment 2. In the initial learning phase, there were no significant intercolony differences in either the percentage of unrewarding (blue) flowers
chosen, effectively the strength of preference for blue over yellow (Kruskal-Wallis: X2 = 6.965, p = 0.222: white columns – panel A) or the number of
flower choices made before probing a rewarding (yellow) flower for the first time (Kruskal-Wallis: X2 = 7.735, p = 0.171: white columns – panel B).
Hence, on average all bees chose blue flowers 64.3% (62.7: mean 61 S.E.) of the time, and made 22.1 (62.6: mean 61 S.E.) flower choices before they
probed a rewarding (yellow) flower for the first time. When the association between colour and reward was reversed, we observed intercolony
variation in the percentage of unrewarding (yellow) flowers chosen before probing a rewarding flower (Kruskal-Wallis: X2 = 10.341, p = 0.066),
although non-significant, this variation among colonies is suggestive of a trend (colony mean range = 82.3–95.2%: grey columns – panel A). There was
significant intercolony variation in the number of flower choices made before probing a rewarding (blue) flower (Kruskal-Wallis: X2 = 27.532,
p,0.0005: grey columns – panel B). Three colonies made on average only 15 or 16 choices, whilst the other three colonies made between 37 and 47.
Column heights are colony mean (61 S.E.) values. Colonies are ordered left to right by increasing percentage (panel A) or number (panel B) of
unrewarding (yellow) flowers chosen in the reversal phase.
doi:10.1371/journal.pone.0045096.g008
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