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Objective: Whether metabolic redistribution occurs in patients with white matter hyperintensities (WMHs) on magnetic 
resonance imaging (MRI) is unknown. This study aimed 1) to propose a measure of the brain metabolic network for an individual 
patient and preliminarily apply it to identify impaired metabolic networks in patients with WMHs, and 2) to explore the clinical 
and imaging features of metabolic redistribution in patients with WMHs.
Materials and Methods: This study included 50 patients with WMHs and 70 healthy controls (HCs) who underwent 
18F-fluorodeoxyglucose-positron emission tomography/MRI. Various global property parameters according to graph theory 
and an individual parameter of brain metabolic network called “individual contribution index” were obtained. Parameter 
values were compared between the WMH and HC groups. The performance of the parameters in discriminating between the 
two groups was assessed using the area under the receiver operating characteristic curve (AUC). The correlation between the 
individual contribution index and Fazekas score was assessed, and the interaction between age and individual contribution 
index was determined. A generalized linear model was fitted with the individual contribution index as the dependent variable 
and the mean standardized uptake value (SUVmean) of nodes in the whole-brain network or seven classic functional networks 
as independent variables to determine their association.
Results: The means ± standard deviations of the individual contribution index were (0.697 ± 10.9) x 10-3 and (0.0967 ± 
0.0545) x 10-3 in the WMH and HC groups, respectively (p < 0.001). The AUC of the individual contribution index was 0.864 
(95% confidence interval, 0.785–0.943). A positive correlation was identified between the individual contribution index 
and the Fazekas scores in patients with WMHs (r = 0.57, p < 0.001). Age and individual contribution index demonstrated a 
significant interaction effect on the Fazekas score. A significant direct association was observed between the individual 
contribution index and the SUVmean of the limbic network (p < 0.001).
Conclusion: The individual contribution index may demonstrate the redistribution of the brain metabolic network in patients 
with WMHs.
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INTRODUCTION

White matter hyperintensities (WMHs) on magnetic 
resonance imaging (MRI) are very common presentations in 
brain imaging. Many studies have demonstrated that severe 
WMHs are strongly associated with stroke, cognitive decline, 
and gait instability, and abnormalities in local brain 
regions and functional connectivity have been identified 
in patients with WMHs [1-3]. Accumulating evidence from 
neuroimaging techniques supports the idea that the brain is 
a complex network of interconnected areas [4-6]. WMHs are 
also considered syndromes involving disconnection of brain 
networks; functional MRI (fMRI) studies on the structural 
or functional brain support this hypothesis [7,8]. However, 
whether redistribution of brain metabolic networks occurs 
in patients with WMHs, especially in patients demonstrating 
WMHs but without cognitive decline, remains unknown.

Glucose, the main metabolic substrate of the brain, 
is necessary to produce energy for cerebral activity, 
with the energy demands of signal transduction and 
neurotransmission exceeding 80% of the total cerebral 
energy consumption [9]. Positron emission tomography 
(PET) is an important technique that can detect 
physiological metabolic processes using various radioactive 
ligands [10]. PET offers a unique potential for localizing and 
quantifying metabolic changes; it can increase diagnostic 
certainty by reflecting brain functions in typically affected 
brain regions and is suitable for monitoring disease 
progression [11]. PET has been gaining increased usage in 
exploring neural activity in the brain from the perspective 
of metabolism. Cerebral glucose metabolism is the primary 
source of energy for neuronal activity and is closely 
associated with local neural function, density, and integrity. 
Fluorodeoxyglucose (FDG) PET is the most frequently used 
in research on brain activity [12,13]. Our previous research 
revealed the characteristics of disruption and reorganization 
of metabolic connectivity in patients with WMHs and 
provided useful information on the neurophysiological 
mechanisms that may link the development of WMHs to a 
disabling status. However, some important issues remain 
unaddressed. The conventional method for metabolic 
network construction is based on the metabolic covariance 
within a group of subjects [14]. Only one correlation matrix 
was acquired for the whole group, and variance information 
at the individual level was lost [13,15]. Therefore, the 
relationships between metabolic properties in an individual 
brain and clinical measures, such as age and disease 

severity, could not be analyzed. Although many indicators 
describing brain status in particular diseases have been 
reported, markers for identifying early metabolic network 
injury on FDG-PET images are yet to be determined.

Thus, this study aimed 1) to propose a measure of 
brain metabolic network for an individual patient and 
preliminarily apply it to identify impaired metabolic 
networks in patients with WMHs, and 2) to explore the 
clinical and imaging features of metabolic redistribution 
in patients with WMHs. To accomplish this, we calculated 
global network properties based on individual networks, 
including small-worldness, efficiency, assortativity, 
synchronization, and hierarchy. An individualized index 
called the “individual contribution index” was estimated 
using a leave-one-subject-out method [16]. 

MATERIALS AND METHODS

Study Population
Whole-body 18F-FDG-PET/MRI images of 120 consecutive 

participants who visited the Panoramic Medical Imaging 
Diagnostic Center in Shanghai between January 2017 and 
December 2019 were retrospectively collected. Of these 
120 participants, 50 with WMHs were assigned to the WMH 
group, and 70 healthy participants were considered the 
controls (referred to as the HC group). The population was 
homogeneous in terms of race (Han nationality) and diet 
(dietary structure based on raw plant materials). This study 
was approved by the Institutional Review Board of our 
hospital (IRB No. 2020-188).

Inclusion and Exclusion Criteria
We included participants aged ≥ 18 years who underwent 

whole-body 18F-FDG-PET/MRI. The WMH group fulfilled the 
following inclusion criteria: 1) Fazekas score ranging from 
1 to 3 according to the MRI presentation [17], 2) modified 
Rankin Scale (mRS) ≤ 1, 3) no cognitive complaints, and 
4) mini-mental state examination (MMSE) score > 24. The 
HC group fulfilled the following inclusion criteria: 1) no 
abnormal signal on brain MRI, 2) mRS ≤ 1, 3) no cognitive 
complaints, and 4) MMSE score > 24.

The exclusion criteria for all participants were: 1) any 
diseases leading to other intracranial lesions (e.g., stroke 
and tumor), 2) other neurological diseases (e.g., Alzheimer’s 
disease, Parkinson’s disease, or epilepsy), 3) systemic 
diseases (e.g., cancer, severe abnormal glucose metabolism, 
serious heart, liver, kidney, blood system diseases, or 
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infectious diseases), and 4) psychiatric diseases (e.g., 
anxiety, depression, or schizophrenia).

The diagnosis was made independently by two senior 
neurologists and one senior radiologist with over 10 
years of work experience based on their own experience 
combined with the Siemens PET data post-processing 
software (molecular imaging nerve).

Evaluation of WMHs on MRI using Fazekas Scores
Two senior neurologists with over 10 years of experience, 

who were blinded to the clinical and fMRI data, analyzed 
the MRIs to separately rate WMHs in periventricular and 
deep white matter regions according to the Fazekas scoring 
system. Disagreements in the imaging analysis were 
resolved through the advice of a neuroradiologist. Two 
experienced neurologists and one neuroradiologist used the 
Fazekas scoring system.

WMHs were defined as signal abnormalities of variable 
size in the white matter indicating hyperintensities on 
T2-weighted images, such as fluid-attenuated inversion 
recovery and no cavitation (signal different from 
cerebrospinal fluid) [18]. Paraventricular and deep WMHs 
were scored separately, according to the Fazekas scoring 
system. The scores for the two parts were summed to 
calculate the total score. According to the Fazekas scoring 
system, paraventricular WMHs were recorded as absent 
(grade 0), cap-like or pencil-like thin-layer lesions (grade 
1), smooth halos (grade 2), or irregular paraventricular 
hyperintensities extending to the deep white matter (grade 
3). Deep WMHs were recorded as absent (grade 0), punctate 
lesions (grade 1), lesions beginning to demonstrate 
confluency (bridging) (grade 2), or large confluent lesion 
(grade 3) (Fig. 1).

Evaluation of the mRS Score
The mRS score used to evaluate neurological functioning 

was divided into six levels. The key mRS issues were 
completely asymptomatic (0), able to complete all daily 
activities (≤ 1), able to live independently (≤ 2), able 
to walk without assistance (≤ 3), not being able to walk 
independently and needing help from others but not 
requiring constant supervision (4), and bedbound and 
needing continuous attention and care (5) [19].

FDG-PET Image Acquisition and Preprocessing
All scans were performed on an integrated 3T PET/

MRI device (mMR Biograph, Siemens Healthcare) with 

simultaneous registration of the MR and PET images. The 
PET/MRI operating system used was syngo MRI VB20P 
(Siemens Healthcare GmbH). The participants were 
instructed to fast for at least 6 hours prior to undergoing an 
MRI scan, and their blood glucose levels were measured to 
ensure the absence of hyperglycemia (> 150 mg/dL) before 
each scan. Light and sound shielding were applied before 
and during scanning. The participants were required to close 
their eyes and remain calm throughout the examination. The 
acquisition time of the PET/MRI scans was 50 minutes with 
an injection of 3.7 MBq/kg. 18F-FDG-PET/MRI datasets were 
acquired in five bed positions from the head to mid-thigh 
with three-dimensional image reconstruction and Gaussian 
filtering with 4.0-mm FWHM (slice thickness 2.03 mm; 
acquisition matrix, 172 x 172; in-plane resolution 4.17 x 
4.17 mm). The MR images used for MR-based attenuation 
correction were acquired with breath-holding using a dual-
echo spoiled gradient-echo sequence with Dixon fat and 
water separation (echo time 1 = 1.23 ms, echo time 2 = 2.46 
ms, repetition time = 3.6 ms, and flip angle = 10°).

The 18F-FDG-PET brain images of each participant were 
preprocessed using Statistical Parametric Mapping 12.0 
(SPM12; http://www.fil.ion.ucl.ac.uk/spm/) and GRETNA v2.0 
[20], running on a MATLAB 2013b platform. The preprocessing 
included the following stages: 1) Raw PET brain images were 
converted to the NIFTI format, 2) The edges were cropped, 
leaving only the brain intact, 3) The origin was set as the 
anterior commissure, 4) The T1 image was spatially normalized 
to the standard Montreal Institute of Neurology space, and 
transformation parameters were applied to the co-registered 
PET images for PET spatial normalization, 5) PET images 
were segmented into 90 regions (without the cerebellum) 
according to an automated anatomical labeling (AAL) system 
[21] or seven classic networks based on a study by Yeo et al. 
[22]. 6) The average standardized uptake value (SUVmean) of 
each region of interest (ROI) was extracted for the analysis. 
In each participant, the mean 18F-FDG uptake in the ROIs was 
regressed against the mean 18F-FDG uptake of the whole brain 
to correct for variability in injected activity (Fig. 2A) [23].

Construction of an Individual Metabolic Network and 
Computation of Graph Theory Metrics

Previous group-based metabolic network studies have 
described the metabolic covariance of a group [24] but lost 
metabolic information at the individual participant level. 
Here, an individual’s metabolic network was constructed 
using the Jensen–Shannon divergence similarity estimation 
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(JSSE) method [25]. Ninety ROIs from the AAL atlas were 
used to represent the nodes. Correlations between each pair 
of nodes calculated using JSSE describe the similarity of 
glucose metabolism. The SUVmean of each ROI was extracted 
to generate a 90 x 90 correlation matrix for each participant 
[26]. The Jensen–Shannon (JS) divergence was calculated 

using the following equation: 
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Fig. 1. Demonstration of Fazekas scores on MRI images. 
A. No DWM lesions. B-D. Arrows represent DWM lesion. Typical DWM lesions with T2-weighted FLAIR hyperintensity. T2-weighted FLAIR 
hyperintensity in deep white matter (B). T2-weighted FLAIR hyperintensity in both paraventricular and deep white matter (punctate lesions) (C). 
T2-weighted FLAIR hyperintensity in both paraventricular and deep white matter (patchy lesions) (D). DWM = damaged white matter
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Fig. 2. Flowchart of image preprocessing, construction of individual metabolic networks, calculation of the individual contribution 
index, and correlation analysis. 
A. Image preprocessing and segmentation of each participant. B. Construction of individual metabolic networks using the JSSE method. Global 
graph metrics for each network were then calculated. C. Estimation of the contribution of each individual to the overall configuration of the 
network by extracting the individual contribution index from the overall metabolic correlation matrix. D. Analysis of the ROC curve to assess 
the diagnostic accuracy of the global network parameters and the individual contribution index for distinguishing patients with white matter 
hyperintensities from participants in the healthy control group. E. Analysis of factors associated with the individual contribution index, including 
clinical features and imaging features. JSSE = Jensen–Shannon Divergence Similarity Estimation, ROC = receiver-operating characteristic
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metabolic connectivity that is used to construct the 
adjacency matrix. The global properties of the undirected 
binary matrices were calculated, including the clustering 
coefficient (Cp), characteristic path length (Lp), Gamma, 
Lambda, small-worldness (Sigma), global efficiency (Eglob), 
local efficiency (Eloc), assortativity, synchronization, and 
hierarchy (Fig. 2A, B) [20].

Individual Contribution Index
The impact of each individual on the overall group-

level configuration of the brain network was measured 
by extracting the “individual contribution index” from 
the overall metabolic correlation matrix [16]. In each 
group, the P of each individual was excluded to estimate 
its contribution to the group [16]. Mantel’s test statistic 
was used to estimate the contribution of each participant 
according to the similarity between the global correlation 
matrices before and after leave-one-out. Mantel’s test is a 
method for evaluating the similarity between correlation 
matrices and can be described as presented in Equation (2) 
(Fig. 2A, C) [27]. 
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The Mantel’s test coefficient ranges from -1 to 1. A value of 
0 indicates no significant difference, and ± 1 represents the 
maximum positive or negative correlation between matrix P 
and matrix M. 

The Saggar formula was used to format the individual 
contribution index of individual Rx in the group-level 
metabolic brain network, using Equation (3).
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(Lambda), small-worldness (Sigma), global efficiency (Eglob), local efficiency (Eloc), 

assortativity, synchronization, and hierarchy (Fig. 2A, B) [20]. 

 

Individual Contribution Index 

The impact of each individual on the overall group-level configuration of the brain 

network was measured by extracting the “individual contribution index” from the 

overall metabolic correlation matrix [16]. In each group, the P of each individual was 

excluded to estimate its contribution to the group [16]. Mantel’s test statistic was used 
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and updated the number of participants to N − 1. The individual contribution index was 

calculated using the Mantel’s test. Pi = 1.... N represents continuous removal of Pi from 

the original group. 

 

    (3)

We defined the number of participants in the group as N, 
then removed one participant and updated the number of 
participants to N - 1. The individual contribution index was 
calculated using the Mantel’s test. Pi = 1.... N represents 
continuous removal of Pi from the original group.

Statistical Analysis
For between-group comparisons, the two-sample t test 

was used for continuous variables, and the χ2 test was used 
for categorical variables. 

Receiver operating characteristic (ROC) curve analysis was 

conducted to assess the performance of the global property 
parameters according to graph theory and the individual 
contribution index to distinguish patients with WMHs from 
the HC group. Discrimination performance was measured 
using the area under the ROC curve (AUC). The bootstrap 
bias-corrected 95% confidence interval (CI) of the AUC was 
calculated.

Correlation analysis was performed to investigate 
associations between the Fazekas scores and individual 
contribution index as well as between the global property 
parameters and individual contribution index. The joint 
effect of age and individual contribution index on the 
Fazekas score was assessed using interaction models with 
the Fazekas score as the dependent variable. A generalized 
linear model was fitted to assess the independent 
association between the SUVmean of the nodes in the whole-
brain network, seven classic functional networks, and the 
individual contribution index (as the dependent variable).

SPSS 21.0 (IBM Corp.) and STATA 16.0 (Stata Corp.), were 
used for statistical analyses. A two-tailed p < 0.05 was 
considered statistically significant.

RESULTS

Demographics
In total, 120 participants were included in the study. Of 

the participants, 50 were in the WMH group, and 70 were in 
the HC group. No significant differences in sex, mean age, 
body mass index (BMI), and blood glucose were observed 
between the two groups. The Fazekas scores were grade 
1 in 24 (48%), grade 2 in 16 (32%), and grade 3 in 10 
individuals (20%) (Table 1). 

Global Property Parameters
No significant differences in global network properties 

Table 1. Demographics of Patients with WMHs and HC

WMH Group
(n = 50)

HC Group
(n = 70)

P

Age, year 56.30 ± 9.52 55.49 ± 3.97 0.523
Female 17 (34) 17 (24.3) 0.314
Body mass index, kg/m2 24.86 ± 3.76 24.07 ± 3.23 0.224
Blood glucose, mmol/L   6.03 ± 1.84   6.06 ± 1.20 0.896
Fazekas score = 1 24 (48)
Fazekas score = 2 16 (32)
Fazekas score = 3 10 (20)

Data are mean ± standard deviation or patient number (%). HC = 
healthy control, WMHs = white matter hyperintensities
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including Cp, Lp, Gamma, Lambda, Sigma, Eglob, Eloc, 
assortativity, synchronization, and hierarchy were observed 
between the two groups (Table 2). 

Individual Contribution Index 
The mean score ± standard deviation of the individual 

contribution index was (0.697 ± 10.9) x 10-3 in the 
WMH group and (0.0967 ± 0.0545) x 10-3 in the HC 
group (p < 0.001). The performance of the index in 
discriminating the WMH and HC groups in terms of AUC 
was 0.864 (95% CI, 0.785–0.943; p < 0.001) (Fig. 3). The 
global property parameters exhibited no discrimination 
capability (Supplementary Fig. 1). Furthermore, according 

to the correlation analysis between the global property 
parameters and the individual contribution index, only 
Lambda demonstrated a weak negative correlation with the 
individual contribution index (r = -0.191, p = 0.037) (Fig. 4).

Effects of Age and the Individual Contribution Index on 
Fazekas Scores

A positive correlation was identified between the 
individual contribution index and the Fazekas score in 
the WMH group (r = 0.57, p < 0.001) (Fig. 5A). To further 
explore the effect of the potential interaction between 
age and the individual contribution index on the Fazekas 
score, the WMH group was categorized into 2 x 2 subgroups 
according to age (≥ 60 vs. < 60 years) and the individual 

Fig. 3. Individual contribution index values in the WMH and HC groups. 
A. A significant difference was observed in the individual contribution index between the WMH and HC groups. B. The AUC for discriminating 
between the two groups was 0.864 (95% confidence interval, 0.785–0.943; p < 0.001). AUC = area under the receiver-operating characteristic 
curve, HC = healthy control, WMH = white matter hyperintensities
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Table 2. Global Property Parameters of Patients with WMHs and 
HC

WMH Group
(n = 50)

HC Group
(n = 70)

P

Cp 0.153 ± 0.015 0.152 ± 0.015 0.830
Lp 0.464 ± 0.001 0.464 ± 0.001 0.889
Gamma 0.214 ± 0.014 0.213 ± 0.014 0.651
Lambda 0.300 ± 0.001 0.300 ± 0.001 0.143
Sigma 0.214 ± 0.014 0.213 ± 0.015 0.645
Eglob 0.195 ± 0.001 0.195 ± 0.001 0.869
Eloc 0.223 ± 0.011 0.222 ± 0.011 0.844
Assortativity -6.820 ± 1.021 -6.938 ± 1.140 0.561
Synchronization 0.161 ± 0.091 0.159 ± 0.109 0.918
Hierarchy 1.631 ± 0.883 1.497 ± 0.883 0.415

Data are mean ± standard deviation. Cp = clustering coefficient, 
Eglob = global efficiency, Eloc = local efficiency, Gamma = 
normalized clustering coefficient, HC = healthy control, Lambda = 
normalized characteristic path length, Lp = characteristic path 
length, WMHs = white matter hyperintensities
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Fig. 4. Scatter plot of Lambda and the individual contribution 
index, indicating a weak negative correlation.
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contribution index (high vs. low). The interaction models 
were fitted using the Fazekas scores as the dependent 
variable. A significant interaction was observed for this 
association (β, -1.286 for the interaction term; 95% CI, 
-2.036 to -0.537; p = 0.001) (Fig. 5B).

To better understand the interaction of non-elderly 
participants on the association between the individual 
contribution index and Fazekas scores, we assessed the 
differences in the predictive marginal means of the Fazekas 
scores with participants stratified into non-elderly and 
elderly participants and the individual contribution index. 
The CIs of the margins of the Fazekas scores overlapped 
when elderly participants were compared across categories 
of low and high individual contribution index scores (Fig. 
5B). A significant difference was noted when non-elderly 
participants with WMHs were compared across categories 
of low and high individual contribution index scores. When 
elderly participants with WMHs were used as the reference, 
the β value was 0.633 (95% CI, 0.109–1.158; p = 0.019) 
(Fig. 5B).

Correlation between Glucose Uptake and the Individual 
Contribution Index

To investigate the correlation between glucose uptake in 
each ROI and individual contribution index, a generalized 
linear model was fitted with the individual contribution 
index as the dependent variable and the SUVmean of 90 nodes 
as independent variables. Significant correlations were 
identified between the individual contribution index and 
the SUVmean of the left angular gyrus, left inferior temporal 
gyrus, right precuneus, right angular gyrus, left dorsolateral 

superior frontal gyrus, left inferior occipital gyrus, left 
medial superior frontal gyrus, right middle frontal gyrus, 
right Rolandic operculum, right inferior frontal gyrus 
(opercular part), and right putamen (p < 0.001). In another 
generalized linear model with all confounders included (age, 
sex, BMI, and blood glucose), significant correlations were 
identified between the individual contribution index and the 
SUVmean of the left inferior temporal gyrus, right putamen, 
right precuneus, right middle frontal gyrus, left angular 
gyrus, right cuneus, right Rolandic operculum, left pallidum, 
left inferior occipital gyrus, right anterior cingulate gyrus, 
left median cingulate gyrus, and right inferior temporal 
gyrus (p < 0.001). In this model, age was a significant 
variable (p < 0.001) (Fig. 6).

Correlation between Glucose Uptake in the Functional 
Network and the Individual Contribution Index

To investigate correlations between the individual 
contribution index and glucose uptake of functional 
networks, a generalized linear model was fitted with the 
individual contribution index as the dependent variable 
and the SUVmean of seven functional networks (visual, 
somatomotor, dorsal attention, ventral attention, limbic, 
frontoparietal, and default networks) as independent 
variables. A significant correlation was identified between 
the individual contribution index and the SUVmean of the 
limbic network (β, 0.913; 95% CI, 1.58–3.93; p < 0.001). 
In another generalized linear model with all confounders 
included (age, sex, BMI, and blood glucose), a significant 
correlation was identified between the SUVmean of the 
limbic network and the individual contribution index (β, 

Fig. 5. The effects of age and the individual contribution index on Fazekas scores. 
A. Correlation between the individual contribution index and Fazekas score. A positive correlation was identified between the individual 
contribution index and Fazekas score in participants with WMHs (r = 0.57, p < 0.001). B. Predictive marginal means of the Fazekas score with 
participants stratified by age and the individual contribution index. The confidence intervals of the margins of the Fazekas scores overlapped 
when the elderly participants were compared across low and high individual contribution index scores. A significant difference was observed 
when the non-elderly participants were compared across different individual contribution index. 
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0.953; 95% CI, 1.57–4.28; p < 0.001). In this model, all 
confounders were non-significant variables (Fig. 6). 

DISCUSSION

Here, comparisons of global network metrics based on 
individual metabolic brain networks provided no crucial 
information regarding differences in abnormal metabolic 
networks between participants with WMHs (whose Fazekas 
scores ranged from 1 to 3) and healthy participants. We 
then used the individual contribution index, which has been 
widely used in brain network research on nervous system 
diseases, including studies on metabolic brain networks [16]. 
The present study investigated the individual contribution 
index as a method for identifying metabolic brain network 
damage and its related factors in participants with WMHs to 
obtain more information and a better understanding of the 
underlying characteristics of related diseases. The primary 
findings indicated that the individual contribution index 
could distinguish the damage to the metabolic network in 
participants with WMHs. Moreover, associations between the 

Fazekas score and the SUVmean of the limbic network were 
identified. 

The individual contribution index is estimated based on 
the leave-one-subject-out strategy, in that an individual 
is eliminated and the metabolic correlation network is re-
estimated at the group level. Similar methods have been 
used for cross-validation in machine learning [28,29]. Here, 
the WMH group had a higher individual contribution index 
than the HC group did, which suggests that participants 
with a greater individual contribution index may experience 
more severe damage in the metabolic brain network. 
Specifically, participants with WMHs and high Fazekas 
scores sustained more severe damage to the metabolic brain 
network. Therefore, participants with WMHs and a higher 
individual contribution index demonstrated worse metabolic 
network structures. The basic circuit for information 
communication among subnetworks may be interrupted. 
Using the leave-one-subject-out approach, Saggar et al. 
[16] observed lower intelligence scores in individuals with 
fragile X syndrome who had a higher individual contribution 
index. This result was consistent with our findings. If the 

Fig. 6. Correlation between glucose uptake of the functional network and the individual contribution index. 
A. Image preprocessing and region of interest segmentation. B. A generalized linear model was fitted with the individual contribution index as 
the dependent variable and all 90 nodes as independent variables with or without confounders. C. A generalized linear model was fitted with 
the individual contribution index as the dependent variable and all seven functional networks (visual, somatomotor, dorsal attention, ventral 
attention, limbic, frontoparietal, and default network) as independent variables, with or without confounders. BMI = body mass index, SUVmean = 
mean standardized uptake value

A B
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individual contribution index can reflect the optimal balance 
between individuals and groups, it can be considered a 
new network parameter for neurophysiological diseases. 
Additionally, one of the global network parameters, Lambda, 
demonstrated a negative correlation with the individual 
contribution index. Lambda is an integration indicator 
that reflects the brain’s ability to gather information from 
distributed brain areas [30]. Hence, participants with faster 
information transmission in the glucose metabolism network 
may demonstrate a higher individual contribution.

In general, the impact of WMHs may increase 
substantially with the growth of the aged population, which 
is a leading contributor to age-related dysfunction in brain 
health. Multiple mechanisms may contribute to the age-
related destruction of cerebral small vessel function and 
structure, although the rate of change can be augmented 
or inhibited by additional factors, including genetics, 
environment, behavior, diet, and the presence or absence of 
various diseases [31]. In our study, a correlation between 
the individual contribution index and the Fazekas score was 
identified, and this relationship changed after adding age 
as a factor. A significant association between the individual 
contribution index and the Fazekas score was observed 
in non-elderly participants, although no such association 
was identified in the elderly. Non-elderly participants with 
WMHs had lower Fazekas scores only in the presence of a 
low individual contribution index. Our results verified the 
hypothesis that WMHs reflect not only the disease itself but 
also the healthy state of microcirculation in relation to age.

Additionally, this study identified that the network 
nodes that had an impact on the individual contribution 
index were distributed in the visual, somatomotor, dorsal 
attention, limbic, frontoparietal, and default networks. 
Specifically, the inferior occipital gyrus belongs to the 
visual network; the Rolandic operculum to the somatomotor 
network; the inferior temporal gyrus to the dorsal attention 
network; the dorsolateral superior frontal gyrus and 
putamen to the limbic network; the middle frontal gyrus and 
inferior frontal gyrus (opercular part) to the frontoparietal 
network; and the angular gyrus, precuneus, and medial 
superior frontal gyrus to the default network. Most of these 
nodes belong to a default network. Further investigation 
into the functional network and individual contribution 
index revealed evident differences in the limbic network, 
which is involved in higher functions of the human brain, 
such as cognitive processes and emotional regulation [32]. 
Studies have reported increased glucose metabolism in the 

limbic network in several other cognitive diseases [33-35]. 
The clinical and pathophysiological factors of WMHs have 

been widely studied using group-level analyses; however, 
individual differences within groups might have been 
neglected. We used a novel JSSE [25] method to construct 
an individual-level metabolic brain network and directly 
estimated the symmetrical metabolic network using 18F-FDG-
PET. We calculated common global network parameters, 
including small-worldness, efficiency, assortativity, 
synchronization, and hierarchy, which demonstrated no 
significant difference between the WMH and HC groups. A 
possible reason may be that our participants with WMHs 
were in the early stage of the disease, with Fazekas scores 
between 1 and 3. The global network parameters may not 
be sensitive to metabolic brain network injuries in such 
individuals. Moreover, a relatively small sample size might 
have limited the detection power. Thus, further studies with 
larger cohorts are required to verify our preliminary findings.

This study had several limitations. First, because our 
sample size was small and from the same center, the 
reliability of the results needs to be further confirmed. 
Second, owing to the small sample size, we could not cross 
verify our results. Third, the Fazekas score is a subjective 
grade. If automated WMHs volume quantitative analysis 
is used in combination, better results may be obtained. 
Finally, the negative result might be due to the difficulty 
in obtaining findings with a small number of participants. 
Moreover, the patients’ conditions were mild, so the 
metabolic changes in the anatomical regions may also be 
mild, or metabolism in the anatomical regions may be in 
the compensatory stage.

In conclusion, the current study demonstrated that the 
individual contribution index may be used to identify an 
impaired brain metabolic network in patients with WMHs 
when compared with the general population. The individual 
contribution index was related to the Fazekas score and the 
SUVmean of the limbic network. Further studies may provide 
an opportunity for the individual identification of brain 
metabolic network injuries. 
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