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Abstract
The cerebellum is a brain structure involved in coordination, control, and
learning of movements, as well as certain aspects of cognitive function.
Purkinje cells are the sole output neurons from the cerebellar cortex and
therefore play crucial roles in the overall function of the cerebellum. The type-1
metabotropic glutamate receptor (mGluR1) is a key “hub” molecule that is
critically involved in the regulation of synaptic wiring, excitability, synaptic
response, and synaptic plasticity of Purkinje cells. In this review, we aim to
highlight how mGluR1 controls these events in Purkinje cells. We also describe
emerging evidence that altered mGluR1 signaling in Purkinje cells underlies
cerebellar dysfunctions in several clinically relevant mouse models of human
ataxias.
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Introduction
The cerebellum is involved in coordination, control, and learning 
of movements and also in some aspects of cognitive functions1,2. 
Purkinje cells are the sole output neurons from the cerebellar cor-
tex and receive two distinct excitatory inputs, namely parallel fibers 
and climbing fibers1,3,4 (Figure 1). Parallel fibers are the axons of 
granule cells in the cerebellar cortex and form synapses on spines 
of Purkinje cell dendrites. Synaptic inputs from individual paral-
lel fibers are weak, but numerous (as many as 100,000 in mice) 
parallel fibers innervate each Purkinje cell. Granule cells are driven 
by excitatory inputs from mossy fibers originating from various 
precerebellar nuclei and the spinal cord (Figure 1). Mossy fibers are 
thought to convey sensory information arising from various body 
parts and motor command signals from the upper centers through 
mossy fibers (Figure 1). Climbing fibers originate from the infe-
rior olive in the contralateral medulla oblongata and form direct 
synaptic contacts with Purkinje cells (Figure 1). A single Purkinje 
cell is innervated by only one climbing fiber in the adult cerebel-
lum, but each climbing fiber makes hundreds of strong connec-
tions with Purkinje cell proximal dendrites (Figure 1). Purkinje 
cells then form inhibitory synaptic connections on neurons in the 
deep cerebellar nuclei and vestibular nuclei (Figure 1). Climbing 

fibers are thought to convey error signals that represent the mis-
match between the motor command and the actual movement1,5  
(Figure 1). A predominant theory of cerebellar motor learning 
is based on long-term depression (LTD) that occurs at parallel  
fiber–Purkinje cell synapses when they are activated conjunctively 
with climbing fiber input for a certain period of time1,5,6. Paral-
lel fiber inputs associated with movement error will be depressed 
by LTD, and information flow through the cerebellar circuitry 
changes so as to support and facilitate the correct movements1,5,6  
(Figure 1). Synaptic connections onto Purkinje cells from climbing  
fiber and parallel fibers as well as from inhibitory interneurons  
are formed and established during postnatal development7–14. 
Therefore, activity and synaptic responses of Purkinje cells, LTD  
at parallel fiber–Purkinje cell synapses, and establishment of  
synaptic wiring onto Purkinje cells during postnatal development 
are crucial factors for proper functions of the cerebellum.

The metabotropic glutamate receptor (mGluR) family of G-protein- 
coupled receptors (GPCRs) consists of eight members, mGluR1 to 
mGluR8, which are divided into group I (mGluR1 and mGluR5), 
group II (mGluR2 and mGluR3), and group III (mGluR4, 
mGluR6, mGluR7, and mGluR8)15,16. Group I mGluRs are 
coupled to the G-protein G

q
 family (G

q
 and G

11
), which medi-

ates inositol trisphosphate (IP
3
)-induced Ca2+ mobilization and  

activation of protein kinase C (PKC). Purkinje cells in the  
cerebellum strongly express mGluR117–20, and many studies have 
shown that mGluR1 signaling is essential for various aspects of  
cerebellar function21–24. A crucial role for mGluR1 in Purkinje cells 
is best illustrated by the multiple phenotypes of cerebellar dys-
function in mGluR1-knockout mice25–27, which can be rescued by 
Purkinje cell-specific re-expression of mGluR128,29. Moreover, dys-
regulation of mGluR1 signaling in Purkinje cells has been found 
in several clinically relevant mouse models of human cerebellar 
ataxias, and mutations of mGluR1 and related molecules have been 
reported in certain types of human ataxias24,30. Thus, this review 
aims to summarize the roles of Purkinje cell mGluR1 signaling 
in normal cerebellar functions and their dysfunctions relevant to 
human ataxias.

Background
Among a number of signaling molecules that have been identi-
fied to be involved in cerebellar LTD, mGluR1 and its downstream 
molecules constitute a canonical pathway for LTD (see Figure 2). 
Mutant mice lacking mGluR1 or its downstream molecules show 
deficient LTD, clear impairment of cerebellum-dependent motor 
learning, and motor discoordination25,26, supporting the notion that 
cerebellar LTD is a cellular basis of motor learning1,5,31. It has also 
been shown that the mGluR1 signaling cascade is crucial for the 
elimination of redundant climbing fiber to Purkinje cell connec-
tions during postnatal cerebellar development27,32 (see Figure 3).  
This phenomenon is known to be a representative model of  
“synapse elimination” or “axon pruning” in the developing 
brain7,8,33–36. In mutant mice lacking mGluR1 or its downstream 
molecules (Gαq, phospholipase Cβ4, or PKCγ), multiple climb-
ing fiber innervation of Purkinje cells persists into adulthood  
because of the impairment of climbing fiber elimination during  
the third postnatal week27,32,37–39 (Figure 3). Importantly, defi-
cient LTD, impaired motor learning, motor discoordination, and  Figure 1. Simplified scheme of cerebellar neural circuitry.
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Figure 2. Schematic diagram of type-1 metabotropic glutamate receptor (mGluR1)-mediated long-term depression (LTD) at parallel 
fiber to Purkinje cell synapse. The long C-terminal domain of mGluR1a is required for inositol trisphosphate (IP3)-mediated Ca2+ release and 
LTD induction. mGluR1b lacking this C-terminal domain cannot drive the cascade for LTD induction. A1R, A1-subtype adenosine receptor; 
AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; DG, diacylglycerol; CaV3.1, CaV3.1 T-type voltage-dependent 
Ca2+ channel; GABABR, type-B γ-aminobutyric acid receptor; PIP2, phosphatidylinositol 4,5-bisphosphate; PKC, protein kinase C; PLC, 
phospholipase C; PQ, P/Q-type voltage-dependent Ca2+ channel.

Figure 3. Schematic diagram of type-1 metabotropic glutamate receptor (mGluR1) signaling in Purkinje cells required for developmental 
synapse elimination. Parallel fiber synaptic inputs activate mGluR1 and its downstream signaling (Gq – phospholipase Cβ4 [PLCβ4] – protein 
kinase Cγ [PKCγ]) in Purkinje cells. Sema7A retrogradely acts on its Plexin C1 (PlxnC1)/Integrin B1 (ItgB1) receptor on “weak” climbing fibers 
and eliminates them from the soma during postnatal day (P)15 to P18. The same mGluR1 to PKCγ signaling eliminates parallel fiber synapses 
from proximal dendrites during P15 to P30. The long C-terminal domain of mGluR1a is required for climbing fiber synapse elimination. GluD2, 
glutamate receptor δ2.
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impaired climbing fiber synapse elimination are all restored by 
Purkinje cell-specific expression of mGluR1a, a predominant  
splice variant in Purkinje cells, into global mGluR1-knockout 
mice28. This result clearly indicates that the mGluR1 cascade within 
Purkinje cells is essential for neural circuit development, synaptic 
plasticity, and motor learning in the cerebellum23,40.

Activation of mGluR1 by repetitive parallel fiber stimulation 
induces slow excitatory postsynaptic potentials (EPSPs)/excitatory 
postsynaptic currents (EPSCs) in Purkinje cells41–43. This slow 
EPSC has been shown to be mediated by an inward cation  
current through the TRPC3 channel44 (Figure 4). Repetitive  
parallel fiber stimulation also induces mGluR1-mediated  
production of IP

3
 and local Ca2+ release from internal stores in 

Purkinje cell dendrites45,46 (Figure 4). Furthermore, the activation 
of mGluR1 by repetitive parallel fiber stimulation induces the  
release of an endocannabinoid that acts retrogradely on can-
nabinoid CB

1
 receptors on parallel fibers and climbing fibers and  

causes transient suppression of glutamate release from parallel fib-
ers and climbing fibers47–50 (Figure 4). The endocannabinoid that 
mediates retrograde synaptic suppression has been identified as 
2-arachidonoylglycerol (2-AG), which is produced by diacylg-
lycerol lipase α51,52. This retrograde signaling mediated by 2-AG 
is required for the induction of LTD at parallel fiber synapses53,54, 
and CB

1
 knockout mice exhibit a clear impairment of delay eye-

blink conditioning, a representative of cerebellum-dependent motor 
learning55.

Several studies have shown that mGluR1 interacts with another 
GPCR or ion channel either directly or through G-protein  
(see Figure 4). The mGluR1-mediated responses of Purkinje 
cells in cerebellar slices are enhanced by the activation of type-B  
γ-aminobutyric acid receptor (GABA

B
R) through G

i/o
 protein56  

(Figure 4). In cultured Purkinje cells, GABA
B
R activation  

enhances LTD by elevating mGluR1 signaling via phospholipase 
Cβ activation by the G-protein β/γ subunit released as a conse-
quence of GABA

B
R activation57 (Figure 2). Moreover, the acti-

vation of GABA
B
R enhances the mGluR1-mediated responses 

in cultured Purkinje cells through G
i/o

 protein-independent direct 
interaction between GABA

B
R and mGluR158 (Figure 4). Interest-

ingly, this GABA
B
R–mGluR1 interaction does not require GABA 

but is caused by extracellular Ca2+58 (Figure 4). The dynamic range 
of mGluR1 is positively controlled by extracellular Ca2+ such 
that sensitivity of mGluR1 to its agonist is enhanced at low dose 
range59. This mGluR1 sensitization is absent in Purkinje cells lack-
ing GABA

B
R, indicating that GABA

B
R can act as a Ca2+-dependent 

cofactor of mGluR1 signaling in Purkinje cells58 (Figure 4). In con-
trast, mGluR1-induced inward current in Purkinje cells has been 
reported to be continuously depressed by activation of G

i/o
 protein 

-coupled A
1
-subtype adenosine receptor (A1R)60 (Figure 1). 

This inhibitory effect from A1R to mGluR1 was independent 
of G

i/o
 protein, suggesting a direct interaction between the two  

receptors. It has been shown that mGluR1-induced mobilization of 
Ca2+ leads to activation of outward K+ current that slowly hyperpo-
larizes Purkinje cells61,62. On the other hand, activation of mGluR1 

Figure 4. Schematic diagram showing type-1 metabotropic glutamate receptor (mGluR1)-mediated Ca2+ mobilization and interaction 
between mGluR1 and other G-protein-coupled receptors (GPCRs) or ion channels. The long C-terminal domain of mGluR1a is required 
for proper perisynaptic localization of mGluR1 and inositol trisphosphate (IP3)-mediated Ca2+ release but is dispensable for short transient 
receptor potential channel 3 (TRPC3)-mediated inward currents. 2-AG, 2-arachidonoylglycerol; CB1, cannabinoid receptor type-1; DGL, 
diacylglycerol lipase; EPSC, excitatory postsynaptic current; Kv4.3, Kv4.3 voltage-dependent K+ channel; STIM1, stromal interaction  
molecule 1.
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potentiates Ca
V
3.1 T-type Ca2+ channel currents in Purkinje cell 

dendritic spines through a G-protein- and tyrosine phosphatase-
dependent mechanism63 (Figure 4).

Taken together, these studies clearly indicate that mGluR1 plays 
multiple and crucial roles in the regulation of synaptic wiring, excit-
ability, synaptic transmission, and synaptic plasticity in Purkinje 
cells.

New insight into the roles of mGluR1 in Purkinje cell 
function
Synaptic plasticity and developmental synapse elimination 
in Purkinje cells
Ohtani et al. reintroduced mGluR1b, a short variant that lacks a 
long carboxyl-terminal domain, into Purkinje cells of global 
mGluR1-knockout mice (mGluR1b-rescue mice)29. As mentioned 
above, restoration of mGluR1a, which contains the long carboxyl-
terminal domain, rescued all the cerebellar deficits in mGluR1-
knockout mice28. In contrast, mGluR1b-rescue mice exhibited 
normal TRPC3-mediated slow EPSC and motor coordination but 
showed impairments in IP

3
-mediated Ca2+ release, developmen-

tal climbing fiber synapse elimination, LTD at parallel fiber to  
Purkinje cell synapses, and delayed eyeblink conditioning29.  
Furthermore, in mGluR1b-rescue mice, mGluR1b showed dis-
persed perisynaptic localization at Purkinje cell spines29. This study 
indicates that the long C-terminal domain of mGluR1a is required 
for proper perisynaptic localization of mGluR1, IP

3
-mediated  

Ca2+ release, developmental climbing fiber synapse elimination, 
LTD induction, and motor learning (Figure 2–Figure 4). Chae  
et al. reported that blockade of TRPC3 channels by a broad- 
spectrum TRPC antagonist or by a TRPC3 antibody suppressed 
LTD induction at parallel fiber to Purkinje cell synapses64.  
However, the dissociation between TRPC3-mediated slow EPSC 
and LTD in mGluR1b-rescue mice suggests that TRPC3-mediated 
slow EPSC is necessary but not sufficient for LTD induction.

As for developmental synapse elimination, Uesaka et al. dem-
onstrated that Sema7A, a membrane-bound class of semaphorin, 
functions as a retrograde signaling molecule from Purkinje 
cells to losing climbing fibers at the downstream of mGluR165  
(Figure 3). When Sema7A was knocked down in Purkinje cells by 
lentivirus-mediated RNA interference during postnatal develop-
ment, climbing fiber synapse elimination was impaired from post-
natal day 15 (P15). Double knockdown of Sema7A and mGluR1 
in Purkinje cells caused impairment of climbing fiber synapse 
elimination to the same extent as single mGluR1 knockdown. 
Furthermore, expression of Sema7A was significantly reduced 
in the cerebellum of mGluR1-knockout mice. Importantly, over-
expression of Sema7A in mGluR1-knockdown Purkinje cells  
restored normal climbing fiber synapse elimination. These data 
indicate that Sema7A mediates climbing fiber synapse elimination 
downstream of mGluR165.

Ichikawa et al. revealed that massive elimination of parallel  
fiber synapses occurs from around P15 to P30, which requires 
mGluR1 signaling in Purkinje cells66 (Figure 3). Climbing fib-
ers and parallel fibers innervate proximal and distal portions 
of Purkinje cell dendrites, respectively. In between, there is an 

intermediate dendritic portion with overlapped innervation by  
climbing fibers and parallel fibers. Ichikawa et al. showed that 
climbing fiber and parallel fiber territories expanded with marked 
enlargement of the regions of overlapping innervation until  
P1566. Then, the territories became segregated from P15 to around 
P30 by massive elimination of parallel fiber synapses from 
proximal dendrites66. Interestingly, this parallel fiber synapse  
elimination was absent in mGluR1-knockout mice and also in 
PKCγ-knockout mice, and the defect of mGluR1-knockout mice 
was rescued by lentivirus-mediated expression of mGluR1a in 
mGluR1-deficient Purkinje cells66 (Figure 3). These findings give 
a new insight into roles of mGluR1 signaling in Purkinje cell  
synaptic wiring during postnatal development. mGluR1 signal-
ing is essential for eliminating weaker climbing fiber synapses  
from the soma to establish mono-climbing fiber innervation 
and also for eliminating parallel fiber synapses from proximal  
dendrites to segregate climbing fiber and parallel fiber territories  
in Purkinje cell dendrites.

Interaction of mGluR1 and another GPCR or ion channel
Kamikubo et al. explored the physiological relevance of direct 
interaction between A1R and mGluR167. They first demonstrated 
that the two GPCRs closely co-localized and formed hetero-
meric complexes on the cell surfaces by using Förster resonance  
energy transfer analyses in cultured Purkinje cells67 (Figure 4). 
Then they showed evidence that A1R antagonizes the induction  
of LTD by decreasing the ligand sensitivity of mGluR1 but not 
the coupling efficacy from mGluR1 to the intracellular signaling  
cascades67 (Figure 2).

Otsu et al. showed that mGluR1 activity and Purkinje cell depo-
larization control climbing fiber-induced Ca2+ influx68. Under basal 
conditions, climbing fiber stimulation evoked Ca2+ transients mainly 
in the proximal dendrites through T-type Ca2+ channels. Combined 
mGluR1 activation and depolarization unlocked dendritic Ca2+ 
spikes mediated by P/Q-type Ca2+ channels through inactivation of 
the A-type K+ channels in the distal dendrites of Purkinje cells68 
(Figure 4). These results suggest that climbing fiber-induced Ca2+ 
transients can be graded at parallel fiber synapses depending on 
their activity (i.e. the extent of mGluR1 activation) and therefore 
give new insight into the mechanisms of LTD induction at parallel 
fiber synapses.

Hartmann et al. demonstrated that both TRPC3-mediated slow 
EPSC and IP

3
-mediated Ca2+ release following mGluR1 activation 

by repetitive parallel fiber stimulation were strongly attenuated in 
Purkinje cells lacking stromal interaction molecule 1 (STIM1)69 
(Figure 4). In Purkinje cell-specific STIM1-knockout mice, both 
of the mGluR1-mediated responses were deficient and intracellu-
lar Ca2+ stores were empty69. Depolarization of STIM1-deficient 
Purkinje cells induced normal Ca2+ entry through voltage-gated 
Ca2+ channels, which restored TRPC3-mediated slow EPSC and 
IP

3
-mediated Ca2+ release only transiently69. Their results indicate 

that STIM1 is essential for the maintenance of normal Ca2+ levels 
in the endoplasmic reticulum at rest and that TRPC3 activation is 
dependent on intracellular Ca2+ level and requires interaction with 
STIM1 (Figure 4).
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Kato et al. reported that glutamate receptor δ2 (GluRδ2 or GluD2), 
PKCγ, and TRPC3 are major interactors of mGluR1 by an unbi-
ased proteomic approach70. They found that mGluR1-evoked 
inward currents were increased in a spontaneous mutant mouse 
line lacking GluD2, which disrupted the time course of mGluR1- 
dependent synaptic transmission at parallel fiber–Purkinje cell 
synapses. These results suggest that GluD2 is part of the mGluR1 
signaling complex in Purkinje cells. In marked contrast, Ady  
et al. reported that mGluR1-mediated inward currents induced 
by repetitive parallel fiber stimulation were markedly reduced in 
Purkinje cells of another strain of spontaneous GluD2-deficient 
mice71. They also showed that pharmacological blockade and 
genetic mutation of GluD2 channel pore reduced mGluR1- 
mediated slow EPSCs and claimed that inward currents through 
GluD2 channel constituted a significant portion of mGluR1- 
mediated slow EPSCs71. Further studies are necessary to  
clarify whether and how mGluR1 and GluD2 interact to evoke 
physiologically relevant responses in Purkinje cells.

Dysregulation of mGluR1 signaling in Purkinje cells 
in cerebellar diseases
mGluR1 loss of function in Purkinje cells and cerebellar 
ataxia
Given that genetic deletion of mGluR1 signaling molecules in 
Purkinje cells causes clear ataxia in mice, many studies have been 
performed regarding dysregulation of mGluR1 signaling in mouse 
models of human cerebellar diseases, especially spinocerebellar 
ataxias (SCAs). In several mouse models of autosomal-dominant 
SCAs, the expansion of the CAG (Q) trinucleotide repeat dis-
turbs transcription programs in the nucleus. Two types of SCA1 
mouse models, SCA1 82Q and SCA1 154Q that express 82 and 
154 Q repeats in the human ataxin-1 gene, respectively, have been  

generated72,73. In these SCA1 mouse models, loss of retinoid-related 
orphan receptor alpha (RORα)-mediated signaling leads to the 
reduced expression of mGluR1, TRPC3, and EAAT4, an excita-
tory amino acid transporter subtype specific to Purkinje cells74–77 
(Table 1). Furthermore, in the spontaneous ataxic mutant mouse 
staggerer, which exhibits mutation of the RORα gene and therefore 
is similar to SCA1 mouse models, mGluR1 expression is reduced 
and mGluR1-mediated slow EPSCs at parallel fiber synapses are 
deficient78 (Table 1). In the conditional SCA1 82Q transgenic 
mouse line (SCA1 82Q Tre/Tre; tTA/tTA) generated by Zu et al.79, 
stopping the expression of mutant ataxin-1 in Purkinje cells restores 
mGluR1 expression and pathological phenotypes of Purkinje cells 
as well as motor dysfunction (Table 1). In the SCA1 154Q mouse, 
decreased mGluR1 expression is accompanied by increased expres-
sion of mGluR5, which is normally undetectable in adult wild-
type mice80 (Table 1). This is presumably a compensatory effect 
that rescues Ca2+ signaling to prevent Purkinje cell death. Impor-
tantly, enhancement of mGluR1 by a positive allosteric modulator  
(PAM) improves motor coordination in severely ataxic SCA1  
154Q mice80. This result raises the possibility that mGluR1 PAM 
could be used to ameliorate ataxia in severe SCA1 patients.

Very recently, Shuvaev et al.81 reported that the SCA1 82Q mouse 
line (SCA1-Tg; heterozygous B05 line carrying the human  
Ataxin-1 gene with 82 Q repeats under the control of the 
Purkinje cell-specific L7 promoter) generated by Burright et al.72  
exhibited progressive ataxia and impairment in multiple mGluR1 
signaling at parallel fiber–Purkinje cell synapses from post-
natal week 5 to 12, including TRPC3-mediated slow EPSCs, 
IP

3
-mediated local Ca2+ signaling in Purkinje cell dendrites, 

endocannabinoid-mediated short-term synaptic depression, and 
LTD81 (Table 1). Importantly, intraperitoneal administration of 

Table 1. Mouse models of human cerebellar diseases with type-1 metabotropic 
glutamate receptor (mGluR1) loss of function.

Disease model 
in mouse

Gene 
mutation

Changes in expression/function/
localization

Reference

SCA1 82Q Ataxin-1 mGluR1 Decreased expression

Loss of function

Burright et al.72

Zu et al.79

Shuvaev et al.81

SCA1 154Q Ataxin-1 mGluR1 
TRPC3 
EAAT4 
RORα

Decreased expression Lin et al.74 
Skinner et al.77 
Watase et al.73 
Serra et al.75 
Serra et al.76

mGluR5 Increased expression Notartomaso et al.80

staggerer 
mutant

RORα RORα Decreased expression Mitsumura et al.78

SCA3 Ataxin-3 mGluR1 
RORα

Decreased expression Konno et al.82

SCA5 β-III spectrin mGluR1 Mislocalization Armbrust et al.83

EAAT4, excitatory amino acid transporter 4; RORα, retinoid-related orphan receptor alpha; TRPC3, short 
transient receptor potential channel 3.
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a GABA
B
R agonist, baclofen, restored mGluR1 signaling at  

parallel fiber–Purkinje cell synapses and ameliorated ataxia of the 
SCA1 82Q mouse81. These results are relevant to the in vitro studies 
by Kamikubo et al.57 and raise the possibility of a new therapy for 
SCA1, since baclofen is a clinically available drug81.

Expression of mGluR1 is also reduced in SCA3 and SCA5  
mouse models. Konno et al. reported that a SCA3 mouse model 
with disrupted ataxin-3 gene and RORα signaling exhibited  
impairment of dendritic development and complete loss of  
mGluR1-dependent endocannabinoid-mediated retrograde sup-
pression of parallel fiber synaptic transmission82 (Table 1). In a  
mouse model of SCA5, a mutant form of human β-III spectrin 
is reported to cause mislocalization of mGluR1 in Purkinje cell  
dendrites, leading to a functional loss of mGluR1-mediated 
responses and altered parallel fiber function83 (Table 1). Taken 
together, these results suggest that disrupted mGluR1 signaling in 
Purkinje cells may underlie certain forms of human SCAs.

mGluR1 gain of function in Purkinje cells and cerebellar 
ataxia
Recent studies indicate that increased mGluR1 signaling in  
Purkinje cells could lead to ataxia in several mouse models of 
human cerebellar dysfunction. Power et al. recently reported 
that the SCA1 82Q mouse line generated by Zu et al.79, which is  
different from the SCA1 Tg-B05 line originally generated by  
Burright et al.72 and used in the recent study by Shuvaev et al.81, 
exhibits reduced motor performance in the rotating rod, reduced 
complexity of Purkinje cell outer dendrites, decreased height of 
climbing fiber innervation, and lower frequency of Purkinje cell 
simple spike firing at 12 weeks of age84 (Table 2). In contrast to 
the report by Shuvaev et al.81, mGluR1-mediated slow EPSCs and  
local Ca2+ transients in dendrites induced by repetitive parallel  
fiber stimulation were both prolonged in SCA1 82Q Purkinje 
cells without significant changes in their amplitudes84. Remark-
ably, administration of a negative allosteric modulator (NAM) 
of mGluR1 shortened the two forms of mGluR1-mediated syn-
aptic responses and ameliorated the ataxia84. These data suggest 
that mGluR1 gain of function may underlie the pathophysiology  
of early stage SCA1. However, the data should be interpreted  

with caution. Power et al. reported that blockade of astroglial  
glutamate transporters, which markedly enhances the amplitude 
and the duration of mGluR1-mediated slow EPSPs in control  
mice, had no effect in the SCA1 82Q mouse line84. This result sug-
gests that glutamate uptake by Bergmann glia may be severely 
impaired in the SCA1 82Q mouse line used by Power et al. and, 
therefore, mGluR1-mediated slow EPSPs may be prolonged,  
even though mGluR1 signaling itself might be impaired in  
Purkinje cells similarly to those of the SCA1 Tg-B05 line used by 
Shuvaev et al.81

In the SCA2 58Q mouse model, mGluR1-induced Ca2+  
mobilization through IP

3
R is enhanced in Purkinje cells because 

of specific binding of mutant ataxin-2 to IP
3
R and elevation  

of its sensitivity to IP
3
85 (Table 2). Viral delivery of the IP

3
  

degradation enzyme IP
3
 phosphatase rescued age-dependent motor 

incoordination and Purkinje cell loss in the SCA2 58Q mouse 
model86.

The spontaneous ataxic mutant mouse moonwalker exhibits  
hyperactive mGluR1-mediated TRPC3 currents in Purkinje cells87 
(Table 2). This mouse line has a threonine to alanine switch in 
TRPC3 that allows the cation channel to open under conditions 
of weaker mGluR1 activation87. On the other hand, a mouse 
model of SCA14 has larger mGluR1-mediated inward currents in  
Purkinje cells than do normal mice because of the failure to inacti-
vate TRPC3 by mutant PKCγ88 (Table 2). These results suggest that 
increased Na+ and Ca2+ influx through TRPC3 channels disrupts 
normal functions of Purkinje cells and other cerebellar neurons, 
which causes ataxia.

Dysregulation of mGluR1 signaling in human ataxias
There are several reports supporting the notion that altered  
mGluR1 signaling in Purkinje cells is related to human cer-
ebellar diseases. Patients who express autoantibodies against  
mGluR189 or Homer-3, a scaffolding protein for mGluRs90, exhibit 
ataxia. Mutations in mGluR191 and TRPC3 have been reported 
to occur in patients with rare, early onset autosomal-recessive 
ataxias92. It has been reported that SCA15 is caused by a muta-
tion in the gene encoding the IP

3
R93, whereas SCA14 results from  

Table 2. Mouse models of human cerebellar diseases with type-1 
metabotropic glutamate receptor (mGluR1) gain of function.

Disease model 
in mouse

Gene 
mutation

Changes in 
expression/function

Reference

SCA1 82Q 
(early stage)

Ataxin-1 mGluR1 Gain of 
function

Power et al.84

SCA2 58Q Ataxin-2 IP3R Increased 
sensitivity

Liu et al.85

moonwalker 
mutant

TRPC3 TRPC3 Hyperactive Becker et al.87

SCA14 PKCγ TRPC3 Hyperactive Shuvaev et al.88

IP3R, inositol trisphosphate receptor; PKCγ, protein kinase C gamma; 
TRPC3, short transient receptor potential channel 3.
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mutations in PKCγ that render this enzyme constitutively active94. 
These studies suggest that dysregulation of mGluR1 signaling in 
Purkinje cells may lead to human ataxias.

Closing remarks
In recent years, several molecules that interact directly with  
mGluR1 or function downstream of mGluR1 have been identified, 
and their modes of action have been investigated. These include 
GluD270,71, TRPC344,70, STIM169, GABA

B
R56,57,95, A1R60,67, Ca

V
3.1 

T-type Ca2+ channel63, and A-type K+ channel68. It has also become
clear that the activation of mGluR1 at parallel fiber–Purkinje cell
synapses exerts multiple effects that can induce both elevation and
suppression of Purkinje cell activity. These results derive from
well-controlled experiments in reduced preparations in which
individual phenomena can be isolated either genetically or phar-
macologically. It is important to investigate how these multi-
ple effects induced by mGluR1 activation contribute to the net
activity of Purkinje cells, development of synaptic wiring onto
Purkinje cells, and overall cerebellar function. For this purpose,
it would be necessary to examine Purkinje cell responses in
intact cerebellum in vivo from mice in which a specific mGluR1
signaling molecule has been genetically modified or deleted.
In vivo whole-cell recording combined with single-cell Ca2+ imag-
ing has been used to record Purkinje cell activity and climbing
fiber-mediated responses from intact cerebellum96. It would also
be important to record activities from populations of Purkinje
cells in vivo and analyze their spatiotemporal correlations to
investigate the network function of the cerebellum. Genetically
encoded calcium indicators and Ca2+ imaging with a two-photon
microscope have been used to monitor climbing fiber- 
mediated responses from populations of Purkinje cells97. On
the other hand, since it is not possible to register simple spike
activities of Purkinje cells by Ca2+ imaging, conventional
extracellular recording is still important.

Another important issue would be the possible diversity of  
Purkinje cells, other cell types, and neural circuits in different 
regions of the cerebellum. It has been widely assumed that prop-
erties of synaptic transmission, synaptic plasticity, and develop-
mental synaptic refinement, which are mostly based on studies 
in slice preparations from the cerebellar vermis, apply through-
out the cerebellum. However, clear differences exist in gene 
expression, Purkinje cell firing rates, and behavioral functions of  
different cerebellar regions98. In this context, Surrathan et al.99 
recently reported that proper timing between parallel fiber and 
climbing fiber inputs for LTD induction is different in differ-
ent regions of the cerebellum such that synaptic plasticity can  
precisely compensate for behaviorally relevant circuit delays99. 

Thus, it would be important to investigate whether the same sig-
naling pathways including mGluR1 and its related molecules  
contribute to LTD in different regions of the cerebellum and how 
the diversity of synaptic plasticity is produced.

Alteration of mGluR1 signaling has been reported in various 
clinically relevant mouse models of human cerebellar  
diseases24,30. Judging from the severe cerebellar dysfunctions of 
mGluR1-knockout mice, it is conceivable that mGluR1 loss-of-
function underlies human ataxias74–78,80,82,83. However, it is impor-
tant to note that mGluR1 gain-of-function has been reported in  
certain mouse models of human ataxias84–88. Calcium overload 
to Purkinje cells due to excess mGluR1-mediated Ca2+ release 
and/or TRPC3 channel activation is likely to cause cerebellar  
dysfunction. In such mouse models, down-regulation of mGluR1 
signaling molecules may occur to compensate for its hyperactiv-
ity with the progress of disease. Thus, it is important to deter-
mine whether the mGluR1 loss-of function is the cause or the 
result of such cerebellar diseases. Given that the recent develop-
ment of mGluR1 PAM and NAM have raised the possibility of 
treating cerebellar ataxias, it is important to determine whether 
mGluR1 signaling is up- or down-regulated at a particular stage of  
cerebellar ataxia. In addition, a very recent report suggests that 
baclofen, a clinically available GABA

B
R agonist, can amelio-

rate cerebellar dysfunction by enhancing mGluR1 signaling in a  
SCA1 model mouse line81. Careful examination of the mouse  
models with the progress of cerebellar symptoms would be  
necessary.
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