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Abstract: Various cellular processes require the concerted cooperative action of proteins. The possi-
bility for such synchronization implies the occurrence of specific long-range interactions between the
involved protein participants. Bilayer lipid membranes can mediate protein–protein interactions via
relatively long-range elastic deformations induced by the incorporated proteins. We considered the
interactions between transmembrane peptides mediated by elastic deformations using the frame-
work of the theory of elasticity of lipid membranes. An effective peptide shape was assumed to be
cylindrical, hourglass-like, or barrel-like. The interaction potentials were obtained for membranes of
different thicknesses and elastic rigidities. Cylindrically shaped peptides manifest almost neutral
average interactions—they attract each other at short distances and repel at large ones, independently
of membrane thickness or rigidity. The hourglass-like peptides repel each other in thin bilayers and
strongly attract each other in thicker bilayers. On the contrary, the barrel-like peptides repel each
other in thick bilayers and attract each other in thinner membranes. These results potentially provide
possible mechanisms of control for the mode of protein–protein interactions in membrane domains
with different bilayer thicknesses.

Keywords: lipid membrane; theory of elasticity; transmembrane domain; liquid-ordered domain;
membrane-mediated interactions

1. Introduction

Various vital cellular functions are catalyzed by membrane proteins. The most com-
plicated processes require the concerted cooperative action of several protein molecules,
synchronized both spatially and temporally [1–4]. The possibility of such synchronization
implies the occurrence of specific long-range interactions of the involved proteins. Mem-
brane proteins usually disturb the membrane, thereby inducing elastic deformations, the
characteristic lengths of which are about several nanometers [5–7]. Such lengths substan-
tially exceed the typical length of electrostatic interactions—about 1 nm under physiological
conditions. Thus, bilayer lipid membranes provide the medium and fundamental physical
forces for the long-range interactions of membrane proteins.

Plasma membranes of mammalian cells are laterally heterogeneous [8–10]. Lipids
and proteins are thought to be segregated into specific domains. Domains enriched in
sphingomyelin and cholesterol are called rafts [11]. Cellular rafts have a conservative
lipid and protein composition that allows membrane proteins to be classified as raft or
non-raft [12,13]. In purely lipidic model membranes, which composition resembles the
lipid composition of the outer leaflets of plasma membranes, micron-sized domains can
be formed during the course of phase separation after being induced by a temperature
drop [5,14,15]. The domains are considered a model of cellular rafts. Below, we use the
terms “domains” and “rafts” synonymously. It has been established that lipids in model
domains are in the liquid-ordered state as opposed to the liquid-disordered surrounding
membrane. The transition from a disordered to an ordered state leads to an increase in the
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thickness of the lipid bilayer by about 0.5–1 nm [16,17]. This difference in thickness allows
transmembrane proteins to choose the membrane domain of optimal thickness of the lipid
bilayer, depending on the length of the protein’s transmembrane domain (TMD). A possible
mismatch between the TMD length and the hydrophobic thickness of the lipid bilayer
could lead to membrane deformations aimed at eliminating the contact of polar (water
or lipid heads) and hydrophobic (lipid tails or TMD) media. The deformations arising in
the TMD vicinity lead to the growth of system free energy. The tendency of the system
to minimize elastic energy represents the driving force for the lateral sorting of proteins
between membrane domains of different thicknesses; it is referred to as hydrophobic
matching [18,19]. This type of sorting is very sensitive to even tiny differences in the bilayer
thickness and the length of the TMD. In [20], variation in the TMD length by a single amino
acid residue is shown to essentially affect the sorting.

Vital cellular processes require the simultaneous participation of several raft-associated
membrane proteins. Among these processes are signal transduction [21–23], polarized
sorting [24], and the creation of immunological synapses [25]. Some of these processes
are stimulus-triggered. Importantly, before stimulation, the participating proteins did not
interact with each other, and it is the stimulus that initiated their tight interaction. This
may imply that rafts provided spatial separation of the participants before the stimulation.
After the process is triggered-on, the fusion of rafts may gather all participants in a small
restricted region of the membrane. Various vital processes require fusion of domains; they
proceed incorrectly upon disturbance of the fusion. For example, in Smith-Lemli-Opitz
syndrome [26], the metabolic precursor of cholesterol, 7-dehydrocholesterol, is accumulated
in membranes [27]; higher levels of 7-dehydrocholesterol lead to an increase in the energy
barrier of the ordered domain fusion [5] and affect the proper transduction of cellular
signals [28,29].

However, the fusion of domains comprising all proteins involved is not sufficient for
the process to proceed reliably, because even after appearing in the same raft, the proteins do
not necessarily all come into close contact. In addition, the mechanisms for promoting the
fusion of specific domains in response to the stimulus are not fully understood. If cellular
rafts have similar lipid compositions, while they comprise very different proteins, it is not
clear how to selectively induce the fusion of rafts comprising specific proteins involved
in a particular process. It might be suggested that each type of protein creates a domain
of unique lipid composition, which depends on subtle details of the protein structure. In
other words, cellular rafts may not be the result of global phase separation in the plasma
membrane but rather of the local phase separation induced by membrane proteins in their
immediate vicinity, e.g., by the wetting mechanism [30–33]. However, this leads to the idea
that the membrane must have a huge number of domain types, approximately equal to
the number of membrane protein types. These domains should not merge spontaneously
but should reliably fuse after the arrival of the stimulus; besides, the stimulus should only
affect certain types of domains. However, in typical model lipid membranes formed from
the “canonical raft mixture” (e.g., dioleoylphosphatidylcholine: sphingomyelin: cholesterol
1:1:1), the ordered domains fuse following nearly every collision [5,34]. The substitution of
cholesterol by 7-dehydrocholesterol completely prevents the fusion of domains, but this
leads to the impairment of cellular signaling, yielding heavy pathologies at the level of
the organism [5,26,28,29]. Additionally, if there is a large number of different lipid domain
types surrounding the membrane proteins, the lipid compositions of the domains cannot
differ strongly. The stimulus acting on the lipid subsystem is unlikely able to select a
particular lipid composition to modify it in a way that favors domain fusion.

A simpler way to regulate the aggregation of membrane proteins follows the sug-
gestion that the stimulus should act on the protein and alter the protein conformation.
Generally, protein TMD induces elastic deformation of the membrane. If the proteins are
significantly separated, their induced deformations are independent, and their energy is
additive. Upon the mutual approach of proteins, the deformations start to overlap, leading
to effective membrane-mediated lateral interactions [35–40]. Depending on the shape of
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the TMD and the elastic parameters of the membrane, these interactions may be attractive,
repulsive, or combined, e.g., long-range repulsion and short-range attraction [35–40]. It is
assumed that, in the non-activated state, the structure of the TMD-induced elastic deforma-
tions corresponds to protein–protein repulsion. Upon ligand-triggered activation, the TMD
conformation may alter in a way that favors protein–protein attraction and aggregation.
Such a hypothetical mechanism provides the required high selectivity, as the stimulus acts
immediately on the target proteins and does not affect the others. The mechanism does
not imply the existence of numerous types of lipid domains; the interacting proteins may
reside in either the ordered or the disordered membrane phase. The membrane-mediated
interactions are relatively long-range [35–40], which allows the activated proteins to find
each other effectively on the membrane.

In the present work, we considered the interactions between transmembrane proteins
mediated by elastic deformations of the membrane. Effective TMD shapes were assumed
to be cylindrical, hourglass-like, and barrel-like (Figure 1).
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Figure 1. Schematic representation of the cylindrical (a), hourglass-like (b) and barrel-like (c) TMDs
incorporated into the lipid membrane. Parameterization of elastic deformations of the membrane
and boundary conditions at the TMDs are illustrated.

We analyzed the interaction energy profiles in membranes with different bilayer
thicknesses and elastic moduli. The characteristic shapes of the profiles appeared to be
weakly dependent on the values of the elastic moduli but strongly dependent on the
bilayer thickness. The interaction energy profiles of cylindrically shaped TMDs manifested
long-range repulsion and short-range attraction. The hourglass-like TMDs were found
to repel each other in thin bilayers and strongly attract each other in thicker bilayers. On
the contrary, the barrel-like TMDs were shown to repel each other in thick bilayers and
attract each other in thinner membranes. Hourglass-like and barrel-like TMDs interacted
with each other similarly to cylindrical TMDs. These results potentially provide a possible
mechanism for the selective tuning of protein–protein interactions in membrane domains
with different bilayer thicknesses.

2. Materials and Methods

In order to calculate the energy of elastic deformations induced by TMDs, we utilized
the theory of elasticity of lipid membranes originally developed by Hamm and Kozlov [41]
and generalized it to include additional deformational modes [35,37,42]. In this theory,
each monolayer of the membrane is considered a continuous elastic medium. The average
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orientation of anisotropic lipid molecules is described by unit vectors called directors, n.
The field of directors is set at the neutral surface of the lipid monolayer, described by its
unit normals, N. The neutral surface is located in the junction regions of polar heads with
hydrophobic tails of lipids [43]. The monolayer may be subjected to some lateral tension, σ,
acting along its neutral surface. We introduced a Cartesian coordinate system Oxyz where
the z-axis is assumed to be perpendicular to the plane of the undeformed membrane, and
the plane Oxy coincides with the monolayer interface surface of the undeformed membrane.
The shape of the neutral surface is characterized by the z-coordinates of its points, described
by the function H(x, y) (Figure 1). We accounted for the following elastic deformations
of the monolayer: (I) splay or bending, determined by div(n) along the neutral surface;
(II) tilt, determined by the deviation of n from N, described in the first order by the tilt-
vector t = n − N; (III) lateral stretching, determined by the relative deviation of the area
of the neutral surface, α; (IV) Gaussian splay; and (V) twist, determined by rot(n). The
deformations were deemed small, and we worked under the framework of the linear theory
of elasticity. The elastic energy of the deformed monolayer can be written as [35,37,42]

W =
∫

dS
{

B
2 [div(n) + J0]

2 − B
2 J2

0 + Kt
2 t2 + σ

2 [grad(H)]2+

+Ka
2 α2 + KGK + Krot

2 [rot(n)]2
}

,
(1)

where B, Kt, Ka, KG, and Krot are the moduli of splay, tilt, lateral stretching, Gaussian
splay and twist, respectively; J0 is the spontaneous curvature of the lipid monolayer, char-
acterizing the preferable shape of the monolayer in the absence of external forces and
torques; K = ∂nx

∂x
∂ny
∂y −

∂nx
∂y

∂ny
∂x is the Gaussian splay (nx and ny are the corresponding

projections of the director); and the integration is performed over the neutral surface
of the monolayer. We assumed that the hydrophobic part of the lipid monolayer is lo-
cally volumetrically incompressible, as the bulk modulus of the membrane is very high,
~1010 J/m3 ≈ 3 × 103 kBT/nm3 [44], where kBT ≈ 4.14 × 10–21 J. The condition of volumet-
ric incompressibility imposes a restriction on the deformations [35–37,41,42]:

Hu −M = h− h2

2 div(nu)− hαu,
M− Hl = h− h2

2 div(nl)− hαl ,
(2)

where M = M(x, y) is the shape of the monolayer interface and h is the hydrophobic thickness
of the lipid monolayer. Here, and below the index, “u” corresponds to the upper monolayer
located in the half-space z > 0, and the index “l” corresponds to the lower monolayer,
which is located in the half-space z < 0. In the linear approximation, the vectors of the
unit normal to the neutral surfaces can be written as Nu,l = (±∂Hu,l/∂x,± ∂Hu,l/∂y,∓ 1)T

(the upper signs correspond to the upper and the lower signs to the lower monolayer). By
expressing αu,l from the incompressibility conditions shown in Equation (2), substituting
αu,l along with normals into the elastic energy functional, Equation (1), and accounting for
two monolayers, one can obtain the elastic energy functional of the bilayer:

W =
∫

dSu

{
B
2 [div(nu) + J0]

2 − B
2 J2

0 +
Kt
2 [nu − grad(Hu)]

2 + σ
2 [grad (Hu)]

2 +

+ Ka
2h2

[
h− h2

2 div(nu) + M− Hu

]2
+ KGKu +

Krot
2 [rot(nu)]

2
}
+

+
∫

dSl

{
B
2 [div(nl) + J0]

2 − B
2 J2

0 +
Kt
2 [nl + grad(Hl)]

2 + σ
2 [grad (Hl)]

2 +

+ Ka
2h2

[
h− h2

2 div(nl)−M + Hl

]2
+ KGKl +

Krot
2 [rot(nl)]

2
}

.

(3)

Far from the TMDs, we set the boundary conditions of an unperturbed membrane:

nu,l(∞) = (0, 0,∓1), Hu(∞) = h, Hl(∞) = −h. (4)
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At the boundary of the vertical cylindrical TMD, the following specific boundary
conditions were set (Figure 1a):

nu(r = r0) = 0, nl(r = r0) = 0, Hu(r = r0)− Hl(r = r0) = Lp, (5)

where r is the radial coordinate; r0 and Lp are the radius and length of the TMD, respectively.
Note, that vertical cylindrical TMD does not deform the membrane if Lp = 2h. We denote
the normal and tangential components of the boundary director as nn and nt, respectively.
Then, the conditions at the boundary of the vertical hourglass-like or barrel-like TMD can
be written as

nu,l
n (r = r0) = nn0, nu,l

t (r = r0) = 0, Hu(r = r0)− Hl(r = r0) = Lp; (6)

nn0 < 0 corresponds to the hourglass-like TMD (Figure 1b), while nn0 > 0 corresponds
to the barrel-like TMD (Figure 1c). The boundary conditions of Equation (6) should be
imposed at the boundaries of both TMDs. All three considered shapes of the TMD are
mirror symmetric with respect to the monolayer interface. Consequently, the induced
deformations should also possess the same symmetry, and, thus, we imposed the condition
M(x, y) ≡ 0.

From the energy functional Equation (3), it follows that the energy contribution from
the monolayer spontaneous curvature J0 can be transformed as

Wspont =
∫

dS{BJ0div(n)} = −BJ0

∮
(n · a)dΓ, (7)

where the last integration is performed over the TMD boundary contour Γ at the monolayer
neutral surface; a is the outer unit normal vector to the contour. Thus, it follows that, for
cylindrically shaped TMDs, the elastic energy is independent of the monolayer spontaneous
curvature, as in this case n ⊥ a at the boundary contour, and thus, (n·a) ≡ 0. For hourglass-
like or barrel-like shapes of TMDs, the corresponding contribution is a non-zero constant
that is proportional to the monolayer spontaneous curvature. As we were interested in
obtaining the interaction energy profiles, we further neglected this J0-related constant
contribution to the elastic energy, as it only shifts the energy profiles without altering
their shapes.

The elastic energy functional Equation (3) supplemented by the boundary conditions
Equations (4)–(6) imposed on each TMD cannot be minimized analytically, as the sym-
metry of the system is too low. We minimized it numerically for a fixed, discreet set of
distances between two TMDs, utilizing the finite element method with an adaptive mesh,
similar to the methods used in works [35,37,42,45]. Briefly, we divided the plane Oxy
into elementary triangles. Inside each triangle, the deformations were approximated by
linear polynomials on coordinates, i.e., the deformations were replaced by their linear
interpolants. We integrated the energy surface density in Equation (3) over each elementary
triangle and obtained the total elastic energy as the sum over all triangles. To get the
numerical value of the total elastic energy, the resulting function was minimized with
respect to the values of deformations at mesh nodes, except for those set by the boundary
conditions in Equations (4)–(6). The boundary conditions at infinity (Equation (4)) were
actually set at a rectangle, the sides of which were at least 25 nm from TMDs. This distance
substantially exceeds the typical decay length of membrane deformations, which is several
nanometers [6,7,35]. To account for the inhomogeneous elastic energy density, we used
inhomogeneous meshes: the surface density of nodes increased in the vicinity of TMDs.
The intersections of TMDs with the neutral surfaces of monolayers were represented by a
piecewise linear approximation. The neutral surfaces of lipid monolayers around the TMDs
were subdivided into five regions, characterized by different levels of mesh fineness. Each
region was specified by the inequality ri−1 ≤ d ≤ ri, where d is the distance to the boundary
of the TMD; ri−1, ri are constants defining the inner and outer boundaries of the regions,
respectively, for i = 1, . . . , 5. The numerical values of ri were r0 = 0; r1 = 1 nm; r2 = 1.5 nm;
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r3 = 4 nm; r4 = 11 nm; r5 = ∞. We restricted the maximum area of an elementary triangle
of the computational mesh by 0.5γ (in nm2), and divided the regions defined above into
elementary triangles of the area not exceeding γθi, where θ1 = 0.01, θ2 = 0.02, θ3 = 0.04,
θ4 = 0.05, θ5 = 0.5. This algorithm allowed the numerical value of the total elastic energy
to be obtained for each value of γ set manually. We used the value γ = 1.5. Recently, we
explicitly checked that the effect of the mesh fineness, γ, was insignificant for the membrane
with incorporated TMD [45]. It was shown that the elastic energy calculated on the mesh
described above differed from the value obtained from extrapolation to a zero mesh size by
less than 1.5%. Thus, in the present work, we used computational mesh γ = 1.5 without
extrapolation to an infinitely fine mesh.

In order to illustrate the results of calculations graphically, we utilized the following
elastic parameter values: TMD length Lp = 3.6 nm; TMD radius r0 = 0.65 nm. We considered
three values for the normal component of the director at the TMD boundary: nn0 = 0
(cylindrical TMD), nn0 = +0.1 (barrel-like TMD), and nn0 = −0.1 (hourglass-like TMD)
(Figure 1). To analyze the dependence of the TMD interaction on the elastic properties of
the membrane, we used two sets of elastic moduli, approximately corresponding to liquid-
disordered (index “d”) and liquid-ordered (index “o”) phases: splay moduli Bd = 10 kBT,
Bo = 50 kBT [46,47]; lateral stretching moduli Kd

a = 133 mN/m, Ko
a = 665 mN/m [46,48];

tilt moduli Kd
t = Ko

t = 40 mN/m [41]; the moduli of the Gaussian splay were expressed
via the splay moduli as KG = −B/2 [49] (although the Gaussian splay contribution is
constant for the boundary conditions in Equations (4)–(6)); the twist moduli were estimated
as Krot = B/2 [35,37,39,45]. We carried out the calculations for three hydrophobic lipid
monolayer thicknesses: medium h0 = Lp/2 = 1.8 nm; thin h1 = 1.5 nm; and thick h2 = 2.1 nm.

In our model, the hydrophobic thickness is the key parameter characterizing the lipid
monolayer. The smallest of the considered hydrophobic thicknesses h1 = 1.5 nm corresponds
approximately to the hydrophobic thickness of the monolayer formed from dioleoylphos-
phatidylcholine [46]. The intermediate thickness h0 = 1.8 nm may be attributed to the lipid
monolayer of the liquid-ordered phase enriched by sphingomyelin and cholesterol [16,17].
Both the intermediate thickness and the largest hydrophobic thickness, h2 = 2.1 nm, may
be achieved in membranes formed from lipids with long chains occurring in brain lipid
extracts. However, for our model, only the relative differences in the TMD length and
the bilayer thickness were substantial (see Equations (2), (5) and (6)). Formally, one can
fix the bilayer thickness and consider the membrane-mediated interactions of TMDs of
different lengths.

3. Results

The dependence of the energy of membrane elastic deformations induced by two
cylindrical TMDs on the distance R between their centers (axes of rotational symmetry) is
presented in Figure 2. The energy values at R→ ∞ were subtracted from the dependences
to represent the interaction potentials; the dependences calculated for the rigid membrane
were shifted by the constant value to give a better appearance. From Figure 2, it can be seen
that when Lp 6= 2h, the interaction of the cylindrically shaped TMDs is generally long-range
repulsion and short-range attraction. When 2h = Lp, no elastic deformations are induced,
and the interaction energy is strictly zero.

In order to evaluate the type of average interaction (attraction or repulsion) under
low TMD concentrations, one should calculate the Mayer’s first cluster integral [50–52]:

β1,AB =
∫

2πR
(

e−
wAB(R)

kBT − 1
)

dR, where R is the distance between the centers of two

TMDs (A and B) and wAB is the interaction potential of the TMDs. Positive values of
β1,AB correspond to an average attraction, while negative values correspond to average
repulsion of the TMDs. However, from the curves of the interaction potentials (Figure 2), it
can generally be concluded that, on average, cylindrical TMDs interact rather weakly as
short-range attraction is compensated for (at least, partially) by long-range repulsion. The
membrane rigidity influences the positions of the potential minima and maxima as well as
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their relative amplitudes but does not affect the qualitative features of the potentials (i.e.,
long-range repulsion and short-range attraction).
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Figure 2. The interaction potentials of two cylindrical TMDs. Top set of the curves—in the ordered
(rigid) membrane; bottom set of the curves—in the disordered (soft) membrane. Blue curves—h1 = 1.5 nm;
red curves—h2 = 2.1 nm. For the medium monolayer thickness, h0 = 1.8 nm, no elastic deformations
were induced by the cylindrical TMDs; thus, the elastic energy was equal to zero (horizontal dotted
lines). The top set of curves is shifted upwards by the constant 3 kBT to distinguish it from the bottom
set of curves. The inset illustrates two cylindrical TMDs in the thin bilayer; Lp = 2h0 = 3.6 nm.

For TMDs with the hourglass-like shape, the interaction potentials changes notably
(Figure 3). Such TMDs repel each other in the thin bilayer (h1 = 1.5 nm) and medium
thickness bilayer (h0 = 1.8 nm) and attract each other in the thick bilayer (h2 = 2.1 nm) in
both soft (Figure 3a) and rigid (Figure 3b) membranes. The membrane rigidity influences
the positions of the minima and maxima potentials as well as their relative amplitudes,
but does not influence the qualitative regime (i.e., attraction or repulsion) of the TMD
interaction. Note that the monolayer thicknesses should be considered in a relative sense.
Actually, the interaction potentials shown in Figure 3 can be interpreted as indicating that
in a bilayer of some fixed thickness 2h, hourglass-like TMDs of length Lp ≥ 2h should repel
each other while TMDs of length Lp < 2h should mutually attract each other. The absolute
values of the monolayer thickness influence the characteristic lengths of deformations, i.e.,
they affect the positions of the energy minima and maxima. The qualitative regime of TMD
interactions (i.e., attraction or repulsion) depends on the differences in the TMD length and
the bilayer thickness.

For TMDs with a barrel-like shape, the dependence of the interaction potentials on
the monolayer thickness is the opposite (Figure 4): barrel-like TMDs attract each other
in the thin bilayer (h1 = 1.5 nm) and repel each other in the thick bilayer (h2 = 2.1 nm)
and in the medium thickness bilayer (h0 = 1.8 nm) in both soft (Figure 4a) and rigid
(Figure 4b) membranes.
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Figure 4. The interaction potentials of two barrel-like TMDs (a) in the disordered (soft) membrane;
(b) in the ordered (rigid) membrane. The monolayer hydrophobic thicknesses are shown as follows:
blue curves—h1 = 1.5 nm; green curves—h0 = 1.8 nm; red curves—h2 = 2.1 nm. The inset in panel
(b) illustrates two barrel-like TMDs in the thin bilayer; Lp = 2h0 = 3.6 nm.

These results may also be interpreted as showing that in a bilayer of some fixed
thickness 2h, barrel-like TMDs of length Lp ≤ 2h should repel each other, while TMDs of
length Lp > 2h should mutually attract each other.

Note, that the depth of the energy minimum of attractive curves (red curves in Figure 3;
blue curves in Figure 4) is almost independent of the membrane rigidity, in all cases being
about 2 kBT if counted from the energy at R→∞. However, the values of the elastic moduli
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affect the height of the energy maxima of these curves at R ≈ 5–7 nm; the maxima heights
vary in the range 0.05–0.5 kBT.

When two interacting TMDs have different shapes, i.e., one is barrel-like while the
other is hourglass-like, their interaction potentials are similar to those obtained with
two interacting cylindrical TMDs (Figure 5).
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Figure 5. The interaction potentials of hourglass-like and barrel-like TMDs. Top set of curves—in
the ordered (rigid) membrane; bottom set of curves—in the disordered (soft) membrane. Blue curves—
h1 = 1.5 nm; green curves—h0 = 1.8 nm; red curves—h2 = 2.1 nm. The top set of curves is shifted
upwards by the constant 3 kBT to distinguish it from the bottom set of curves. The inset illustrates
hourglass-like and barrel-like TMDs in the thin bilayer; Lp = 2h0 = 3.6 nm.

From Figure 5, it can be seen that when Lp 6= 2h, the interaction of the hourglass-like
and barrel-like shaped TMDs is generally long-range repulsion and short-range attraction.
When 2h = Lp the interaction is very weak and exhibits some degree of repulsion at short
distances in rigid membranes.

4. Discussion

In the present work, we analyzed the interaction of cylindrical, hourglass-like, or
barrel-like transmembrane inclusions mediated by elastic deformations of the membrane.
Different membrane thicknesses (relative to the length of the TMD) and different elastic
rigidities were considered. For interacting hourglass-like and barrel-like TMDs, as well
as for cylindrical TMDs, the interaction manifested as long-range repulsion and short-
range attraction; on average, the interaction appeared almost neutral. The hourglass-like
TMDs demonstrated repulsive interaction in bilayers of small (2h1 = 3 nm) and medium
(2h0 = 3.6 nm) thicknesses, while they were mutually attracted to each other in thick
(2h2 = 4.2 nm) bilayers. On the contrary, the barrel-like TMDs were attracted to each other
in thin (2h1 = 3 nm) bilayers and experienced repulsive interactions in bilayers of medium
(2h0 = 3.6 nm) and large (2h2 = 4.2 nm) thicknesses (Figure 4). The modes of interaction
weakly depended on the membrane elastic rigidity for all three types of transmembrane
inclusions (Figures 2–5). Of note, the interaction potentials of hourglass-like and barrel-like
TMDs exhibited strong repulsion when there was a small distance between the TMDs
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(Figures 3 and 4). However, these results should be considered with care, as when the
distance between the peptides is smaller than the lateral size of a lipid molecule (~0.7 nm),
the application of the continuum theory of elasticity becomes incorrect.

The opposing modes of interaction for hourglass-like and barrel-like TMDs in thin and
thick membranes are the fundamental consequence of the local volumetric incompressibility
(Equation (2)) of lipid membranes. The lateral stretching modulus of the lipid monolayer is
large compared to the characteristic energy density of splay deformation. Indeed, the lateral
stretching modulus is Ka ~ 133 mN/m ≈ 32 kBT/nm2, while the splay modulus divided
by the square of the monolayer thickness is B/h2 ~ 10/1.52 kBT/nm2 ≈ 4.5 kBT/nm2.
This means that the membrane is hardly laterally stretchable. Thus, the least energy
demanding way for the rectangular monolayer element (Figure 6a) to adjust its thickness
is to transform into a trapezium at the expense of splay deformation, keeping the area
of the neutral surface constant. Transformation to a trapezium with a large bottom base
leads to a decreased thickness (Figure 6b), while transformation to a trapezium with a
smaller bottom base yields a larger monolayer thickness (Figure 6c). This formally follows
on from the conditions of local volumetric incompressibility, Equation (2). In our case of
symmetric deformations with respect to the monolayer interface, the interface remains
flat, i.e., M(x, y) ≡ 0. If, for simplicity, we prohibit the lateral stretching of the monolayer
neutral surface (i.e., αu = αl = 0), the conditions of Equation (2) can be rewritten for the
upper monolayer as

Hu − h = −h2

2
div(nu). (8)
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Figure 6. The local volumetric incompressibility allows the monolayer element thickness to be
matched to half of the TMD length via transformation of the rectangular element (a) to a trapezium-
like shape with either: (b) a larger bottom base (decreased thickness) or (c) a smaller bottom base
(increased thickness). The former trapezium fits in better between the hourglass-like TMDs, the
length of which is less than the bilayer thickness (b), while the latter trapezium fits in better between
the barrel-like TMDs, the length of which is greater than the bilayer thickness (c).

For the upper monolayer, the trapezium with a larger bottom base corresponds to
positive div(nu) and, consequently, to a decreased monolayer thickness, (Hu − h) < 0
(Figure 6b). The trapezium with a smaller bottom base corresponds to negative values of
div(nu), yielding an increased monolayer thickness, (Hu − h) > 0 (Figure 6c).

A similar consideration can be made for the bottom monolayer. The trapezium with
the larger bottom base fits in better between the hourglass-like TMDs, which leads to the
attraction of such TMDs in thicker bilayers (Figure 6b), as it is the element of the thicker
bilayer that has to transform into a trapezium to adjust (decrease) its thickness to fit the
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length of the TMD. On the contrary, the trapezium with the smaller bottom base fits in
better between the barrel-like TMDs, which leads to attraction of such TMDs in thinner
bilayers, as it is the element of the thinner bilayer that has to transform into a trapezium to
adjust (increase) its thickness to fit the length of the TMD (Figure 6c).

Practically, the cylindrical TMDs can be related to peptides with charged anchoring
residues, like KALP [53,54]. Hourglass-like TMDs model peptides with bulky tryptophan
anchoring residues, like WALP [53,54] or dimer of gramicidin A (gA) [55,56]. In [40], the
interaction of two gramicidin dimers was analyzed by means of the molecular dynam-
ics (MD) in membranes formed from dimiristoylphosphatidylcholine, dipalmitoylphos-
phatidylcholine, and distearoylphosphatidylcholine. The thickness of all three bilayer was
found to be greater than the length of the gramicidin dimer [40]. The interaction potentials
determined from MD qualitatively coincide with the interaction potential obtained within
our continuum elastic model for hourglass-like TMDs in thick bilayers (red curves in
Figure 3). From experiments with tandem channels formed by two lateral dimers of gram-
icidin located in opposing monolayers of the membrane, it is known that the channel
lifetime increases steeply as two dimers approach each other. In experiments with covalent
dimers (two monomers located in opposing membrane monolayers linked at the membrane
midplane) of minigramicidin (gA analogue cut by 4 amino acids from the N-terminus), it
has been shown that the lifetime of such short covalent dimers increases by about 40 times
when the lifetime is determined in the ensemble as compared to single channel experi-
ments [57]. Considering our results, these data may be interpreted as showing that the
covalent dimers of minigramicidin have an effective hourglass-like shape, and being in-
corporated into a relatively thick bilayer, they strongly attract each other, yielding greater
channel lifetimes.

As barrel-like TMDs, we consider peptides with bulky hydrophobic amino acid
residues (e.g., isoleucine) in the region of the monolayer interface, peptides subjected
to posttranslational modification (i.e., stearoylation, palmitoylation, miristoylation), and/or
those comprising so-called CRAC-motifs thought to bind to cholesterol [58–60]. Both post-
translational modification and cholesterol binding should increase the relative volume of
the hydrophobic part of the peptide, thus yielding an effective barrel-like shape. The trans-
membrane domain of influenza fusion protein, hemagglutinin, has both the CRAC-motif
and the palmitoyl residue attached [61–63] that allow its shape to be modeled as barrel-like.
The length of the hemagglutinin TMD is about 27 amino acid residues [61,64,65], which cor-
responds to the length of the α-helix—about 4.05 nm [66]. The membrane of the influenza
virion is thought to be in the liquid-ordered state, and thus, its typical hydrophobic thick-
ness should be about 3.6 nm [67,68], i.e., less than the length of the hemagglutinin TMD. For
barrel-like TMDs with a relatively thin bilayer, our model predicts mutual attraction (blue
curves in Figure 4). Hemagglutinin-induced membrane fusion is a cooperative process
involving 3 to 9 hemagglutinin trimmers aggregated into a so-called fusion rosette [69]. We
speculate that the attractive mode of interaction for barrel-like TMDs in a thin bilayer might
be responsible for the formation of the fusion rosette, even in cases of low concentrations of
hemagglutinin trimmers in the membrane.

We consider the radius of the TMD to be equal to r0 = 0.65 nm, which approximately
corresponds to the radius of the α-helix. However, for TMDs of other sizes, the interaction
energy should scale approximately with the TMD radius, analogously to the interaction
energy scaling obtained for short amphipathic peptides [42].

The membrane-mediated interactions of two cylindrical inclusions were considered
in detail in [39]. The authors utilized a slightly different elastic model and explicitly
considered the consequences of the structural restrictions of lipid chains in the vicinity of
the solid membrane inclusion. Nevertheless, their obtained interaction energy profiles are
very similar to the potentials calculated within our model and presented in Figure 2.

The interaction potentials of conical membrane inclusions were derived analytically
in [38]. It was shown that the equally oriented conical inclusions spanning the bilayer
always repel each other, which is in agreement with our results for hourglass-like TMDs in
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bilayers with medium (2h0 = 3.6 nm) and small (2h1 = 3 nm) thicknesses (Figure 3, green
and blue curves) and barrel-like TMDs with medium (2h0 = 3.6 nm) and large (2h2 = 4.2 nm)
thickness bilayers (Figure 4, green and red curves). However, in [38], the membrane was
considered to be an infinitely thin film; under such a framework, the attractive mode of
interaction cannot be principally anticipated, as the attractive regime originates from the
local volumetric incompressibility of the membrane.

Of note, our findings and predictions do not depend on the actual phase state (Lo or
Ld) of the membrane. The model uses the monolayer thickness, spontaneous curvature,
and moduli of elasticity. Generally, the Lo phase is characterized by a somewhat larger
monolayer thickness and more rigid membranes. However, increased thickness can be
achieved in the Ld phase through the use of lipids with longer hydrocarbon chains, and
their rigidity can be independently tuned by the degree of the chain unsaturation. For this
reason, we considered all combinations of thickness (thick, medium, and thin monolayers)
and elastic rigidity (soft and rigid membranes), including a thick monolayer with low
rigidity and a thin monolayer with high elastic rigidity, in order to make the consideration
independent of the validity of the hypothesis of Lo/Ld phase coexistence in biological
membranes. Moreover, for our model, only the relative differences in the TMD length and
bilayer thickness were substantial. Formally, one can fix the bilayer thickness and consider
the membrane-mediated interactions of TMDs of different lengths, yielding predictions
similar to those illustrated in Figures 2–5. Such a consideration is completely independent
of the particular phase state of the membrane and, thus, does not rely on the raft hypothesis.

Cellular plasma membranes are highly occupied by transmembrane and peripheral
proteins. Thus, it seems that, in biological membranes, relatively long-range membrane-
mediated interactions should involve multiple proteins. However, as we showed re-
cently [70], the typical energy of membrane-mediated interactions involving peripheral
membrane inclusions is about an order of magnitude smaller than the energy of inter-
actions of transmembrane inclusions. If transmembrane and peripheral proteins have
similar surface concentrations, the contribution of peripheral proteins to the total energy of
membrane-mediated interactions should be small. Nevertheless, multiple protein–protein
interactions may become substantial when the surface density of TMDs is high. The mul-
tiple interactions can be accounted for on the basis of Mayer cluster expansion, which
allows the partition function of the system to be calculated as a series of interacting particle
concentrations, the coefficients of which can be expressed via the pairwise interaction
potentials of the particles [50–52]. These pairwise potentials were calculated in our work
and are presented in Figures 2–5. In this sense, our work qualitatively describes the in-
teraction of transmembrane peptides in the limit of low concentration and provides a
basis for the calculation of the partition function of the system for proteins with increasing
surface density.

Cellular plasma membranes contain about 100 different types of lipid, that have chains
with different lengths and degrees of unsaturation, and are characterized by different
degrees of elastic rigidity and spontaneous curvature [71]. Generally, hydrophobic mis-
match and the effects of non-cylindrical protein shapes can be compensated for by local
enrichment of the TMD vicinity by specific lipids of appropriate length and spontaneous
curvature. In this case, no deformation of the membrane should arise, thus leading to
the absence of membrane-mediated interactions of TMDs. Intuitively, if compensation
for the effect of the non-cylindrical shape of a TMD can take place alternatively at the
expense of bending deformation or local redistribution of lipids, one should compare the
corresponding moduli, i.e., the bending modulus of monolayer (~10 kBT) and the typical
energy of thermal motion (~1 kBT). Such a comparison leads to the incorrect conclusion that
the lateral redistribution of membrane components costs an order of magnitude less energy
than the deformation of the membrane patch in the TMD vicinity, and thus, elastic deforma-
tions should not arise. Actually, one should not compare the moduli, but rather, the typical
energies or energy surface densities. For example, in the approximation of an ideal solution,
the local enrichment of the lipid component with an average concentration (mole fraction)
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of x10 = 0.3 to the local concentration in the TMD vicinity of x1 = 1.0 should cost about
(x1kBTln[x1/x10] + (1 − x1)kBTln[(1 − x1)/(1 − x10)])/a0 ≈ 1.7 kBT/nm2 (here a0 ≈ 0.7 nm2

is the area per lipid molecule at the monolayer surface) [72]. The corresponding bending
energy density can be estimated as BJs

2/2 ≈ 10 kBT·(1/3 nm–1)2/2 ≈ 0.2 kBT/nm2 (here Js
is the spontaneous curvature of the lipid component, roughly estimated as |Js|~1/3 nm–1,
which is typical for cholesterol and dioleoylphsphatidylethanolamine) [73]. This means that
it is much easier to deform the membrane rather than laterally redistribute the membrane
components. Practically, both deformation and lateral redistribution should contribute to
the compensation for the effects of the non-cylindrical shape of the TMD. However, as the
energy density of deformation is less than that of the lateral redistribution of membrane
components, deformations should definitely arise in the TMD vicinity, thus leading to
membrane-mediated long-range lateral interactions of TMDs. The lateral redistribution
of the components can only slightly dampen the deformations, yielding decreases in their
characteristic lengths.

Plasma membranes are asymmetric with respect to the lipid compositions of their
constituent monolayers. The outer monolayer is enriched with electrically neutral phospho-
choline lipids with saturated chains, while the inner monolayer is enriched with negatively
charged unsaturated lipids, phosphoethanolamines, etc. [71]. Generally, the outer and
inner monolayers of plasma membranes should possess different monolayer thicknesses,
spontaneous curvatures, and elastic rigidities. Qualitatively, the calculated TMD interaction
potentials are weakly dependent on the membrane rigidity (Figures 2–5). The spontaneous
curvature of the lipid monolayer yields the only constant contribution to the elastic en-
ergy (Equation (7)) and does not influence the interaction potential. The results of our
calculations depended strongly on the hydrophobic thickness of the lipid monolayers
(Figures 2–5). However, as we considered the transmembrane peptides, we set the bound-
ary conditions for the total bilayer (rather than monolayer) thickness at the TMD boundary
(see Equations (5) and (6)). Thus, only the total bilayer hydrophobic thickness is substantial,
while the exact thicknesses of each monolayer of the membrane are not important.

Cholesterol is a major lipid component of plasma membranes of mammalian cells [71].
Generally, cholesterol increases the membrane thickness and elastic rigidity, although
the effect depends on the degree of lipid chain saturation/unsaturation. Additionally,
cholesterol induces highly negative spontaneous curvature in lipid monolayers [73]. Spon-
taneous curvature gives a constant contribution to the elastic energy of the membrane
(Equation (7)), which is independent of the distance between the TMDs and, thus, does not
influence the interaction potentials. A cholesterol-induced increase in the elastic rigidity
should slightly alter the interaction energy profiles (Figures 2–5). However, the interaction
potentials depend strongly on the bilayer thickness (Figures 2–5). The change in the bilayer
thickness upon cholesterol addition should depend on the initial amount of cholesterol
present in the membrane. If, initially, the soft bilayer contains no cholesterol, while the
rigidity of the rigid bilayer is provided by the high cholesterol content, the addition of
cholesterol should increase the thickness of the soft bilayer to a larger extent than for the
rigid bilayer. This would alter the interaction potentials of hourglass-like and barrel-like
TMDs (Figures 3 and 4). However, for cylindrical TMDs, the interaction potentials in the
thin and thick bilayers are qualitatively similar (Figure 2). Thus, if cholesterol addition
does not yield an exact match for the bilayer thickness and the length of the cylindrical
TMD, the addition should result in no qualitative change to the interaction potentials in the
soft and rigid bilayers.
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